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Abstract

The algebraic structure of the rank two Racah algebra is studied in detail. We pro-
vide an automorphism group of this algebra, which is isomorphic to the permutation
group of five elements. This group can be geometrically interpreted as the symmetry
of a folded icosidodecahedron. It allows us to study a class of equivalent irreducible
representations of this Racah algebra. They can be chosen symmetric so that their
transition matrices are orthogonal. We show that their entries can be expressed
in terms of Racah polynomials. This construction gives an alternative proof of the
recurrence, difference and orthogonal relations satisfied by the Tratnik polynomials,
as well as their expressions as a product of two monovariate Racah polynomials.
Our construction provides a generalization of these bivariate polynomials together
with their properties.
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1 Introduction

The bispectral properties of the orthogonal polynomials of the Askey scheme [32] can be described
by algebras defined by quadratic relations [46]. When the Racah polynomial, which is at the top of
the Askey scheme, is considered, one obtains an algebra, called the Racah algebra (of rank one). The
6j-symbols, which are the overlap coefficients between bases with different recoupling of three su(2)
representations, can be expressed in terms of Racah polynomials [43, 44]. The Racah algebra provides
an algebraic explanation of this connection [35, 20, 16]. Indeed, the elements of the centralizer of
the diagonal action of su(2) in three copies of su(2) satisfy the Racah algebra. Therefore, the 6j-
symbols are intimately connected to the representation theory of the Racah algebra. This justifies
the mathematical study of its representations [26, 25]. This algebra also appears in several other
contexts. The connection between this algebra and the centralizer has been investigated in detail in
[6] where some quotient of the Racah algebra has been identified as the Temperley–Lieb or Brauer
algebras. It can be embedded in different other algebras: U(su(2)) [21, 33, 2, 7], additive DAHA
of type (C∨

1 , C1) [25] or Bannai–Ito algebra [17]. The Racah algebra, as the algebras associated to
the other polynomials of the Askey scheme, allows one to characterize the Leonard pair and plays an
important role in algebraic combinatorics [40, 14]. Finally, in the context of superintegrable models,
some Hamiltonians on the 2-sphere possess the Racah algebra as a symmetry [37, 31, 15].

The symmetry of the Hamiltonian of superintegrable models on d-sphere (d > 2) leads to identify
the structure of the Racah algebra for higher rank. In [30], the model on the 3-sphere was examined
and the Tratnik bivariate Racah polynomials [42] have been identified as the bases of the symmetry
algebra. The generalization to a d-sphere has been made in [9] where relations for the higher rank
Racah algebra have been computed (see also [34]). The rank two Racah algebra also showed up in
the recoupling problem of four copies of su(1, 1) algebra in [38]. Then, the centralizer of the diagonal
action on n copies has been studied in [10]. The exact isomorphism between this centralizer and a
quotient of the higher rank Racah algebra, called special Racah algebra, has been proven in [5]. The
connection with multivariate orthogonal polynomials [18] has been also initiated in [11].

In this paper, we consider the rank two Racah algebra R(4), which is the first generalization of
the usual Racah algebra R(3). Their definitions are recalled in details in section 2.1. We study a
specific quotient of R(4), called special Racah algebra sR(4) defined in [5], obtained by setting to zero
certain Casimir elements of R(4). An automorphism group of sR(4) is identified in section 2.3, which
is isomorphic to the permutation group of five elements S5. It is also identified with the symmetry
group of the folded icosidodecahedron, when its vertices are identified with abelian subalgebras of
sR(4), see figure 1.

We study representations of sR(4) in section 3. We focus on representations such that one of the
abelian subalgebras acts diagonally. The vectors of the corresponding representation space are labeled
by two integers, and we show that the other generators of sR(4) act tridiagonally on these vectors,
in the sense that the actions of these generators on a vector shift only by ±1 these two labels. This
representation depends on the values of the central elements of sR(4). A finite-dimensional represen-
tation can be extracted by imposing a constraint on these values. We show that this representation is
irreducible and can be chosen real symmetric when the parameters satisfy a set of inequalities.

In section 4, the automorphisms of sR(4) allow us to build a representation associated to each
element of the permutation group S5. We demonstrate that choosing accurately their parameters,
these representations become in fact equivalent. The transition matrices between these equivalent
representations are computed and their entries are identified with Racah polynomials. This identifi-
cation together with relations among automorphisms of sR(4) allow us to obtain some relations on
monovariate Racah polynomials, which turn out to be equivalent to the Racah and Biedenharn–Elliott
relations (section 5).

Finally, in section 6, the transition matrices associated to paths on the folded icosidodecahedron
are computed. For length two paths, the transition matrix entries are expressed as the product of two
monovariate Racah polynomials, which is identified with the bivariate Tratnik polynomials. As a by-
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product, our construction of sR(4) representations allows us to recover the unitarity, recurrence and
difference identities obeyed by these objects. Similarly, for length three paths, the transition matrix
entries can be computed and appear to be a sum of products of three monovariate Racah polynomials.
This provides a generalization of the bivariate Tratnik polynomials, which has not been studied yet.
Once again, our construction provides unitarity, recurrence and difference identities obeyed by these
objects. We conclude the paper with various open problems in section 7 and gather some technical
formulas in appendices.

2 Special Racah algebra sR(4)

2.1 Definitions and Casimir elements of the R(4) algebra

The Racah algebra R(4) is generated by the elements CI with I ⊆ {1, 2, 3, 4}. Let us emphasize that
the order in the subset I is irrelevant and, for example, C12 = C21 (to lighten the notations, we write
only the elements of the subsets instead of the subset itself. For example, C12 stands for C{1,2}). By
convention C∅ = 0 and for two disjoint subsets I, J , one sets CIJ = CI∪J . The defining relations of
the Racah algebra R(4) are

[CI , CJ ] = 0 for I ∩ J = ∅ or I ⊆ J , (2.1)

CI =
1

2

∑

i,j∈I
i6=j

Cij − (|I| − 2)
∑

i∈I

Ci , (2.2)

for three nonempty disjoint subsets I, J,K ⊆ {1, 2, 3, 4},

[CIJ , CJK ] = [CJK , CIK ] = [CIK , CIJ ] , (2.3)[
CJK , [CIJ , CJK ]

]
= 2CIKCJK − 2CJKCIJ + 2(CJ − CK)(CIJK − CI) , (2.4)

and, for i, j, k, ℓ ∈ {1, 2, 3, 4} pairwise distinct,

1

2

[
Ckℓ, [Cij , Cjk]

]
= CikCjℓ − CiℓCjk + (Ci + Cℓ)Cjk + (Cj +Ck)Ciℓ

−(Cj + Cℓ)Cik − (Ci + Ck)Cjℓ + (Ci − Cj)(Cℓ − Ck) , (2.5)

1

2

[
[Cij , Cjk], [Cjk, Ckℓ]

]
= −

(
[Cij, Cjℓ] + [Cik, Ckℓ]

)
(Cjk − Cj − Ck) . (2.6)

The above presentation of R(4) is not unique and different other possibilities exist in the literature.
Instead of Cij , another set of generators Pij = Cij − Ci − Cj (for i 6= j) and Pii = 2Ci has been used
previously to define the Racah algebra R(4) [9, 10, 5]. In this paper, we prefer to define the R(4)
algebra using all the elements CI with I ⊆ {1, 2, 3, 4} since it simplifies the computations.

One can show that the relations (2.6) can be replaced by (for pairwise distinct indices i, j, k, ℓ ∈
{1, 2, 3, 4}):

2Cj [Cik, Ckℓ]+(Cij−Ci−Cj)[Ckℓ, Cjk]+(Cjℓ−Cj−Cℓ)[Cjk, Cik]−(Cjk−Cj−Ck)[Cij , Cjℓ] = 0 . (2.7)

Such types of relations, expressed in the Pij basis, appeared already in [5]. Note that thanks to (2.3),
relation (2.7) is invariant under any permutation of the indices (i, k, ℓ), one gets only 4 such relations.

Using relations (2.2) (see also (A.1)), we can define the algebra R(4) using only the elements Cj ,
j = 1, 2, 3, 4, C1234, C12, C23, C34, C123 and C234. For completeness, we provide the equivalent set of
relations of R(4) using only these elements in appendix A. They will be used for the construction of
representations.
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From relations (2.1) satisfied in the Racah algebra R(4), one can show that Ci (i ∈ {1, 2, 3, 4})
and C1234 are central. There exist other central elements given by

wI,J,K =
1

4

(
[CIJ , CJK ]

)2
− 1

2
{C2

IJ , CJK} − 1

2
{CIJ , C

2
JK}+ C2

IJ + C2
JK + {CIJ , CJK}

+
1

2
(CI + CJ + CK +CIJK)({CIJ , CJK} − 2CIJ − 2CJK)

−(CI − CIJK)(CJ − CK)CIJ − (CI − CJ)(CIJK − CK)CJK

+(CICK − CIJKCJ)(CIJK − CI + CJ − CK) + (CI + CK)(CIJK + CJ) , (2.8)

where I, J,K ⊆ {1, 2, 3, 4} are three nonempty disjoint subsets and {., .} is the anticommutator. It
should be mentioned that the element w1,2,3 is essentially the known Casimir element of the Racah
algebra R(3) given in [20, 16]. It is quite a surprise that this element is still a central element in the
Racah algebra R(4). For example, it is not trivial that it commutes with the generator C34 [5]. We
can show that wI,J,K is symmetric under the exchange of the sets I, J and K. In addition, one gets

2x1234 := w12,3,4 − w1,3,4 − w2,3,4 = w1,23,4 − w1,2,4 − w1,3,4 = w1,2,34 − w1,2,3 − w1,2,4 . (2.9)

Therefore, there are only 5 independent Casimir elements w1,2,3, w1,2,4, w1,3,4, w2,3,4 and x1234. These
5 elements have been identified in [5].

The special Racah algebra sR(4) is the quotient of the Racah algebra R(4) by the relations

w1,2,3 = 0 , w1,2,4 = 0 , w1,3,4 = 0 , w2,3,4 = 0 , x1234 = 0 . (2.10)

The terminology “special” comes from [4], where a similar quotient of the Askey–Wilson algebra has
been defined and denoted as the “special Askey–Wilson algebra” (this was inspired by the nomencla-
ture of Lie groups).

For any three distinct subsets I, J,K ⊆ {1, 2, 3, 4}, the subalgebras of sR(4) generated by CI , CJ ,
CK , CIJ , CIK , CJK and CIJK are isomorphic and describe the so-called special Racah algebra sR(3).

2.2 A web of abelian subalgebras

To study the representations of the special Racah algebra, it is useful to consider its abelian subalge-
bras. It is easy to see that couples of the form (Cij , Cijk) or (Cij , Ckℓ) (for i, j, k, ℓ pairwise distinct)
are abelian subalgebras of sR(4). Hence, both elements of these abelian subalgebras are simultane-
ously diagonalizable, which fixes a basis of the representation in the case where their joint spectrum is
nondegenerate. We are then interested in computing the connection coefficients between two different
bases. This study is highly facilitated by introducing the associated connection graph displayed in
figure 1 and corresponds to a folded icosidodecahedron, which is the quotient of the icosidodecahedron
by its central symmetry (i.e. the vertices and the edges related by the symmetry with respect to the
center of the icosidodecahedron are identified). The vertices of this graph are given by the abelian
subalgebras and the edges link two abelian algebras differing by only one generator. The web of the
abelian subalgebras given in figure 1 generalizes the result of [9, 10] where only the subalgebras of the
type (Cij , Cijk) have been considered. In this latter case, the connection graph reduces to a truncated
tetrahedron.

The labels inside a chosen triangle correspond to the noncentral generators of a subalgebra sR(3).
The labels of its three vertices that are outside the triangle are the central elements of this sR(3)
subalgebra. The labels in the pentagons correspond to the central elements Cj (with 0 associated to
C1234). They are written in such a way that they allow to fully reconstruct isomorphisms of sR(4),
see section 2.3 below.

2.3 Symmetries of the icosidodecahedron and isomorphisms of algebra

An important point to remark is that the previous graph is a regular graph, meaning that all vertices
are equivalent. Indeed, each vertex is surrounded by two triangles and two pentagons. In addition, we
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Figure 1: The connection graph for sR(4) and the icosidodecahedron. The graph is a folded icosido-
decahedron, which is the quotient of the icosidodecahedron by its central symmetry, i.e. the vertices
and the edges which are related by the central symmetry are identified. The labels of the same vertex
and displayed inside the triangle correspond to the indices of the generators belonging to the same
abelian subalgebras. For clarity, we draw the labels in the backside of the picture in gray, with dotted
arrows. Moreover, most of them are not displayed: they can be deduced using the central symmetry.
The labels inside the pentagonal faces correspond to central elements.
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remark that the automorphism group of this graph is the permutation group of five elements S5 (it
has been verified using a formal mathematical software). This rises the question of the link between
symmetries of the connection graph and isomorphisms of sR(4).

Proposition 2.1. The linear maps given by:

s : C12, C13, C14, C23, C24, C34 7→ C123, C124, C134, C34, C24, C23 (2.11)

C123, C124, C134, C234 7→ C12, C13, C14, C234

C1, C2, C3, C4, C1234 7→ C1234, C4, C3, C2, C1 ,

t : C12, C13, C14, C23, C24, C34 7→ C13, C23, C34, C12, C14, C24 (2.12)

C123, C124, C134, C234 7→ C123, C134, C234, C124

C1, C2, C3, C4, C1234 7→ C3, C1, C2, C4, C1234 ,

i : C12, C13, C14, C23, C24, C34 7→ C12, C13, C234, C23, C134, C124 (2.13)

C123, C124, C134, C234 7→ C123, C34, C24, C14

C1, C2, C3, C4, C1234 7→ C1, C2, C3, C1234, C4 ,

are isomorphisms of sR(4). They obey the relations

s2 = e , t3 = e , i2 = e ,

(s t)5 = e , (s i)4 = e , (s t i)6 = e , t i = i t , (i s t s)2 = e ,
(2.14)

where e is the identity map. They generate the symmetric group S5. In addition, t and s generate the

alternating group A5.

Proof. To prove that i, s and t are algebra homomorphisms, one first checks by direct computations
that their action leave the relations of sR(4) unchanged. In addition, they verify the relations (2.14).
The first row of these relations show that they are invertible, so that they are bijections. They show
that t and s generate the alternating group A5 since s

2 = e ,t3 = e and (s t)5 = e are the usual defining
relations of A5. To prove that we have the symmetric group S5, we introduce

h1 = s i s , h2 = s i s t , h3 = i s t s , h4 = i , (2.15)

which can be inverted as

i = h4 , t = h1 h2 , s =
(
h2 h1 h3 h4

)2
h2 h1 . (2.16)

It is easy to see using relations (2.14) that hj , j = 1, 2, 3, 4 obey the defining relations of S5:

h2j = e , j = 1, 2, 3, 4 and

{
hj hk hj = hk hj hk , |j − k| = 1 ,

hj hk = hk hj , |j − k| 6= 1 .
(2.17)

We checked that the group generated by the generators i, t and s has dimension at least 120. This
proves that it is indeed S5.

The actions of s and t (2.11) and (2.12) on the generators Cij and Cijk can be obtained directly
from figure 1: the map s corresponds to the reflection with respect to the plane containing the
center of the icosidodecahedron and the vertices (C12, C123), (C24, C234); the map t is the rotation
of 2π/3 around the axis passing through the center of the icosidodecahedron and the center of the
triangle (C12, C123), (C13, C123), (C23, C123). Thanks to this identification, we can obtain the previous
isomorphisms generating A5 directly from the symmetries of the figure 1. Acting with a symmetry
on figure 1 and reading how the labels are transformed, one gets an isomorphism of sR(4). For
example, the rotation of the figure with an angle 2π/5 around the axis passing through the center of
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the icosidodecahedron and the center of the pentagon (C12, C123), (C23, C123), (C234, C23), (C34, C234),
(C12, C34) is a symmetry corresponding to the isomorphism

r : C12, C13, C14, C23, C24, C34 7→ C34, C124, C13, C123, C14, C234 (2.18)

C123, C124, C134, C234 7→ C12, C134, C24, C23

C1, C2, C3, C4, C1234 7→ C3, C4, C1234, C1, C2 .

The map i is much harder to visualize using the icosidodecahedron image: for example, it sends
the pentagon (C12, C123), (C13, C123), (C13, C24), (C124, C34), (C12, C124) to the pentagon (C12, C123),
(C13, C123), (C134, C13), (C134, C34), (C12, C34), which is indeed a pentagon of the folded icosidodeca-
hedron (but not of the icosidodecahedron). The map is illustrated in the following figure:

i

3 Representation theory of sR(4)

In this section, the representations of the rank 2 special Racah algebra sR(4) are computed. We focus
on the ones in which the central elements Ci, i = 1, 2, 3, 4 (resp. C1234) take the values µ(i) (resp.

µ(0)), and such that C12 and C123 are both diagonal with nondegenerate joint spectrum µ
(12)
n and

µ
(123)
p , n, p ∈ Z. In the following, it will be convenient to set

µ(i) = j(i)(j(i) + 1) , i = 0, 1, . . . , 4 , µ(12)n = j(12)n (j(12)n + 1) and µ(123)p = j(123)p (j(123)p + 1). (3.1)

The basis vectors will be denoted as |n, p〉, where n, p ∈ Z. The generators Ci, i = 1, 2, 3, 4, C1234,
C12 and C123 act as

Ci |n, p〉 = µ(i)|n, p〉 , C1234 |n, p〉 = µ(0)|n, p〉 , (3.2)

C12 |n, p〉 = µ(12)n |n, p〉 , C123 |n, p〉 = µ(123)p |n, p〉 . (3.3)

We suppose that the basis is orthonormal and we denote the components of an element X ∈ sR(4) as
follows

[X]
m

n

q

p
= 〈n, p|X|m, q〉 . (3.4)

3.1 Special Racah algebra sR(3)

As explained previously the subalgebra of sR(4) generated by CI with I ⊆ {1, 2, 3} is the special
Racah algebra sR(3). The representation theory of sR(3) has been studied previously in [15, 26].
These results are reproduced here for completeness.

Proposition 3.1. The diagonal entries of C12 are given by (3.1) with

j(12)n = n+ a12 , (3.5)

where n ∈ Z and a12 is a free parameter. The generator C23 takes the following tridiagonal form

C23|n, p〉 = ψ+0
n+1,p|n+ 1, p〉+ ψ00

n,p|n, p〉+ ψ−0
n,p|n− 1, p〉 , (3.6)

8



where

ψ+0
n,p ψ

−0
n,p = Qp(j

(12)
n )Qp(−j(12)n ) , (3.7)

and

Qp(z) =
(z − j(1) + j(2))(z + j(1) + j(2) + 1)(z − j(3) + j

(123)
p )(z − j(3) − j

(123)
p − 1)

2z(2z − 1)
. (3.8)

Its diagonal entries are given by

ψ00
n,p = −Qp(j

(12)
n+1)−Qp(−j(12)n ) + (j(2) − j(3) + 1)(j(2) − j(3)) . (3.9)

Proof. We use the presentation of appendix A. The commutator [C23, C123] = 0 leads to the relation(
µ
(123)
p − µ

(123)
q

)
[C23]

m

n

q

p
= 0, from which it follows that [C23]

m

n

q

p
= 0 if p 6= q. Then, we can set

p = q when considering equations (A.3) and (A.4).
Projecting (A.3), one gets

1

2

(
µ(12)n − µ(12)m

)2
[C23]

m

n

p

p
=
(
µ(12)n + µ(12)m

)
[C23]

m

n

p

p
(3.10)

+
(
(µ(12)n )2 − (µ(1) + µ(2) + µ(3) + µ(123)p )µ(12)n − (µ(1) − µ(2))(µ(3) − µ(123)p )

)
δmn .

This last equation reduces to 1
2

(
µ
(12)
n − µ

(12)
m

)2
[C23]

m

n

p

p
=
(
µ
(12)
n + µ

(12)
m

)
[C23]

m

n

p

p
if n 6= m. There

exists at least an index p for which [C23]
m

n

p

p
6= 0. Hence, there are only two distinct values of m

for fixed n that satisfy the equation. Since for a given value of µ
(123)
p , the µ

(12)
n ’s are all distinct by

hypothesis, one can choose these two values as m = n ± 1. The entries [C23]
m

n

q

p
with |n −m| > 1

are then vanishing. The recurrence formula obeyed by µ
(12)
n is obtained by considering m = n + 1 in

(3.10):
1

2

(
µ(12)n − µ

(12)
n+1

)2
=
(
µ(12)n + µ

(12)
n+1

)
. (3.11)

Moreover, the projection 〈n+ 2, p|(A.4)|n, p〉 gives

µ
(12)
n+2 − 2µ

(12)
n+1 + µ(12)n = 2 , (3.12)

which, together with (3.11), is easily solved and provides the form of the diagonal entries of C12 given
in the proposition.

Coming back to (3.10) with n = m, we get

ψ00
n,p =

(µ
(12)
n + µ(2) − µ(1))(µ

(123)
p − µ(3) − µ

(12)
n )

2µ
(12)
n

+ µ(2) + µ(3) , (3.13)

which can be written as (3.9) using (3.8).
The projection 〈n, p|(A.4)|n, p〉 leads to:
(
µ(12)n − µ

(12)
n+1 − 1

)
Yn+1,p −

(
µ
(12)
n−1 − µ(12)n + 1

)
Yn,p =

(
ψ00
n,p

)2
+ (2µ(12)n − µ(1) − µ(2) − µ(3) − µ(123)p )ψ00

n,p − (µ(1) − µ(123)p )(µ(3) − µ(2)) ,
(3.14)

where Yn,p = ψ+0
n,p ψ

−0
n,p. One can check that the other components of (A.3) and (A.4) do not give any

further information.
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In the special Racah algebra, w123 = 0. The evaluation of this equation on 〈n, p| and |n, p〉 leads
to:

((
µ
(12)
n − µ

(12)
n+1

)2

4
+ µ(12)n − 1

)
Yn+1,p +

((
µ
(12)
n − µ

(12)
n−1

)2

4
+ µ(12)n − 1

)
Yn,p

= (1− µ(12)n )
(
ψ00
n,p − µ(1) − µ(2) − µ(3) − µ(123)p

)
ψ00
n,p − (µ(12)n )2 ψ00

n,p + ξ12 µ
(12)
n + ξ23 ψ

00
n,p + ξ0 ,

(3.15)

where

ξ12 = (µ(3) − µ(2))(µ(1) − µ(123)p ) , (3.16)

ξ23 = (µ(1) − µ(2))(µ(3) − µ(123)p ) , (3.17)

ξ0 = (µ(1)µ(3) − µ(2)µ(123)p )(µ(123)p − µ(1) + µ(2) − µ(3)) + (µ(2) + µ(3))(µ(1) + µ(123)) . (3.18)

Equations (3.14) and (3.15) form a system of two equations with unknowns Yn,p and Yn+1,p, which is
solved by (3.7).

3.2 Special Racah sR(4)

We now go to the representation of the sR(4) algebra. For the sake of simplicity, we first present the
following lemma which provides constraints for C34 and C123.

Lemma 3.2. The diagonal entries of C123 are given by (3.1) with

j(123)p = p+ a123, (3.19)

where p ∈ Z and a123 is a free parameter. The generator C34 must have the following tridiagonal form

C34|n, p〉 = ρ0+n,p+1|n, p+ 1〉+ ρ00n,p|n, p〉+ ρ0−n,p|n, p− 1〉 , (3.20)

where

ρ0+n,p ρ
0−
n,p = Q̂n(j

(123)
p )Q̂n(−j(123)p ) , (3.21)

with

Q̂n(z) =
(z − j(0) + j(4))(z + j(0) + j(4) + 1)(z − j(3) + j

(12)
n )(z − j(3) − j

(12)
n − 1)

2z (2z − 1)
. (3.22)

Its diagonal entries are given by

ρ00n,p = −Q̂n(j
(123)
p+1 )− Q̂n(−j(123)p ) + (j(3) − j(4) − 1)(j(3) − j(4)) . (3.23)

Proof. Same proof as in Proposition 3.1, using now relations (A.9), (A.10) and [C12 , C34] = 0.

Up to now, the computations were very similar to the ones done in sR(3). Indeed, in the same way
the elements C12, C23, C13 with central generators C1, C2, C3 and C123 generate a sR(3) subalgebra,
the elements C123, C34, C124 generate another sR(3) subalgebra containing as central generators the
elements C12, C3, C4 and C1234. The first embedding allowed us to get proposition 3.1, while the
second one led to lemma 3.2. The remaining calculations are more involved as shown in the following
proposition.
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Proposition 3.3. The entries of C23 and C34 are related as follows

ψ+0
n,p−1

ψ+0
n,p

ρ0+n,p

ρ0+n−1,p

=
(n− p+ a12 − a123 + j(3) + 1)(n − p+ a12 − a123 − j(3))

(n− p+ a12 − a123 + j(3))(n− p+ a12 − a123 − j(3) − 1)
. (3.24)

The generator C234 takes the following form

C234|n, p〉 = ϕ++
n+1,p+1|n+ 1, p + 1〉 +ϕ0+

n,p+1|n, p+ 1〉 +ϕ−+
n,p+1|n− 1, p + 1〉

+ ϕ+0
n+1,p|n+ 1, p〉 +ϕ00

n,p|n, p〉 +ϕ−0
n,p|n− 1, p〉

+ ϕ+−
n+1,p|n+ 1, p − 1〉 +ϕ0−

n,p|n, p− 1〉 +ϕ−−
n,p |n− 1, p− 1〉 .

(3.25)

Its diagonal entries are

ϕ00
n,p =

µ
(12)
n + µ(1) − µ(2)

2µ
(12)
n

ρ00n,p −
1

2µ
(12)
n

(
(µ(12)n − µ(1) − µ(2) − µ(0))µ(12)n + µ(0)(µ(1) − µ(2))

)
(3.26)

while the remaining entries read

ϕ±0
n,p =

µ
(123)
p − µ(4) + µ(0)

2µ
(123)
p

ψ±0
n,p , ϕ0±

n,p =
µ
(12)
n + µ(1) − µ(2)

2µ
(12)
n

ρ0±n,p , (3.27)

and

ϕ±±
n,p =

−ψ±0
n,p ρ

0±
n−1,p

(n− p+ a12 − a123 + j(3))(n− p+ a12 − a123 − j(3) − 1)
, (3.28)

ϕ±∓
n,p =

−ψ±0
n,p ρ

0∓
n,p

(n+ p+ a12 + a123 + j(3) + 1)(n + p+ a12 + a123 − j(3))
. (3.29)

Proof. Equation (A.12) projected on 〈n, p| and |m, q〉, gives
1

2

(
µ(123)p − µ(123)q

)2
[C234]

m

n

q

p
=
(
µ(123)p + µ(123)q

)
[C234]

m

n

q

p
−
(
µ(123)p − µ(4) + µ(0)

)
[C23]

m

n

p

p
δqp

+
(
(µ(123)p − µ(1) − µ(4) − µ(0))µ(123)p − µ(1)(µ(4) − µ(0))

)
δmn δqp . (3.30)

This expression for p 6= q shows that [C234]
m

n

q

p
= 0 when |p − q| > 1, for all values of m and n.

Moreover, taking p = q and m 6= n, it proves the first expression of (3.27).
In a similar way, Eq. (A.7) leads to

1

2

(
µ(12)n − µ(12)m

)2
[C234]

m

n

q

p
=
(
µ(12)n + µ(12)m

)
[C234]

m

n

q

p
−
(
µ(12)n + µ(1) − µ(2)

)
[C34]

n

n

q

p
δmn

+
(
(µ(12)n − µ(1) − µ(2) − µ(0))µ(12)n + µ(0)(µ(1) − µ(2))

)
δmn δqp . (3.31)

Following the same lines as above, one gets [C234]
m

n

q

p
= 0 if |n−m| > 1 and the second expression of

(3.27), as well as the diagonal entries (3.26). We have thus shown that [C234]
m

n

q

p
is tridiagonal both

in (n,m) and in (p, q).

It remains to determine the explicit expressions of [C234]
m

n

q

p
for m = n ± 1 and q = p ± 1. To this

aim, we consider (A.5) projected on 〈n, p| and |m, q〉, in the case q 6= p,

1

2

∑

s

(
[C23]

s

n

p

p
[C23]

m

s

p

p
[C34]

m

m

q

p
− 2[C23]

s

n

p

p
[C34]

s

s

q

p
[C23]

m

s

q

q
+ [C34]

n

n

q

p
[C23]

s

n

q

q
[C23]

m

s

q

q

)

= [C23]
m

n

p

p
[C34]

m

m

q

p
+ [C34]

n

n

q

p
[C23]

m

n

q

q
−
∑

s

[C234]
s

n

q

p
[C23]

m

s

q

q
+ (µ(2) − µ(3)) [C234]

m

n

q

p
. (3.32)
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The equation obtained for m = n− 2 and q = p− 1 allows to get:

1

2

(
ψ+0
n,pψ

+0
n−1,pρ

0+
n−2,p − 2ψ+0

n,pρ
0+
n−1,pψ

+0
n−1,p−1 + ρ0+n,pψ

+0
n,p−1ψ

+0
n−1,p−1

)
=− ϕ++

n,pψ
+0
n−1,p−1

=− ψ+0
n,pϕ

++
n−1,p .

(3.33)

The second equality in the above relations is obtained starting from (A.5) where C234C23 = C23C234

is used. Similarly, for m = n+ 2 and q = p− 1 in (3.32), one gets:

1

2

(
ψ−0
n−1,pψ

−0
n,pρ

0+
n,p − 2ψ−0

n−1,pρ
0+
n−1,pψ

−0
n,p−1 + ρ0+n−2,pψ

−0
n−1,p−1ψ

−0
n,p−1

)
=− ϕ−+

n−1,pψ
−0
n,p−1

=− ψ−0
n−1,pϕ

−+
n,p .

(3.34)

Relations (3.33) provide two different expressions for ϕ++
n,p . Comparing them, one gets the following

constraint

1− 3Z++
n−1,p + 3Z++

n−1,pZ
++
n,p − Z++

n−1,pZ
++
n,p Z

++
n+1,p = 0 , with Z++

n,p =
ψ+0
n,p−1 ρ

0+
n,p

ψ+0
n,p ρ

0+
n−1,p

. (3.35)

Similarly, from (3.34), one gets the following constraint

1− 3Z−+
n−1,p + 3Z−+

n−1,pZ
−+
n,p − Z−+

n−1,pZ
−+
n,p Z

−+
n+1,p = 0 , with Z−+

n,p =
ψ−0
n,pρ

0+
n,p

ψ−0
n,p−1ρ

0+
n−1,p

. (3.36)

From relation (3.7), one gets

ψ−0
n,p

ψ−0
n,p−1

=
ψ+0
n,p−1

ψ+0
n,p

(n+ p+ a12 + a123 − j(3))(n − p+ a12 − a123 − j(3) − 1)

(n+ p+ a12 + a123 − j(3) − 1)(n − p+ a12 − a123 − j(3))

× (n− p+ a12 − a123 + j(3))(n + p+ a12 + a123 + j(3) + 1)

(n− p+ a12 − a123 + j(3) + 1)(n + p+ a12 + a123 + j(3))
. (3.37)

Then, we can express Z−+
n,p in terms of Z++

n,p and relations (3.35) and (3.36) can be solved to get an

expression of Z++
n+1,p and of Z++

n−1,p in terms of Z++
n,p . Replacing in the first relation n by n − 1, one

gets two relations between Z++
n−1,p and Z++

n,p . Solving these relations, we find that

Z++
n,p =

(n − p+ a12 − a123 + j(3) + 1)(n − p+ a12 − a123 − j(3))

(n − p+ a12 − a123 + j(3))(n − p+ a12 − a123 − j(3) − 1)
. (3.38)

This proves relation (3.24). Taking into account this relation, one gets from (3.33) the expression
(3.28) for ϕ++

n,p . The values (3.28)-(3.29) of ϕ−−
n+1,p+1, ϕ

+−
n,p+1, ϕ

−+
n+1,p are computed similarly.

Let us remark that, from relations (3.7) and (3.21), relation (3.24) leads to the following relations

ψ+0
n,p−1

ψ+0
n,p

ρ0−n−1,p

ρ0−n,p
=

(n+ p+ a12 + a123 + j(3))(n+ p+ a12 + a123 − j(3) − 1)

(n+ p+ a12 + a123 + j(3) + 1)(n + p+ a12 + a123 − j(3))
, (3.39)

ψ−0
n,p

ψ−0
n,p−1

ρ0+n,p

ρ0+n−1,p

=
(n+ p+ a12 + a123 + j(3) + 1)(n + p+ a12 + a123 − j(3))

(n+ p+ a12 + a123 + j(3))(n+ p+ a12 + a123 − j(3) − 1)
, (3.40)

ψ−0
n,p

ψ−0
n,p−1

ρ0−n−1,p

ρ0−n,p
=

(n− p+ a12 − a123 + j(3))(n− p+ a12 − a123 − j(3) − 1)

(n− p+ a12 − a123 + j(3) + 1)(n − p+ a12 − a123 − j(3))
. (3.41)

Note also that (3.24) can be solved as

ψ+0
n,p = (n− p+ a12 − a123 + j(3))

p∏

j=−∞

un,p−j ,

ρ0+n,p = (n− p+ a12 − a123 − j(3))
n∏

k=−∞

un−k,p ,

(3.42)
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where un,p are arbitrary nonzero numbers. It can be checked that these numbers can be absorbed
through a conjugation by a diagonal matrix. Note however that they play a nontrivial role when one
considers particular bases for the finite-dimensional representations (see Section 3.3).

Up to now, we obtained necessary conditions to get a representation. The following theorem
ensures that they are also sufficient.

Theorem 3.1. The diagonal matrices

C12|n, p〉 = (n+ a12)(n+ a12 + 1)|n, p〉 , C123|n, p〉 = (p+ a123)(p + a123 + 1)|n, p〉 , (3.43)

the tridiagonal matrices

C23|n, p〉 = ψ+0
n+1,p|n+ 1, p〉+ ψ00

n,p|n, p〉+ ψ−0
n,p|n− 1, p〉 , (3.44)

C34|n, p〉 = ρ0+n,p+1|n, p+ 1〉+ ρ00n,p|n, p〉+ ρ0−n,p|n, p − 1〉 , (3.45)

and the matrix

C234|n, p〉 =ϕ++
n+1,p+1|n+ 1, p + 1〉 +ϕ0+

n,p+1|n, p + 1〉 +ϕ−+
n,p+1|n− 1, p + 1〉

+ϕ+0
n+1,p|n+ 1, p〉 +ϕ00

n,p|n, p〉 +ϕ−0
n,p|n− 1, p〉

+ϕ+−
n+1,p|n+ 1, p − 1〉 +ϕ0−

n,p|n, p− 1〉 +ϕ−−
n,p |n− 1, p − 1〉 ,

(3.46)

provide a representation of sR(4) if ψ and ρ verify (3.7), (3.9), (3.21), (3.23), (3.24) and ϕ satisfies

(3.26)-(3.29).
Hence we get representations of sR(4) labeled by the multiplet

{
j(1), j(2), j(3), j(4), j(0), a12, a123

}
.

Proof. All the defining relations of sR(4) displayed in appendix A are verified by direct computation.
In addition, one can check that the represented generators indeed obey (2.10).

3.3 Finite-dimensional symmetric irreducible representations

In the previous section, we computed infinite-dimensional representations of sR(4), labeled by pa-
rameters a12, a123 and j(i) (i = 0, 1, . . . 4). In this subsection, we provide constraints between these
parameters to get finite-dimensional representations.

From now on, we suppose that the parameters j(i) are real and, without any loss of generality, we
can choose them nonnegative (j(i) ≥ 0), since we have the invariance j(i) → −j(i) − 1.

Finite-dimensional representations. To get finite-dimensional representations, one has to impose
that two nondiagonal entries of the tridiagonal generators vanish.

On the one hand, it is done by fixing the value of the parameters a12 and a123. Different choices of
the parameters a12 and a123 lead to equivalent representations since they simply correspond to some
shifts of n or p. One chooses

a12 = −j(1) − j(2) − 1 , a123 = −j(4) − j(0) − 1 , (3.47)

and one gets j
(12)
n = n− j(1) − j(2) − 1 and j

(123)
p = p− j(4) − j(0) − 1.

On the other hand, let us define

N = j(1) + j(2) − j(3) + j(4) + j(0) . (3.48)
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In this case, the nondiagonal entries of C23 and C34, given by (3.7) and (3.21), become

ψ+0
n,p ψ

−0
n,p =

n(2j(1) + 1− n)(2j(2) + 1− n)(2j(1) + 2j(2) + 2− n)(N − n− p+ 2j(3) + 2)

(2j(1) + 2j(2) + 2− 2n)2(2j(1) + 2j(2) + 1− 2n)

× (N + 1− n− p)(n− p− 2j(1) − 2j(2) + 2j(3) +N)(p− n−N + 2j(1) + 2j(2) + 1)

(2j(1) + 2j(2) + 3− 2n)
,

(3.49)

ρ0+n,p ρ
0−
n,p =

p(2j(4) + 1− p)(2j(0) + 1− p)(2j(4) + 2j(0) + 2− p)(N − n− p+ 2j(3) + 2)

(2j(0) + 2j(4) + 2− 2p)2(2j(0) + 2j(4) + 1− 2p)

× (N + 1− n− p)(p − n− 2j(0) − 2j(4) + 2j(3) +N)(n− p−N + 2j(0) + 2j(4) + 1)

(2j(0) + 2j(4) + 3− 2p)
.

(3.50)

If we suppose that N is a positive integer (N > 0), we deduce that

[C23]
−1
0

p

p
[C23]

0
−1

p

p
= 0 and [C23]

N − p+ 1
N − p

p

p
[C23]

N − p

N − p+ 1
p

p
= 0 , (3.51)

[C34]
n

n

−1
0 [C34]

n

n

0
−1 = 0 and [C34]

n

n

N − n+ 1
N − n

[C34]
n

n

N − n+ 1
N − n

= 0 . (3.52)

Similar relations hold for the other generators of sR(4). We deduce that the space spanned by the
following vectors

FN = spanC {|n, p〉 | n, p ≥ 0 , n+ p ≤ N } , (3.53)

provides a finite-dimensional representation of sR(4). The dimension of this representation is given
by

dim(FN ) =

(
N + 2

2

)
. (3.54)

Real symmetric representations. To get a symmetric representation, we demand that ψ+0
n,p = ψ−0

n,p

and ρ0+n,p = ρ0−n,p, for n, p ≥ 0 and n+ p ≤ N . Then to obtain a real representation, it is necessary that
the r.h.s. of (3.49) and (3.50) be positive. These constraints are satisfied for example if the following
inequalities for j(i) hold:

j(1) ≥ j(2) ≥ j(4) , j(0) ≥ j(4) , j(i) ≥ 0 , i = 0, 1, ..., 4 ,

j(1) + j(2) + j(0) + j(4) ≥ j(3) ≥ j(1) + j(2) + j(0) − j(4) .
(3.55)

From now on, we assume that these conditions are satisfied. A discussion about the other possibilities
is postponed to the conclusion of this paper. Let us emphasize that each factor in the rational functions
(3.49) and (3.50) are positive with the above constraints (3.55). Then, we can take

ψ+0
n,p = ψ−0

n,p =: ψn,p , ρ0+n,p = ρ0−n,p =: ρn,p , (3.56)

where ψn,p and ρn,p are the positive square roots of the r.h.s. of (3.49) and (3.50) respectively. We can
check by direct computation that relation (3.24) is satisfied in this case. This solution corresponds to
a particular choice of the coefficients un,p in (3.42). It follows that C234 is also symmetric and that its
entries satisfy:

ϕ++
n,p = ϕ−−

n,p =: ϕD
n,p, ϕ+−

n,p = ϕ−+
n,p =: ϕA

n,p, ϕ0+
n,p = ϕ0−

n,p =: ϕV
n,p, ϕ+0

n,p = ϕ−0
n,p =: ϕH

n,p. (3.57)

Since the explicit expressions of the different functions ψn,p, ρn,p, ϕn,p are rather cumbersome, we
postpone them in the Appendix B. It follows that all the other generators in this representation are
also symmetric.
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Irreducible representation. The representation is irreducible. Indeed, as the spectrum of the
abelian subalgebra (C12, C123) is nondegenerate, one can construct projectors on any |n, p〉 ∈ FN . By
acting with these projectors on any nonvanishing vector v ∈ FN , one can get a given vector |n, p〉.
Then with the action of C23 and C34 (by remarking that ψn,p and ρn,p do not vanish for n, p ≥ 0 and
n + p ≤ N if the conditions (3.55) are fulfilled), a linear combination of |n, p〉 and |n ± 1, p ± 1〉 with
nonvanishing coefficients is obtained. By acting again with the projectors, each vector |n±1, p±1〉 can
be reached. All the vectors of FN can be obtained by iterating this procedure. Therefore the whole
space FN is generated by action of the matrices of the representation on any nonvanishing vector,
which proves the irreducibility of the representation.

Summary of the results. The previous results and discussions lead to the following theorem:

Theorem 3.2. Let the vectors |n, p〉 belong to the vector space FN given in (3.53). The generators of

sR(4) acting on these vectors as

C12|n, p〉 = (n− j(1) − j(2) − 1)(n − j(1) − j(2) + 1)|n, p〉 , (3.58)

C123|n, p〉 = (p− j(0) − j(4))(p − j(0) − j(4) + 1)|n, p〉 , (3.59)

C23|n, p〉 = ψn+1,p|n+ 1, p〉+ ψ00
n,p|n, p〉+ ψn,p|n− 1, p〉 , (3.60)

C34|n, p〉 = ρn,p+1|n, p+ 1〉+ ρ00n,p|n, p〉+ ρn,p|n, p − 1〉 , (3.61)

and
C234|n, p〉 =ϕD

n+1,p+1|n+ 1, p + 1〉 +ϕV
n,p+1|n, p + 1〉 +ϕA

n,p+1|n− 1, p + 1〉
+ϕH

n+1,p|n+ 1, p〉 +ϕ00
n,p|n, p〉 +ϕH

n,p|n− 1, p〉
+ϕA

n+1,p|n+ 1, p − 1〉 +ϕV
n,p|n, p− 1〉 +ϕD

n,p|n− 1, p− 1〉 ,
(3.62)

provide a finite-dimensional real symmetric irreducible representation of sR(4) with ψ, ρ and ϕ given in

appendix B. This representation is labeled by the multiplet of real parameters
{
j(1), j(2), j(3), j(4), j(0)

}

subject to the constraint N = j(1) + j(2) − j(3) + j(4) + j(0) ∈ Z>0 and inequalities (3.55).

4 Equivalent representations and Racah polynomials

The objective of this section is to compute different finite-dimensional representations labeled by
elements g ∈ S5 and to show that they are equivalent. The overlap coefficients (i.e. the entries of the
transition matrix between two such representations) are computed exactly and are expressed in terms
of the Racah polynomials.

4.1 Construction of other representations

The section 3 was devoted in constructing one finite-dimensional representation of sR(4) labeled
by the multiplet

{
j(1), j(2), j(3), j(4), j(0)

}
. The isomorphisms of sR(4) proved in proposition 2.1,

composed with this representation, allows us to construct new representations. To define these new
representations, let us introduce the notation

πJe (X) for X ∈ sR(4), J = (j(1), j(2), j(3), j(4), j(0)) , (4.1)

for the finite representation given in theorem 3.2 with the constraints given in section 3.3. It is indexed
by the identity element e of the symmetric group S5 and J associated to the eigenvalues of the central
elements (C1, C2, C3, C4, C1234). The positive integer N , see (3.47), characterizing the dimension of
the finite representation, is denoted N(J). Let us also define the maps1 s, t and i on any quintuplet

1With a slight abuse of notation, we use the same notation for these functions and for the isomorphisms (2.11), (2.12),
(2.13) to which they correspond.
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by
s (z1, z2, z3, z4, z0) = (z0, z4, z3, z2, z1) ,

t (z1, z2, z3, z4, z0) = (z2,−z3 − 1,−z1 − 1, z4, z0) ,

i (z1, z2, z3, z4, z0) = (z1, z2, z3, z0, z4) .

(4.2)

The maps are extended by morphism, and it can be checked that it leads to a representation of S5.
For a given element g ∈ S5, one defines a new representation of sR(4) as follows

πJg (X) = πgJe (g(X)) . (4.3)

By direct calculation, one can show that for J = (j(1), j(2), j(3), j(4), j(0)), we have

πJt (Ci) = π
(j(2),−j(3)−1,−j(1)−1,j(4),j(0))
e (t(Ci)) = µ(i) . (4.4)

By abuse of notation, we do not indicate in the r.h.s. of the previous relation the identity matrix.
Similar relations hold for πJs (Ci) and π

J

i (Ci). Therefore, by morphism we get for any g ∈ S5

πJg (Ci) = µ(i) . (4.5)

This relation shows that the representation of the central element Ci is the same in any such repre-
sentation. The key point to get this property is the choice of the functions (4.2).

From the definitions (4.2) of s, t and i, and the explicit form (3.47) of N(J), we see that
N(gJ) = N(J). Therefore, the representations πJg have all the same dimension for g ∈ S5. Let
us also mention that the r.h.s. of (3.49) and (3.50) with J replaced by gJ , for any g ∈ S5, remains
positive so that ψn,p(gJ) and ρn,p(gJ) are also square roots of positive quantities.

The next subsections are devoted to prove that these representations are in fact equivalent i.e. for
g, h ∈ S5 there exists an invertible matrix Th,g(J), called transition matrix, such that

Th,g(J) π
J

g (X) = πJh (X) Th,g(J) , for any X ∈ sR(4) . (4.6)

As the representations are symmetric, the transition matrix Th,g can be chosen orthogonal:

Th,g(J) · T t
h,g(J) = 1 . (4.7)

The transition matrices Th,g are

(
N + 2

2

)
×
(
N + 2

2

)
matrices with the entries denoted [Th,g]

mq
np with

n, p,m, q ≥ 0 and n+ p,m+ q ≤ N .

4.2 Transition matrix between π
J

e and π
J

t

Let us start by computing the transition matrix Te,t = Te,t(J). The equation (4.6) for X = C123 leads
to

Te,t π
tJ
e (C123) = πJe (C123) Te,t , (4.8)

that is (
µ(123)q (tJ)− µ(123)p (J)

)
[Te,t]

mq
np = 0 . (4.9)

Since µ
(123)
q (tJ ) = µ

(123)
q (J), one gets [Te,t]

mq
np = δpq [Te,t]

mp
np . We get then for X = C23 in (4.6):

Te,t π
tJ
e (C12) = πJe (C23) Te,t , (4.10)

i.e. inserting the representation (3.6),

µ(12)m (tJ) [Te,t]
mp
np = ψn+1,p(J) [Te,t]

mp
n+1,p + ψ00

n,p(J) [Te,t]
mp
np + ψn,p(J) [Te,t]

mp
n−1,p , (4.11)
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where µ
(12)
m (tJ) = (m− j(2) + j(3) + 1)(m − j(2) + j(3)). Now, (4.6) for X = C12 leads to

− ψm+1,p(tJ) [Te,t]
m+1,p
np − ψm,p(tJ ) [Te,t]

m−1,p
np

+
(
µ(123)p + µ(1) + µ(2) + µ(3) − µ(12)m − ψ00

m,p

)
(tJ)[Te,t]

mp
np = µ(12)n (J)[Te,t]

mp
np . (4.12)

Given the expressions (3.9) and (B.1) of the coefficients ψ, the equations (4.11) and (4.12) become the
recurrence and difference equations of the Racah polynomials, see (C.29) and (C.30). Therefore, the
transition matrix can be expressed in terms of a function Pn(m) proportional to the Racah polynomial,
see (C.28), as follows

[Te,t]
mp
np = (−1)m σt(J ; p)Pn(m;−2j(2) − 1,−2j(1) − 1, p −N − 1, N − p− 2j(2) + 2j(3) + 1) , (4.13)

where σt(J ; p) is an overall coefficient which is determined below.
Consider now the case X = C234 in (4.6):

Te,t π
tJ
e (C124) = πJe (C234) Te,t . (4.14)

The component 〈n, p|(4.6)|m, q〉 for q = p− 1 leads to

− ρm,p(tJ) [Te,t]
mp
np = ϕA

n+1,p(J) [Te,t]
m,p−1
n+1,p−1 + ϕV

n,p(J) [Te,t]
m,p−1
n,p−1 + ϕD

n,p(J) [Te,t]
m,p−1
n−1,p−1 , (4.15)

where we have used relation (A.1) to express C124 in terms of C34. Inserting the expression (4.13),
taking into account (C.4)–(C.14) and the explicit expressions of ϕ and ρ (see equation (3.26) and
appendix B), the previous equation leads to σt(J ; p) = −σt(J ; p − 1). Hence, one gets σt(J ; p) =
(−1)p σt(J ; 0). The orthogonality relation of the transition matrix with relation (C.31) then implies
σt(J ; 0) = ±1. The component 〈n, p|(4.6)|m, q〉 for q = p + 1 leads to the same result, using now
(C.17) instead of (C.11), while for q = p, one recovers the recurrence relation (4.11).

The component 〈n, p|(4.6)|m, q〉 with p = q − 1 for X = C34 leads to

ϕA
m+1,q(tJ ) [Te,t]

m+1,q−1
n,q−1 +

(
ϕV
m,q − ρm,q

)
(tJ) [Te,t]

m,q−1
n,q−1 + ϕD

m,q(tJ) [Te,t]
m−1,q−1
n,q−1 = ρn,q(J) [Te,t]

mq
nq .
(4.16)

Using now (C.20) and (C.24), it is checked that no new constraint shows up. Finally, the relations
associated to the remaining values of X are equivalent to (4.15) or (4.16). In conclusion, the two
representations are equivalent and the transition matrix Te,t takes the following form:

[Te,t(J)]
mq
np ∼ δpq (−1)m+p Pn(m;−2j(2) − 1,−2j(1) − 1, p −N − 1, N − p− 2j(2) + 2j(3) + 1) , (4.17)

where ∼ stands for equal up to a global sign.

Remark 4.1. The formula (4.17) can be generalized for an arbitrary J ′ = gJ where g ∈ S5 (generated
by i, t and s, see (4.2)). Indeed, following the lines of the previous proof, the point which requires
special attention is the derivation of the relation between σt(J

′; p) and σt(J
′; p − 1) (which give at

most a sign). In fact one gets
σt(J

′; p) = ησt(J
′; p − 1) (4.18)

where
η = − sgn(J ′

3) sgn(N + 2J ′
3 − 2J ′

2 + 2) , (4.19)

(J ′
i denotes the ith component of the quintuplet J ′). Hence, one obtains

[Te,t(J
′)]mq

np ∼ δpq (−1)m ηp Pn(m;−2J ′
2 − 1,−2J ′

1 − 1, p −N − 1, N − p− 2J ′
2 + 2J ′

3 + 1) . (4.20)

For example, one gets η = +1 for J ′ = tJ and r2J , η = −1 for J ′ = J , t2J , rJ , r3J and r4J . N
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4.3 Transition matrix between π
J

e and π
J

s

We now turn to the calculation of the transition matrix Te,s = Te,s(J), where the dependence w.r.t. J
is dropped in this subsection. Taking equation (4.6) with h = e, g = s and X = C12, C123, we get two
equations (

µ(12)q

(
J
)
− µ(12)n

(
J
))

[Te,s]
mq
np = 0 ,

(
µ(123)m

(
J
)
− µ(123)p

(
J
))

[Te,s]
mq
np = 0 .

(4.21)

We have used the definitions

[πJe (C12)]
m

n

q

p
= δnm δpq µ

(12)
m

(
J
)

and [πJe (C123)]
m

n

q

p
(J) = δnm δpq µ

(123)
p

(
J
)
, (4.22)

and the properties
µ(12)m

(
sJ
)
= µ(123)m

(
J
)

and µ(123)m

(
sJ
)
= µ(12)m

(
J
)
. (4.23)

Constraints (4.21) lead to
[Te,s]

mq
np = δp,m δq,n σs(J ;n, p) , (4.24)

where σs(J ;n, p) is a coefficient to be determined.
Performing the same type of calculation with X = C23 and X = C34, we obtain

σs(J ;n, p) = σs(J ; q, p) for |n− q| ≤ 1 and σs(J ;n, p) = σs(J ;n,m) for |p−m| ≤ 1 . (4.25)

This proves that the coefficient σs(J ;n, p) = σs(J) does not depend on n and p. Furthermore,
demanding that the orthogonality relation (4.7) is satisfied imposes that σs(J)

2 = 1. Then, we
checked that the other constraints (4.6) are automatically satisfied for any X ∈ sR(4). This shows
that the transition matrix is the permutation operator up to a sign:

Te,s ∼ P (4.26)

with [P ]mq
np = δp,m δq,n.

4.4 Transition matrix between π
J

e and π
J

i

The calculation of the transition matrix Te,i = Te,i(J) follows the same lines. Taking equation (4.6)
with h = e, g = i and X = C12, C123 implies that Te,i(J) is diagonal:

[Te,i]
mq
np = [Te,i]

np
np δn,m δp,q . (4.27)

The equations forX = C23, C13 are then trivially satisfied. Eq. (4.6) leads for the remaining generators
(those containing an index 4) to the following relations

[Te,i]
n+1,p
n+1,p = [Te,i]

np
np and [Te,i]

n,p+1
n,p+1 = −[Te,i]

np
np . (4.28)

Therefore, one gets
[Te,i]

mq
np = σi(J) (−1)p δn,m δp,q . (4.29)

Finally, demanding that Te,i is an orthogonal matrix, we get

[Te,i]
mq
np ∼ (−1)p δn,m δp,q . (4.30)
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4.5 Equivalence of the representations and transition matrix

In this section, we shall show that the previous computations are enough to determine the transition
matrix Tg,h for any h, g ∈ S5. If the transition matrices Tg,h exist, they satisfy the properties given in
the following proposition.

Proposition 4.2. For any g, h, u ∈ S5, one gets

Tg,h(J) ∼ Tg,u(J)Tu,h(J) , Tg,h(J) ∼ Th,g(J)
t and Tuh,gh(J) ∼ Tu,g(hJ) . (4.31)

We recall that ∼ stands for “equal up to a global sign”.

Proof. From the definition of the transition matrices, one gets for any X ∈ sR(4),

Tg,h(J)
−1Tg,u(J)Tu,h(J)π

hJ
e (hX) = πhJe (hX)Tg,u(J)Tu,h(J)Tg,h(J)

−1 . (4.32)

Since the representation πJe is irreducible, Tg,h(J)
−1Tg,u(J)Tu,h(J) is proportional to the identity by

the Schur lemma. The orthogonality relation of the transition matrices implies that the factor of
proportionality is a sign, which proves the first relation of the proposition. Both other relations are
proven by similar arguments.

Up to now, we have proved the existence of the transition matrices Tg,h(J), with g = e and
h = t , s , i solely. Then, at this point, the above proposition can be applied only for these matrices.
The following proposition ensures the existence (and thus the validity of proposition 4.2) for all
transition matrices Tg,h(J), with g , h ∈ S5.

Proposition 4.3. All the representations πJg , g ∈ S5, defined by (4.3) are equivalent.

Proof. The equivalence between πJg and πJh is proven by showing that there exists a transition matrix
Tg,h. Relations (4.6) for Th,th(J) (for h ∈ S5 and X ∈ sR(4)) reads

Th,th(J) π
thJ
e (th(X)) = πhJe (h(X)) Th,th(J) , (4.33)

whereas the one for Te,t(hJ) (with X replaced by h(X)) is recast as

Te,t(hJ) π
thJ
e (th(X)) = πhJe (h(X)) Te,t(hJ ) . (4.34)

We deduce that Th,th(J) and Te,t(hJ) satisfy the same set of relations. In section 4.2, we proved that
this set has a unique (up to a global sign) solution given by (4.17). Therefore one gets, for any h ∈ S5,

Th,th(J) ∼ Te,t(hJ) . (4.35)

The following relations are proven similarly

Th,sh(J) ∼ Te,s(hJ), Th,ih(J) ∼ Te,i(hJ) . (4.36)

Finally for any g ∈ S5, one knows that g can be written as a product of s, t and i. Therefore, any
Tg,h can be expressed as a product of Te,t, Te,s and Te,i by using the first relation in (4.31), hence the
proposition.

From the previous proof, one gets a way to compute all the transition matrices in terms of Te,t,
Te,s and Te,i. For example, one gets

Te,sts(J) ∼ Te,ts(J)Tts,sts(J) ∼ Te,s(J)Ts,ts(J)Tts,sts(J) ∼ Te,s(J)Te,t(sJ)Te,s(tsJ) . (4.37)

Using the third relation in (4.31) with u = e and h = g−1, and the second one, we deduce that

Te,g−1(J) ∼ Te,g(g
−1

J)t. (4.38)
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4.6 Overlap coefficients and the icosidodecahedron

This subsection provides a geometrical description of the transition matrices.
For a given isomorphism g ∈ S5 of sR(4) defined in proposition 2.1, the matrices πJg (g

−1(C12))

and πJg (g
−1(C123)) are diagonal. Indeed one gets

πJg (g
−1(C12)) = πgJe (C12), πJg (g

−1(C123)) = πgJe (C123), (4.39)

which are diagonal. We associate the map g ∈ S5 with the vertex (g−1(C12), g
−1(C123)) of the

icosidodecahedron, as illustrated in figure 2. Let us notice that different elements of S5 can be
associated to the same vertex.

e
r5

t2
t r

r4

r2

r3

t2r2

Figure 2: The labels of the vertices of the icosidodecahedron in terms of elements of S5. We recall
that t and r are defined by (2.12) and (2.18).

The transition matrix Th,g corresponds to the change of basis from the one where h−1(C12) and
h−1(C123) are diagonal to the one where g−1(C12) and g−1(C123) are diagonal. A path on the icosido-
decahedron between the vertices labeled by h and g can then be associated to this transition matrix
Thg. Indeed, let us choose a path between the vertices h = g0 to g = gℓ, given by the sequence of ver-
tices labeled g0, g1, . . . , gℓ−1 and gℓ. Finally, using (4.31), the transition matrix Tg0,gℓ can be written
as follows

Tg0,gℓ ∼ Tg0,g1Tg1,g2 . . . Tgℓ−1,gℓ . (4.40)

Let us emphasize that the value (4.40) of Tg0,gℓ does not depend on the chosen path.
Each transition matrix Tgi,gi+1 in the r.h.s. of (4.40) corresponds just to one edge of the icosido-

decahedron and can be rewritten as, using (4.31),

Tgi,gi+1(J) ∼ T
e,gi+1g

−1
i
(giJ) . (4.41)

The transition matrix on the r.h.s. of the previous relation corresponds to one of the four edges
connected to the vertex e and can be expressed in terms of monovariate Racah polynomials. Therefore
expression (4.40) allows one to give an expression of any transition matrix in terms of monovariate
Racah polynomials.

The different expressions of Th,g depending on the choice of the path provide relation between the
monovariate Racah polynomial. We exploit this result in the next section to give new proof of known
relations.

5 Properties of the monovariate Racah polynomials

In this section, we study the relations satisfied by the monovariate Racah polynomials, as explained
in Section 4.6, for cycles on the icosidodecahedron. The basic examples are given by the triangle and
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the pentagon faces of the icosidodecahedron, which correspond to the identities t3 = e and r5 = e (see
relation (2.18)), respectively. These two cycles can be illustrated in red on the following figures:

As we will see, they are intimately related to the Racah relation and the Biedenharn–Eliott relation.
Other cycles can be considered, such as a cycle involving a triangle and a pentagon together. However,
it can be deduced by gluing together the basic ones and using unitarity: we illustrate this on a relation
involving six Racah polynomials, see section 5.3.

5.1 Racah relation

We look at the interpretation of the relation t3 = e. Using the results of section 4.5, we deduce that

Te,t3(J) ∼ Te,t(J)Te,t(tJ)Te,t(t
2
J) , (5.1)

that is ∑

k1,ℓ1≥0
k1+ℓ1≤N

∑

k2,ℓ2≥0
k2+ℓ2≤N

[Te,t(J)]
k1ℓ1
np [Te,t(tJ)]

k2ℓ2
k1ℓ1

[Te,t(t
2
J)]mq

k2ℓ2
∼ δn,m δp,q . (5.2)

It corresponds to the cycle around the triangle (C12, C123), (C13, C123) and (C23, C123). Then using
expression (4.17) for Te,t(J) and the action (4.2) of t on J , for parameters m,n, p ≥ 0 such that
m+ p ≤ N and n+ p ≤ N , this expression becomes

N−p∑

k1,k2=0

(−1)k1+k2+mPn(k1;−2j(2) − 1,−2j(1) − 1, p−N − 1, N − p− 2j(2) + 2j(3) + 1)

× Pk1(k2; 2j
(3) + 1,−2j(2) − 1, p −N − 1, N − p− 2j(1) + 2j(3) + 1)

× Pk2(m;−2j(1) − 1, 2j(3) + 1, p −N − 1, N − p− 2j(1) − 2j(2) − 1)

∼ δn,m .

(5.3)

When the parameters j(k) are nonnegative half-integers, we showed that this last equation is a conse-
quence of the Racah and orthogonality relations for the 6j-symbols [36] .

5.2 Biedenharn–Elliot relation

We recall that the element r of S5 corresponds to the rotation of the icosidodecahedron with an angle
2π/5 around the axis passing through its center and the center of the pentagon (C12, C123), (C23, C123),
(C234, C23), (C34, C234), (C12, C34). It satisfies r

5 = e and one defines a function r on J as

rJ = (j(4), j(0),−j(1) − 1, j(2),−j(3) − 1). (5.4)

We now turn to the calculation of the transition matrix Te,r(J), before investigating the Biedenharn–
Elliot relation.
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Transition matrix Te,r(J). The computation of Te,r(J) follows the same lines as the computation
of Te,t(J). The equation (4.6) for X = C123 leads to

(
µ(123)m (J)− µ(123)p (J)

)
[Te,r(J)]

mq
np = 0 , (5.5)

hence [Te,r(J)]
mq
np = δmp [Te,r(J)]

pq
np.

Considering X = C23 and X = C12 in (4.6), and using the relations ρp,q(rJ) = ψq,p(tJ) and

ρ00p,q(rJ) =
(
µ
(123)
p +µ(1)+µ(2)+µ(3)−µ(12)q −ψ00

q,p

)
(tJ), one finds that (−1)q [Te,r]

pq
np satisfies the same

recurrence and difference equations than [Te,t]
qp
np, see (4.11) and (4.12).

Equation (4.6) for X = C234 leads to, for the component 〈n, p|(4.6)|m, q〉 with m = p− 1:

ψp,q(rJ) [Te,r]
pq
np = ϕA

n+1,p(J) [Te,r]
p−1,q
n+1,p−1 + ϕV

n,p(J) [Te,r]
p−1,q
n,p−1 + ϕD

n,p(J) [Te,r]
p−1,q
n−1,p−1 . (5.6)

A similar relation is obtained for m = p + 1. Using the relation ψp,q(rJ) = ρq,p(tJ ) shows that
(−1)p+q[Te,r]

pq
np also satisfies the equation (4.15) obeyed by [Te,t]

qp
np (together with a similar one as-

sociated to m = p + 1). The case m = p is treated along the same lines, using now ψ00
p,q(rJ) =

(
µ
(12)
q + µ(3) + µ(4) + µ(0) − µ

(123)
p − ρ00q,p

)
(tJ).

In the same way, equation (4.6) for X = C34 shows that (−1)p+q[Te,r]
pq
np satisfies the equation (4.16)

obeyed by [Te,t]
qp
np, using now the relations ϕD

p,q(rJ) = ϕD
q,p(tJ), ϕ

A
p,q(rJ) = ϕA

q,p(tJ) and ϕH
p,q(rJ) =

(ρq,p − ϕV
q,p)(tJ).

The other generators do not lead to new conditions. It follows that (−1)p+q[Te,r]
pq
np can be identified

with [Te,t]
qp
np, that is the transition matrix Te,r(J) takes the following form:

[Te,r(J)]
mq
np ∼ δmp Pn(q;−2j(2) − 1,−2j(1) − 1, p −N − 1, N − p− 2j(2) + 2j(3) + 1) . (5.7)

Remark 5.1. In the same way, formula (5.7) can be generalized for a generic quintuplet J ′ = gJ and
one gets

[Te,r(J
′)]mq

np ∼ δmp(−η)m Pn(q;−2J ′
2 − 1,−2J ′

1 − 1, p −N − 1, N − p− 2J ′
2 + 2J ′

3 + 1) , (5.8)

where η is given by (4.19). N

Biedenharn–Elliot relation. Now the relation r5 = e leads to the following equation:

δn,mδp,q = [Te,r5(rJ )]
mq
np

∼
∑

k1,k2,k3,k4
ℓ1,ℓ2,ℓ3,ℓ4

[Te,r(J)]
k1ℓ1
np [Te,r(rJ)]

k2ℓ2
k1ℓ1

[Te,r(r
2
J)]k3ℓ3k2ℓ2

[Te,r(r
3
J)]k4ℓ4k3ℓ3

[Te,r(r
4
J)]mq

k4ℓ4
, (5.9)

where the sum is performed on integers kj , ℓj ≥ 0 such that kj + ℓj ≤ N . Using (5.7) and the action
of r on J , see (5.4), one finally obtains

δn,mδp,q ∼
∑

a,b,c

(−1)b Pn(a;−2j(2) − 1,−2j(1) − 1, p−N − 1, N − p− 2j(2) + 2j(3) + 1)

× Pp(b;−2j(0) − 1,−2j(4) − 1, a−N − 1, N − a− 2j(0) − 2j(1) − 1)

× Pa(c; 2j
(3) + 1,−2j(2) − 1, b−N − 1, N − b− 2j(4) + 2j(3) + 1)

× Pb(m;−2j(1) − 1,−2j(0) − 1, c−N − 1, N − c− 2j(2) − 2j(1) − 1)

× Pc(q;−2j(4) − 1, 2j(3) + 1,m−N − 1, N −m− 2j(0) − 2j(4) − 1) ,

(5.10)

where now a, b, c ≥ 0 satisfy a ≤ N − p, a + b ≤ N , c + b ≤ N , c ≤ N −m. This last equation is
similar to the Biedenharn–Elliott relation for the 6j-symbols when the parameters j(k) are nonnegative
half-integers [1, 13].
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5.3 Additional relations for the Racah polynomials

Other relations of the same type can be obtained using the algebra S5. For instance, defining u =
stst2s, we have again u2 = e. This leads to the relation

I ∼ Te,u2(J) ∼ Te,u(J)Te,u(uJ) , (5.11)

where I is the identity matrix. The transition matrix Te,u(J) is computed using (4.31), (4.26) and the
expression u = stst2s:

Te,u(J) ∼ P Te,t2(sJ)P Te,t(st
2sJ)P , (5.12)

where P is the permutation matrix introduced in (4.26). From (4.31), we also get

Te,t2(J) ∼ Te,t(J)Te,t(tJ) . (5.13)

Gathering (5.12) and (5.13), we obtain

Te,u(J) ∼ P Te,t(sJ )Te,t(tsJ)P Te,t(st
2sJ)P . (5.14)

Then, (5.11) can be rewritten as

I ∼ P Te,t(sJ)Te,t(tsJ )P Te,t(st
2sJ)Te,t(suJ)Te,t(tsuJ )P Te,t(st

2suJ)P . (5.15)

Relation (5.15), once expressed in terms of Racah polynomials using expression (4.13), leads to an
identity implying the product of 6 Racah polynomials. As mentioned at the beginning of the section,
this relation can be deduced from the unitarity, Racah and Biedenharn–Elliott relations. Indeed, we
can rewrite the r.h.s of relation (5.15) as

P Te,t(sJ)Te,t(tsJ)P
(
Te,t(J

′)Te,t(tJ
′)Te,t(t

2
J
′)
)
P Te,t(t

2sJ)P

∼ P Te,t(sJ)Te,t(tsJ )P
2 Te,t(t

2sJ)P ∼ P Te,t(sJ )Te,t(tsJ)Te,t(t
2sJ)P ∼ P 2 ∼ I ,

(5.16)

where J
′ = st2sJ and we used twice the Racah relation (5.2) to get the second line.

6 Bivariate Racah polynomials

In the previous section, we have shown how the cycles on the icosidodecahedron allow us to obtain
properties of monovariate Racah polynomials. Here, we study paths on the icosidodecahedron with
different lengths ∂. We will consider the paths illustrated in red in figure 3.

∂ = 1 ∂ = 2 ∂ = 3
Monovariate Racah polynomial Tratnik–Racah polynomial Griffiths–Racah polynomial

Figure 3: Paths of different length on the folded icosidodecahedron.

We shall show that the different transition matrices associated to these paths (see section 4.6) for
∂ = 2 and ∂ = 3 are associated to multivariate polynomials of Racah type.
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The path of length one is associated to the usual monovariate Racah polynomial. Indeed, gathering
the computations done in sections 4 and 5, the properties of the monovariate Racah polynomials can
be recast in the following way. Equation (4.6) for h = e, g = r and X = C12 or C23 becomes

Te,r(J)πr(C23) = πe(C23)Te,r(J) , Te,r(J)πr(C12) = πe(C12)Te,r(J) . (6.1)

These relations correspond to the recurrence and difference relations of the monovariate Racah poly-
nomials as used previously. The orthogonality relation of the transition matrix

Te,r(J)Te,r(J)
t = I (6.2)

is associated to the unitarity relation of the monovariate Racah polynomials.

6.1 Tratnik polynomials

Let us define the function, for n1, n2,m1,m2 ≥ 0, n1 + n2 ≤ N , m1 +m2 ≤ N and n2 +m1 ≤ N ,

Tn1,n2(m1,m2) = Pn1(m1;−2j(2) − 1,−2j(1) − 1, n2 −N − 1, N − n2 − 2j(2) + 2j(3) + 1)

× Pn2(m2;−2j(0) − 1,−2j(4) − 1,m1 −N − 1, N −m1 − 2j(0) − 2j(1) − 1), (6.3)

where Tn1,n2(m1,m2) stands for Tn1,n2(m1,m2;N ;J ). We recall that J = (j(1), j(2), j(3), j(4), j(0)) and
N = j(1) + j(2) − j(3) + j(4) + j(0). We recall that the function P, defined in (C.28), is proportional
to the Racah polynomial. The rest of this section is devoted to provide different properties of this
function as its recurrence and difference relations as well as its connection with a transition matrix.
We recover the results on Tratnik polynomials [42, 18, 11, 10].

Link with the transition matrix Te,r2(J). Let us focus on the transition matrix associated to the
path of length ∂ = 2, as shown on figure 3. As explained in section 4.6, it corresponds to the change
of basis between the representations where (C12, C123) or (C23, C234) are diagonal. Using expression
(2.18) of the automorphism r, one remarks that (r−2(C12), r

−2(C123)) = (C23, C234). Therefore this
path corresponds to the transition matrix Te,r2(J). Then, using expression (4.31) and (4.40), one gets

Te,r2(J) ∼ Te,r(J)Te,r(rJ ) . (6.4)

Finally, using the explicit expression of Te,r given in (5.7) and of rJ given in (5.4), one obtains

[Te,r2(J)]
m1m2
n1n2

∼ Tn1,n2(m1,m2) Θ(n2 +m1 ≤ N), (6.5)

where Θ is the test function which is equal to one if the condition in its argument is true and vanishes
otherwise.

Link with the Tratnik polynomials. Given the expression (C.28) of the functions P, the function
T reads

Tn1,n2(m1,m2) = A rn1(m1;−2j(2) − 1,−2j(1) − 1, n2 −N − 1, N − n2 − 2j(2) + 2j(3) + 1)

× rn2(m2;−2j(0) − 1,−2j(4) − 1,m1 −N − 1, N −m1 − 2j(0) − 2j(1) − 1), (6.6)

where A is a normalization factor given by

A = (−1)n1+n2

√
ωn1,n2(J)ωm1,n2(srJ )ωn2,m1(rJ)ωm2,m1(sr

2J) (6.7)

and

ωn1,n2(J) =
(2n1 − 2j(1) − 2j(2) − 1) (−2j(1) + n1)N−n1−n2

(−2j(1) − 2j(2) − 1 + n1)N−n1−n2+1
(6.8)

× (−2j(2))n1 (N − n2 − 2j(1) − 2j(2) + 2j(3) + 1)n1 (n2 −N)n1

n1! (N − n2 − 2j(1) − 2j(2))n1 (n2 −N − 2j(3) − 1)n1

.
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We recall that srJ = (−j(3) − 1, j(2),−j(1) − 1, j(0), j(4)), rJ = (j(4), j(0),−j(1) − 1, j(2),−j(3) − 1) and
sr2J = (j(1), j(0),−j(4) − 1,−j(3) − 1, j(2)).

Relation (6.6) shows that, up to a global normalization, Tn1,n2(m1,m2) defines a polynomial in m1

and m2. To recognize the usual definition of the Tratnik polynomials, let us relabel n1,m1, n2,m2 as
x1, k1, N − x2, N − k1 − k2. With this relabeling, the inequalities satisfied by n and m read:

0 ≤ x1 ≤ x2 ≤ N , k1, k2 ≥ 0, k1 + k2 ≤ N . (6.9)

Then, using (C.9) to transform the first function r and (C.10), (C.9) followed by (C.10) to transform
the second one, relation (6.6) can be rewritten as follows

Tx1,N−x2(k1, N − k1 − k2) = Ã rk1(x1;−2j(2) − 1, 2j(3) + 1,−x2 − 1, x2 − 2j(1) − 2j(2) − 1)

×rk2(x2 − k1; 2k1 − 2j(2) + 2j(3) + 1,−2j(4) − 1, k1 −N − 1, k1 +N − 2j(1) − 2j(2) + 2j(3) + 1)
(6.10)

with

Ã =
(k1 −N + 2j(1) + 1)N−x2 (−2j(4))N−x2 (k1 + 2j(0) −N + 1)k2 (2k1 − 2j(2) + 2j(3) + 2)k2
(N − k1 − 2j(0) − 2j(1) − 2j(4) − 1)N−x2 (−2j(0))N−x2 (k1 −N + 2j(1) + 1)k2 (−2j(4))k2

A.
(6.11)

Note that in order to get (6.10), we have used the relation N = j(1) + j(2) − j(3) + j(4) + j(0). Finally,
by setting j(1) = −1

2(β0 + 1), j(2) = 1
2 (β0 − β1), j

(3) = 1
2(β2 − β1 − 2), j(4) = 1

2(β2 − β3), the above
expression becomes

Tx1,N−x2(k1, N − k1 − k2) = Ã rk1(x1;β1 − β0 − 1, β2 − β1 − 1,−x2 − 1, x2 + β1)

× rk2(x2 − k1; 2k1 + β2 − β0 − 1, β3 − β2 − 1, k1 −N − 1, k1 +N + β2). (6.12)

In this last expression, we recognize the expression R2 of the Tratnik polynomials [42, 18, 11, 10] (see
for instance relation2 (3.10) with p = 2 in [42]):

Tx1,N−x2(k1, N − k1 − k2) = (−1)N+x1−x2
√

W(x1, x2)K(k1, k2)R2(k1, k2;x1, x2) (6.13)

with

W(x1, x2) =
(2x1 − 2j(1) − 2j(2) − 1)(2x2 − 2j(1) − 2j(2) + 2j(3) + 1)

x1! (x2 − x1)! (N − x2)!

× Γ
(
2j(1) + 1− x1

)
Γ
(
2j(1) + 2j(2) + 1− x1 − x2

)
Γ
(
x2 − x1 + 2j(3) + 2

)

Γ
(
2j(2) + 1− x1

)
Γ
(
2j(1) + 2j(2) + 2− x1

)

× Γ
(
x1 + x2 − 2j(1) − 2j(2) + 2j(3) + 1

)
Γ
(
x2 −N + 2j(0) + 1

)

Γ
(
N + x2 − 2j(1) − 2j(2) + 2j(3) + 2

)
Γ
(
x2 −N + 2j(4) + 1

) , (6.14)

K(k1, k2) =
(N − k1 − k2)!

k1! k2!

(
2k1 − 2j(2) + 2j(3) + 1

)(
2k1 + 2k2 − 2j(2) + 2j(3) − 2j(4) + 1

)

× Γ
(
k1 − 2j(2) + 2j(3) + 1

)
Γ
(
2j(2) + 1− k1

)
Γ
(
2j(4) + 1− k2

)

Γ
(
k1 + 2j(3) + 2

)
Γ
(
k1 + k2 + 2j(1) −N + 1

)
Γ
(
k1 + k2 + 2j(0) −N + 1

)

× Γ
(
2k1 + k2 − 2j(2) + 2j(3) − 2j(4) + 1

)

Γ
(
2k1 + k2 − 2j(2) + 2j(3) + 2

)
Γ
(
k1 + k2 + 2j(1) + 2j(0) −N + 1

) . (6.15)

The functions W and K are written in such a way that all individual factors are well-defined when
the parameters j(k) are positive half-integers.

2Beware that our definition for r differs from the one of [42] by a normalization factor.
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Unitarity relations. Since our approach relies on orthogonal transition matrices, the unitarity
relations are immediate. Indeed, the entries of the relation Te,r2(J)Te,r2(J)

t = I provide the following
relations ∑

m1,m2≥0
m1+m2≤N

Tn1,n2(m1,m2)Tn′
1,n

′
2
(m1,m2) = δn1,n

′
1
δn2,n

′
2
, (6.16)

which is interpreted as the unitarity relation for T . In the same way, starting from Te,r2(J)
tTe,r2(J) = I,

we obtain ∑

n1,n2≥0
n1+n2≤N

Tn1,n2(m1,m2)Tn1,n2(m
′
1,m

′
2) = δm1,m

′
1
δm2,m

′
2
. (6.17)

This relation can be recast as
∑

0≤x1≤x2≤N

W(x1, x2)R2(k1, k2;x1, x2)R2(k
′
1, k

′
2;x1, x2) = K(k1, k2)

−1 δk1,k′1δk2,k′2 . (6.18)

One recognizes in W the weight computed in [42] (up to the use of the identity Γ(z)Γ(1− z) = π
sin(πz)

which is valid when z is not an integer).

Difference relations. Equation (4.6) for h = e, g = r2 and X = C12 or C123 becomes

Te,r2(J)π
r2J
e (C234) = πJe (C12)Te,r2(J) , Te,r2(J)π

r2J
e (C34) = πJe (C123)Te,r2(J) , (6.19)

where we have used that r2(C12) = C234 and r2(C123) = C34. We recall that the representation πe is
given in theorem 3.2. Then, the previous relations read

ϕV
m1,m2+1(r

2
J)Tn1,n2(m1,m2 + 1) + ϕV

m1,m2
(r2J)Tn1,n2(m1,m2 − 1)

+ϕH
m1+1,m2

(r2J)Tn1,n2(m1 + 1,m2) + ϕH
m1,m2

(r2J)Tn1,n2(m1 − 1,m2)

+ϕD
m1+1,m2+1(r

2
J)Tn1,n2(m1 + 1,m2 + 1) + ϕD

m1,m2
(r2J)Tn1,n2(m1 − 1,m2 − 1)

+ϕA
m1+1,m2

(r2J)Tn1,n2(m1 + 1,m2 − 1) + ϕA
m1,m2+1(r

2
J)Tn1,n2(m1 − 1,m2 + 1)

+ϕ00
m1m2

(r2J)Tn1,n2(m1,m2) = (n1 − j(1) − j(2) − 1)(n1 − j(1) − j(2))Tn1,n2(m1,m2) (6.20)

and

ρm1,m2+1(r
2
J)Tn1,n2(m1,m2 + 1) + ρm1,m2(r

2
J)Tn1,n2(m1,m2 − 1)

+ρ00m1m2
(r2J)Tn1,n2(m1,m2) = (n2 − j(0) − j(4) − 1)(n2 − j(0) − j(4))Tn1,n2(m1,m2) . (6.21)

These two equations can be interpreted as difference equations for Tn1,n2(m1,m2).

Recurrence relations. Equation (4.6) for h = e, g = r2 and X = C23 or C234 becomes

Te,r2(J)π
r2J
e (C12) = πJe (C23)Te,r2(J) , Te,r2(J)π

r2J
e (C123) = πJe (C234)Te,r2(J) , (6.22)

where we have used r2(C23) = C12 and r2(C234) = C123. Using the representation πe, the previous
relations lead to

(m1 − j(2) + j(3))(m1 − j(2) + j(3) + 1)Tn1,n2(m1,m2) = ψ00
n1n2

(J)Tn1,n2(m1,m2) (6.23)

+ ψn1+1,n2(J)Tn1+1,n2(m1,m2) + ψn1,n2(J)Tn1−1,n2(m1,m2),

and

(m2 − j(0) − j(1) − 1)(m2 − j(0) − j(1))Tn1,n2(m1,m2) = ϕ00
n1n2

(J)Tn1,n2(m1,m2) (6.24)

+ ϕV
n1,n2+1(J)Tn1,n2+1(m1,m2) + ϕV

n1,n2
(J)Tn1,n2−1(m1,m2)

+ ϕH
n1+1,n2

(J)Tn1+1,n2(m1,m2) + ϕH
n1,n2

(J)Tn1−1,n2(m1,m2)

+ ϕD
n1+1,n2+1(J)Tn1+1,n2+1(m1,m2) + ϕD

n1,n2
(J)Tn1−1,n2−1(m1,m2)

+ ϕA
n1+1,n2

(J)Tn1+1,n2−1(m1,m2) + ϕA
n1,n2+1(J)Tn1−1,n2+1(m1,m2).

26



6.2 Griffiths-like polynomials

Let us now define the function, for n1, n2,m1,m2 ≥ 0, n1 + n2 ≤ N and m1 +m2 ≤ N ,

Gn1,n2(m1,m2) =

M∑

a=0

(−1)a+m2Pn1(a;−2j(2) − 1,−2j(1) − 1, n2 −N − 1, N − n2 − 2j(2) + 2j(3) + 1)

×Pn2(m2;−2j(0) − 1,−2j(4) − 1, a−N − 1, N − a− 2j(0) − 2j(1) − 1)

×Pm1(a;−2j(2) − 1,−2j(4) − 1,m2 −N − 1, N −m2 − 2j(2) + 2j(3) + 1) ,
(6.25)

where M = min(N − n2, N −m2) and Gn1,n2(m1,m2) stands for Gn1,n2(m1,m2;N,J ). We have used
(6.3) to get the last equality in (6.25). As in the previous section, we provide different properties
of this function as its recurrence and difference relations as well as its connection with a transition
matrix. These relations, which derive directly from our construction, are obtained for the first time,
to the best of our knowledge.

Expression in term of Tratnik polynomials. We can rewrite the above expression as

Gn1,n2(m1,m2) =

M∑

a=0

(−1)a+m2 Tn1,n2(a,m2)Pm1(a;−2j(2) − 1,−2j(4) − 1,m2 −N − 1, N −m2 − 2j(2) + 2j(3) + 1) .

(6.26)
In the same way, using the duality relation (C.9) on Pn2(m2), we also have

Gn1,n2(m1,m2) =

M∑

a=0

(−1)a+n2 Pn1(a;−2j(2) − 1,−2j(1) − 1, n2 −N − 1, N − n2 − 2j(2) + 2j(3) + 1)

× Tm1,m2(a, n2)
∣∣∣
j(1) ↔ j(4)

.

(6.27)

Remark that equations (6.27) and(6.26) show that Gn1,n2(m1,m2) is invariant under the transformation
j(1) ↔ j(4) and mk ↔ nk, k = 1, 2.

Link with the transition matrix Te,t2r2(J). Let us focus on the transition matrix associated to
the path of length ∂ = 3, as shown on figure 3. As explained in section 4.6, it corresponds to the change
of basis between the representations where (C12, C123) or (C24, C234) are diagonal. Using expressions
(2.12) and (2.18) of the automorphisms t and r, one finds (r−2t−2(C12), r

−2t−2(C123)) = (C24, C234).
Therefore this path corresponds to the transition matrix Te,t2r2(J). Then, using expression (4.31) and
(4.40), one gets

Te,t2r2(J) ∼ Te,r(J)Te,r(rJ)Te,t2(r
2
J) . (6.28)

From (4.38), one has
Te,t2(J) ∼ Te,t−1(J) ∼ Te,t(t

−1
J)t . (6.29)

Finally, using the explicit expression of Te,t and Te,r given in (4.17) and (5.7), one obtains

[Te,t2r2(J)]
m1m2
n1n2

∼ Gn1,n2(m1,m2). (6.30)

As in the previous case, using the definition of the function P, one obtains in terms of the Racah
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polynomials rn:

Gn1,n2(m1,m2) =

M∑

a=0

(−1)a B(n1, n2,m1,m2, a)

× rn1(a;−2j(2) − 1,−2j(1) − 1, n2 −N − 1, N − n2 − 2j(2) + 2j(3) + 1)

× rn2(m2;−2j(0) − 1,−2j(4) − 1, a−N − 1, N − a− 2j(0) − 2j(1) − 1)

× rm1(a;−2j(2) − 1,−2j(4) − 1,m2 −N − 1, N −m2 − 2j(2) + 2j(3) + 1) ,

(6.31)

where we recall that M = min(N − n2, N −m2) and B is a normalization factor given by

B = (−1)n1+n2+m1+m2

√
ωn1,n2(J)ωa,n2(srJ)ωn2,a(rJ)ωm2,a(sr

2J)ωm1,m2(t
2r2J)ωa,m2(srt

2r2J) ,

(6.32)
with t2r2J = (j(4), j(2), j(3), j(0), j(1)) and srt2r2J = (−j(3) − 1, j(2),−j(4) − 1, j(1), j(0)).

Using the results obtained for the Tratnik polynomials, the above expression can be recast as

Gx1,N−x2(m1,m2) =

M∑

a=0

√
W(x1, x2)K(a,N − a−m2)ωm1,m2(t

2r2J)ωa,m2(srt
2r2J)

× (−1)N+x1−x2+m1+m2+aR2(a,N − a−m2;x1, x2) rm1(a) ,

(6.33)

where rm1(a) stands for rm1(a;−2j(2) − 1,−2j(4) − 1,m2 − N − 1, N −m2 − 2j(2) + 2j(3) + 1) and
now M = min(x2, N −m2). Expression (6.33) shows that, up to a global normalization

√
W(x1, x2),

Gx1,N−x2(m1,m2) is a polynomial in x1 and x2. We now show that this polynomial is orthogonal and
obeys recurrence and difference relations.

Unitarity relations. Once again, the entries of the relation Te,t2r2(J)Te,t2r2(J)
t = I provide the

unitarity relation for G
∑

m1,m2≥0
m1+m2≤N

Gn1,n2(m1,m2)Gn′
1,n

′
2
(m1,m2) = δn1,n

′
1
δn2,n

′
2
. (6.34)

In the same way, starting from Te,r2(J)
tTe,r2(J) = I, we obtain

∑

n1,n2≥0
n1+n2≤N

Gn1,n2(m1,m2)Gn1,n2(m
′
1,m

′
2) = δm1,m

′
1
δm2,m

′
2
. (6.35)

Difference relations. Equation (4.6) for h = e, g = t2r2 and X = C12 or C123 becomes

Te,t2r2(J)π
t2r2J
e (C134) = πJe (C12)Te,t2r2(J) , Te,t2r2(J)π

t2r2J
e (C14) = πJe (C123)Te,t2r2(J) , (6.36)

where the relations t2r2(C12) = C134 and t2r2(C123) = C14 have been used. Let us recall that t2r2J =
(j(4), j(2), j(3), j(0), j(1)) and that the representation πe is given in theorem 3.2. Then, the previous
relations read

− ϕ̃V
m1,m2+1(t

2r2J)Gn1,n2(m1,m2 + 1)− ϕ̃V
m1,m2

(t2r2J)Gn1,n2(m1,m2 − 1)

− ϕH
m1+1,m2

(t2r2J)Gn1,n2(m1 + 1,m2)− ϕH
m1,m2

(t2r2J)Gn1,n2(m1 − 1,m2)

− ϕD
m1+1,m2+1(t

2r2J)Gn1,n2(m1 + 1,m2 + 1)− ϕD
m1,m2

(t2r2J)Gn1,n2(m1 − 1,m2 − 1)

− ϕA
m1+1,m2

(t2r2J)Gn1,n2(m1 + 1,m2 − 1)− ϕA
m1,m2+1(t

2r2J)Gn1,n2(m1 − 1,m2 + 1)

− ϕ00
m1m2

(t2r2J)Gn1,n2(m1,m2) = (n1 − j(1) − j(2) − 1)(n1 − j(1) − j(2))Gn1,n2(m1,m2) , (6.37)
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and

− ϕV
m1,m2+1(t

2r2J)Gn1,n2(m1,m2 + 1)− ϕV
m1,m2

(t2r2J)Gn1,n2(m1,m2 − 1)

− ϕ̃H
m1+1,m2

(t2r2J)Gn1,n2(m1 + 1,m2)− ϕ̃H
m1,m2

(t2r2J)Gn1,n2(m1 − 1,m2)

− ϕD
m1+1,m2+1(t

2r2J)Gn1,n2(m1 + 1,m2 + 1)− ϕD
m1,m2

(t2r2J)Gn1,n2(m1 − 1,m2 − 1)

− ϕA
m1+1,m2

(t2r2J)Gn1,n2(m1 + 1,m2 − 1)− ϕA
m1,m2+1(t

2r2J)Gn1,n2(m1 − 1,m2 + 1)

− ϕ00
m1m2

(t2r2J)Gn1,n2(m1,m2) = (n2 − j(0) − j(4) − 1)(n2 − j(0) − j(4))Gn1,n2(m1,m2) , (6.38)

where the explicit expressions of ϕ can be found in appendix B. These two equations can be interpreted
as difference equations for Gn1,n2(m1,m2).

Recurrence relations. Equation (4.6) for h = e, g = t2r2 and X = C24 or C234 becomes

Te,t2r2(J)π
t2r2J
e (C12) = πJe (C24)Te,t2r2(J) , Te,t2r2(J)π

t2r2J
e (C123) = πJe (C234)Te,t2r2(J) , (6.39)

where we used again t2r2(C24) = C12 and t2r2(C234) = C123. The first equation in (6.39) leads to

(m1 − j(2) − j(4) − 1)(m1 − j(2) − j(4))Gn1,n2(m1,m2) = ϕ00
n1n2

(J)Gn1,n2(m1,m2) (6.40)

+ ϕ̃V
n1,n2+1(J)Gn1,n2+1(m1,m2) + ϕ̃V

n1,n2
(J)Gn1,n2−1(m1,m2)

+ ϕ̃H
n1+1,n2

(J)Gn1+1,n2(m1,m2) + ϕ̃H
n1,n2

(J)Gn1−1,n2(m1,m2)

+ ϕD
n1+1,n2+1(J)Gn1+1,n2+1(m1,m2) + ϕD

n1,n2
(J)Gn1−1,n2−1(m1,m2)

+ ϕA
n1+1,n2

(J)Gn1+1,n2−1(m1,m2) + ϕA
n1,n2+1(J)Gn1−1,n2+1(m1,m2),

with ϕ00 defined by (B.13). The second equation in (6.39) provides an equation similar to (6.24):

(m2 − j(0) − j(1) − 1)(m2 − j(0) − j(1))Gn1,n2(m1,m2) = ϕ00
n1n2

(J)Gn1,n2(m1,m2) (6.41)

+ ϕV
n1,n2+1(J)Gn1,n2+1(m1,m2) + ϕV

n1,n2
(J)Gn1,n2−1(m1,m2)

+ ϕH
n1+1,n2

(J)Gn1+1,n2(m1,m2) + ϕH
n1,n2

(J)Gn1−1,n2(m1,m2)

+ ϕD
n1+1,n2+1(J)Gn1+1,n2+1(m1,m2) + ϕD

n1,n2
(J)Gn1−1,n2−1(m1,m2)

+ ϕA
n1+1,n2

(J)Gn1+1,n2−1(m1,m2) + ϕA
n1,n2+1(J)Gn1−1,n2+1(m1,m2).

By contrast to the Tratnik polynomials, we obtain here 9-point relations for both recurrence and
difference relations. In the case of the multivariate Krawtchouk polynomial, the generic Griffiths
polynomials has the same kind of complication for the recurrence and difference relations [23, 24].
This motivates the denomination of Griffiths function for Gn1,n2(m1,m2).

7 Conclusion

In this paper, the algebra sR(4) and its representations are studied in detail. The knowledge of these
representations allows us to provide important relations for bivariate functions. Numerous general-
izations are possible and will provide important results in different contexts, such as representation
theory, super-integrable models and algebraic combinatorics. We detail some of them in the following.

Other regions. We have restricted ourselves to the case where the vectors |n, p〉 of the finite rep-
resentation studied in section 3.3 are such that n, p ≥ 0 and n+ p ≤ N . This choice implies that the
functions defined by (3.7) and (3.21) remain positive. In figure 4, we show schematically where these
functions vanish on dashed lines. Therefore, these lines define regions where these functions keep the
same sign. The grey region corresponds to the region studied in this paper. We see from this figure
that other regions are possible, which lead to some other constraints between n, p. A comprehensive
investigation of these different cases remains to be done. Let us remark that for the multivariate Hahn
polynomials, such a detailed study of the different possible regions has been investigated in [28, 29].

29



jn

jp

|j(1)−j(2)| j(1)+j(2)

|j(0)−j(4)|

j(0)+j(4)

Figure 4: Regions where the functions (3.7) and (3.21) keep the same sign. The grey region corresponds
to the case studied in this paper.

Classification of the representations. In the present paper, we have focused on the case where
the joint spectrum of C12 and C123 is nondegenerate. It may be interesting to consider the cases when
this spectrum is degenerate and also the cases when C12 or C123 are nondiagonalizable. We expect
that a complete representation theory of sR(4) is possible as it has been done for R(3) in [25, 26].
We also remarked that the nondiagonal entries of the representation matrices factorize because of the
vanishing of the Casimir elements in the special Racah algebra sR(4). In the case of R(4) algebra, the
values of these Casimir elements provide additional parameters in the representation theory. It would
be also interesting to study this case in detail.

Higher rank Racah algebra. Up to now, we have focused on R(3) and R(4) algebras, but the
general case of R(N) algebras can be studied following the same lines. The definition of the special
Racah algebra sR(N) can be found in [5]. We have noticed in the present paper that the defining
relation (2.6) of R(4) [9, 10, 11, 5] can be replaced by relation (2.7). This equivalence is valid in the
general case of a R(N) algebra (N ≥ 4). For N ≥ 5, supplementary relations are needed, and we believe
that they can be replaced by

(Caj − Cj − Ca) [Cik, Ckℓ] + (Cai −Ci − Ca)[Ckℓ, Cjk] + (Caℓ − Cℓ − Ca)[Cij , Cjk]

+ (Cak − Ck − Ca)[Ciℓ, Cjℓ] = 0 .
(7.1)

This replacement should simplify the study of the representation theory of the sR(N) algebra.
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Automorphism group of R(N). We proved in this paper that the permutation group S5 is an
automorphism group of the sR(4) algebra. In the same way, we believe that the permutation group
SN+1 is an automorphism group for sR(N). It can be constructed in the following way. The permu-
tation group S5 acts naturally on the set {0, 1, 2, 3, 4}: for g ∈ S5, we note g{i} the image of i. For
any subset I ⊂ {1, 2, 3, 4} we define gI by iteration on the cardinality of the subset I as:

gI =
(
g{i} ∪ gI\{i}

)
\
(
g{i} ∩ gI\{i}

)
, ∀i ∈ I. (7.2)

This definition is consistent with g{0}, when identifying {0} with {1, 2, 3, 4}. Then, the relation
CgI = g(CI) is compatible with the definition of the automorphisms g defined by proposition 2.1. Let
us remark that this construction also works for R(3), and leads to an automorphism group S4. Such
a procedure should be also possible in the general case of R(N) algebras, leading to an automorphism
group SN+1 for sR(N).

Connection graph for sR(N). We have shown that the connection graph between abelian sub-
algebras of sR(4) is associated to an icosidodecahedron, which belongs to the class of Archimedean
solids. The construction of a connection graph for sR(N) is also a point which is worth studying.
In particular, one can wonder whether it is also an Archimedean polyhedron in N − 1 dimensions.
It would give a geometrical interpretation of algebraic results. For instance, we have understood
the Racah and Biedenharn–Elliott relations as cycles around triangular and pentagonal faces of the
icosidodecahedron.

Multivariate Racah polynomials. Mimicking our approach to the sR(N) algebra, the study of
its representations should lead to multivariate Racah polynomials with N−2 variables. Depending on
the precise structure of the connection graph, there will be different types of multivariate polynomials
associated to the inequivalent paths of this graph. Starting from equivalent symmetric representations,
the transition matrices should provide the orthogonal, recurrence and difference relations for these
polynomials.

q-deformation. One may think to a deformed version of the previous results. Indeed, a deformation
of the Racah algebra is obtained in different contexts, leading to the Askey–Wilson algebras AW (3)
[46, 22], see [4] for a recent review. Several works have been done to define higher rank algebras
AW (N) [39, 8, 12]. Recently, the defining relations of AW (4) have been introduced in [3], using the
Skein algebra and an approach based on the centralizer of four copies of Uq(su(2)).

The identification of an automorphism group for AW (N) algebras would simplify the study of their
algebraic structure, as done in [41, 4] for AW (3). We expect that it is associated with the braid group
on N + 1 strands. The representation theory of AW (4) may be done similarly to the construction
proposed in this paper. One can wonder whether the folded-icosidodecahedron plays also a role. In the
deformed case, the transition matrices will be associated to the Askey–Wilson polynomials and must
provide the recurrence and the difference relations for some multivariate Askey–Wilson polynomials,
which generalize the results given in [27, 19].
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A Presentation of the R(4) algebra

As mentioned in section 2, the algebra R(4) is generated by the elements Cj , j = 1, 2, 3, 4, C1234, C12,
C23, C34, C123 and C234. We will call this basis the contiguous basis. The remaining elements can be
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reconstructed using the relation (2.2):

C13 = −C23 + C123 − C12 + C1 + C2 + C3

C24 = C234 − C23 − C34 + C2 + C3 + C4 ,

C14 = C1234 − C123 − C234 + C23 + C1 + C4 ,

C124 = C1234 − C123 − C34 + C12 + C3 + C4 ,

C134 = C1234 − C234 − C12 + C34 + C1 + C2 .

(A.1)

Plugging these expressions in the relations (2.3)-(2.4), we obtain different types of relations:

Commutativity relations (R(2)-type relations). In addition to the centrality of the generators
Cj , j = 1, 2, 3, 4, C1234, we get 5 relations:

[C12 , C34] = 0 , [C12 , C123] = 0 , [C23 , C123] = 0 , [C23 , C234] = 0 , [C34 , C234] = 0 . (A.2)

We call them R(2)-type relations because R(2) is abelian.

R(3)-type relations. We get 10 of them:

1

2

[
C12, [C12, C23]

]
= C2

12 + {C12, C23} − (C1 + C2 + C3 + C123)C12 − (C1 − C2)(C3 − C123) , (A.3)

1

2

[
C23, [C23, C12]

]
= C2

23 + {C12, C23} − (C1 + C2 + C3 + C123)C23 − (C1 − C123)(C3 −C2) , (A.4)

1

2

[
C23, [C23, C34]

]
= C2

23 + {C23, C34} − (C2 + C3 + C4 + C234)C23 − (C2 − C3)(C4 − C234) , (A.5)

1

2

[
C34, [C34, C23]

]
= C2

34 + {C23, C34} − (C2 + C3 + C4 + C234)C34 − (C2 − C234)(C4 −C3) , (A.6)

1

2

[
C12, [C12, C234]

]
= C2

12 + {C12, C234} − (C1 + C2 + C34 + C1234)C12 − (C1 − C2)(C34 − C1234) ,

(A.7)

1

2

[
C234, [C234, C12]

]
= C2

234 + {C12, C234} − (C1 + C2 + C34 + C1234)C234 − (C1 − C1234)(C34 − C2) ,

(A.8)

1

2

[
C34, [C34, C123]

]
= C2

34 + {C123, C34} − (C12 + C3 + C4 + C1234)C34 − (C12 − C1234)(C4 − C3) ,

(A.9)

1

2

[
C123, [C123, C34]

]
= C2

123 + {C123, C34} − (C12 + C3 + C4 + C1234)C123 − (C12 −C3)(C4 − C1234) ,

(A.10)

1

2

[
C234, [C234, C123]

]
= C2

234 + {C123, C234} − (C1 + C23 + C4 + C1234)C234 − (C1 − C1234)(C4 − C23) ,

(A.11)

1

2

[
C123, [C123, C234]

]
= C2

123 + {C123, C234} − (C1 + C23 + C4 + C1234)C123 − (C1 − C23)(C4 − C1234) .

(A.12)

This kind of relations already appears in the R(3) algebra.

R(4)-type relations. These types of relations do not exist in the R(3) algebra. They correspond
to the relations (2.5) and (2.7). In the contiguous basis, the set of relations (2.5) is equivalent to the
five following relations

[C12, C23] + [C23, C34]− [C123, C34]− [C12, C234] + [C123, C234] = 0, (A.13)
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1

2

[
C34 , [C12, C23]

]
= C12

(
C23 + C34 − C234 − C3

)
+ C23

(
C34 − C1234

)
− C34 C2

+C123

(
C234 − C34 − C2

)
− C234 C3 + (C2 + C3)C1234 + C2C3 , (A.14)

1

2

[
C23 , [C123, C34]

]
= C12

(
− C23 + C234 − C4

)
+ C23

(
C123 − C4

)
+ C34

(
C23 − C1

)

+C123

(
C34 − C234 − C3

)
− C234 C3 + (C1 + C3)C4 + C1 C3 , (A.15)

1

2

[
C234 , [C23, C12]

]
= C12

(
C234 − C4

)
+ C23

(
C12 − C34 + C234 − C1

)
−C34 C1

+C123

(
C34 − C234 − C2

)
− C234 C2 + (C1 + C2)C4 + C1 C2 , (A.16)

1

2

[
C234 , [C123, C34]

]
= C12

(
− C23 + C234 + C4

)
+ C34

(
C23 − C123 − C234 +C1234

)

+C23C1234 +C123

(
− C234 + C2

)
+ C234 C4

−(C2 + C1234)C4 −C2 C1234 . (A.17)

In the contiguous basis, the four relations (2.7) read
(
C12 + C234 − C2 −C1234

)
[C12, C23] +

(
C12 −C2 + C1

)
[C23, C34]

+
(
C123 − C23 − C12 + C2

)
[C12, C234] +

(
C12 − C2 − C1

)
[C34, C123] = 0,

(A.18)

(
− C234 + C34 + C2

)
[C12, C23] +

(
C12 − C1 + C2

)
[C23, C34]

+
(
C23 − C2 − C3

)
[C12, C234] + 2C2 [C34, C123] = 0,

(A.19)

(
− C34 − C3 + C4

)
[C12, C23] +

(
C123 − C12 − C3

)
[C23, C34]

+ 2C3 [C12, C234] +
(
C23 −C2 − C3

)
[C34, C123] = 0,

(A.20)

(
− C34 + C3 − C4

)
[C12, C23] +

(
− C123 − C34 + C3 + C1234

)
[C23, C34]

+
(
C34 − C4 − C3

)
[C12, C234] +

(
C234 − C23 − C34 + C3

)
[C34, C123] = 0.

(A.21)

Casimir elements. As mentioned in section 2, in addition to the central elements Cj, j = 1, 2, 3, 4
and C1234, one shows that the combinations w123, w124, w134, w234 and x1234, as given in (2.8) and
(2.9) (with the expressions (A.1)), are Casimir elements.

Other presentations. There exist different generating sets for the R(4) algebra. For instance,
using relation (2.2), the elements with three or more indices (i.e. C123, C124, C134, C234 and C1234)
could be expressed only in terms of the elements of type Cij and Ci, which would be an alternative
basis of R(4).

B Finite-dimensional real symmetric representation of sR(4)

In this appendix, we provide the explicit expressions of the matrix entries for the representation of
sR(4) in Theorem 3.2.

ψn,p =
[n(2j(1) + 1− n)(2j(2) + 1− n)(2j(1) + 2j(2) + 2− n)(N − n− p+ 2j(3) + 2)(N − n− p+ 1)

(2j(1) + 2j(2) + 2− 2n)2(2j(1) + 2j(2) + 1− 2n)(2j(1) + 2j(2) + 3− 2n)

× (p − n−N + 2j(1) + 2j(2) + 1)(n − p−N + 2j(0) + 2j(4))
] 1

2
, (B.1)

ρn,p =
[p(2j(4) + 1− p)(2j(0) + 1− p)(2j(4) + 2j(0) + 2− p)(N − n− p+ 2j(3) + 2)(N − n− p+ 1)

(2j(0) + 2j(4) + 2− 2p)2(2j(0) + 2j(4) + 1− 2p)(2j(0) + 2j(4) + 3− 2p)

× (p− n−N + 2j(1) + 2j(2))(n− p−N + 2j(0) + 2j(4) + 1)
] 1

2
, (B.2)
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ϕD
n,p =

[ n(2j(1) + 1− n)(2j(2) + 1− n)(2j(1) + 2j(2) + 2− n)

(2j(1) + 2j(2) + 2− 2n)2(2j(1) + 2j(2) + 1− 2n)(2j(1) + 2j(2) + 3− 2n)

× p(2j(4) + 1− p)(2j(0) + 1− p)(2j(4) + 2j(0) + 2− p)

(2j(0) + 2j(4) + 2− 2p)2(2j(0) + 2j(4) + 1− 2p)(2j(0) + 2j(4) + 3− 2p)

× (N − n− p+ 2j(3) + 2)(N − n− p+ 2j(3) + 3)(N − n− p+ 1)(N − n− p+ 2)
] 1

2

× sgn
(
(n− p− 2j1 − 2j2 +N + 2j3)(p− n+ 2j1 + 2j2 −N + 1)

)
, (B.3)

ϕA
n,p =

[n(2j(1) + 1− n)(2j(2) + 1− n)(2j(1) + 2j(2) + 2− n)(n− p− 2j(1) − 2j(2) + 2j(3) +N)

(2j(1) + 2j(2) + 2− 2n)2(2j(1) + 2j(2) + 1− 2n)(2j(1) + 2j(2) + 3− 2n)

× p(2j(4) + 1− p)(2j(0) + 1− p)(2j(4) + 2j(0) + 2− p)(p− n− 2j(0) − 2j(4) + 2j(3) +N)

(2j(0) + 2j(4) + 2− 2p)2(2j(0) + 2j(4) + 1− 2p)(2j(0) + 2j(4) + 3− 2p)

× (p− n−N + 2j(1) + 2j(2) + 1)(n − p−N + 2j(0) + 2j(4) + 1)
] 1

2

× sgn(n+ p−N − 2j3 − 2) , (B.4)

ϕH
n,p =

(p− j(4) − j(0) − 1)(p − j(4) − j(0))− j(4)(j(4) + 1) + j(0)(j(0) + 1)

2(p − j(4) − j(0) − 1)(p − j(4) − j(0))

×
[n(2j(1) + 1− n)(2j(2) + 1− n)(2j(1) + 2j(2) + 2− n)(N − n− p+ 2j(3) + 2)(N − n− p+ 1)

(2j(1) + 2j(2) + 2− 2n)2(2j(1) + 2j(2) + 1− 2n)(2j(1) + 2j(2) + 3− 2n)

× (p − n−N + 2j(1) + 2j(2) + 1)(n − p−N + 2j(0) + 2j(4))
] 1

2
, (B.5)

ϕV
n,p =

(n− j(1) − j(2) − 1)(n− j(1) − j(2)) + j(1)(j(1) + 1)− j(2)(j(2) + 1)

2(n− j(1) − j(2) − 1)(n− j(1) − j(2))

×
[p(2j(4) + 1− p)(2j(0) + 1− p)(2j(4) + 2j(0) + 2− p)(N − n− p+ 2j(3) + 2)(N − n− p+ 1)

(2j(0) + 2j(4) + 2− 2p)2(2j(0) + 2j(4) + 1− 2p)(2j(0) + 2j(4) + 3− 2p)

× (p− n−N + 2j(1) + 2j(2))(n− p−N + 2j(0) + 2j(4) + 1)
] 1

2
, (B.6)

where sgn is the sign function. One defines also

ϕ̃H
n,p = ϕH

n,p − ψn,p , (B.7)

ϕ̃V
n,p = ϕV

n,p − ρn,p . (B.8)

Let us recall that

ϕ00
np =

(j(1)(j(1) + 1)− j(2)(j(2) + 1))(ρ00np − j(0)(j(0) + 1))

2(n − j(1) − j(2) − 1)(n− j(1) − j(2))
(B.9)

+
j(1)(j(1) + 1) + j(2)(j(2) + 1) + j(0)(j(0) + 1)− (n− j(1) − j(2) − 1)(n − j(1) − j(2)) + ρ00np

2

=
(j(0)(j(0) + 1)− j(4)(j(4) + 1))(ψ00

np − j(1)(j(1) + 1))

2(p − j(0) − j(4) − 1)(p − j(0) − j(4))
(B.10)

+
j(1)(j(1) + 1) + j(4)(j(4) + 1) + j(0)(j(0) + 1)− (p− j(0) − j(4) − 1)(p − j(0) − j(4)) + ψ00

np

2
.
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We define

ϕ00
np =

(j(1)(j(1) + 1)− j(2)(j(2) + 1))(ρ00np − j(0)(j(0) + 1))

2(n − j(1) − j(2) − 1)(n − j(1) − j(2))
(B.11)

−
j(1)(j(1) + 1) + j(2)(j(2) + 1) + j(0)(j(0) + 1)− (n− j(1) − j(2) − 1)(n − j(1) − j(2)) + ρ00np

2
,

ϕ00
np =

(j(0)(j(0) + 1)− j(4)(j(4) + 1))(ψ00
np − j(1)(j(1) + 1))

2(p − j(0) − j(4) − 1)(p − j(0) − j(4))
(B.12)

−
j(1)(j(1) + 1) + j(4)(j(4) + 1) + j(0)(j(0) + 1)− (p− j(0) − j(4) − 1)(p − j(0) − j(4)) + ψ00

np

2
,

ϕ00
np = ϕ00

np − ρ00np − ψ00
np + j(2)(j(2) + 1) + j(3)(j(3) + 1) + j(4)(j(4) + 1) . (B.13)

C Racah polynomials

The Racah polynomials are defined through the following hypergeometric functions [32], for a given
positive integer N and 0 ≤ n,m ≤ N ,

rn(m;α, β,−N − 1, δ) = 4F3

[−n, n+ α+ β + 1,−m,m−N + δ

α+ 1, β + δ + 1,−N
∣∣∣1
]
, (C.1)

which corresponds to the case γ = −N − 1 in [32]. They satisfy the recurrence relation

λ(m) rn(m) = An rn+1(m)− (An + Cn) rn(m) + Cn rn−1(m) , (C.2)

with λ(m) = m(m−N + δ), and the difference equation

n(n+ α+ β + 1) rn(m) = Bm rn(m+ 1)− (Bm +Dm) rn(m) +Dm rn(m− 1) , (C.3)

where rn(m) stands for rn(m;α, β,−N − 1, δ) and

An =
(n+ α+ 1)(n + β + δ + 1)(n −N )(n + α+ β + 1)

(2n+ α+ β + 1)(2n + α+ β + 2)
, (C.4)

Cn =
n(n+ α+ β +N + 1)(n + α− δ)(n + β)

(2n+ α+ β)(2n + α+ β + 1)
, (C.5)

Bm =
(m+ α+ 1)(m+ β + δ + 1)(m−N )(m−N + δ)

(2m−N + δ)(2m −N + δ + 1)
, (C.6)

Dm =
m(m−N − 1− α+ δ)(m−N − 1− β)(m+ δ)

(2m−N − 1 + δ)(2m −N + δ)
. (C.7)

The parameters α, β and δ are chosen in such a way that the previous coefficients satisfy AnCn+1 > 0
and BmDm+1 > 0, for any 0 ≤ n,m < N .

Using the invariance of the hypergeometric function w.r.t. the permutations of its parameters, one
can show that

rn(x;α, β,−N − 1, δ) = rn(x;β + δ, α − δ,−N − 1, δ) (C.8)

= rx(n;α, δ − α−N − 1,−N − 1, α+ β +N + 1) . (C.9)

The last equality provides the proof of the duality between x and n. There is also the Whipple relation
[45] for the 4F3 hypergeometric function, which reads as follows

rn(x;α, β,−N − 1, δ) =
(α− δ + 1)n(β + 1)n
(β + δ + 1)n(α+ 1)n

rn(N − x;β, α,−N − 1,−δ), (C.10)
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where (y)n = y(y+1) . . . (y+n−1) is the Pochhammer symbol (by convention (y)0 = 1). This previous
equality is the symmetry of the function rn w.r.t. the transformation of the variable x→ N − x.

The functions r satisfies also the following property

λ̃(m) rn(m) = En r̃n+1(m) + Fn r̃n(m) +Gn r̃n−1(m) , (C.11)

where r̃n(m) = rn(m;α, β,−N − 2, δ + 1) and

λ̃(m) =
(m+ 1 + δ)(N −m+ 1)(β + δ + 1)

N + 1
, (C.12)

En =
n+ 2 + β + δ

n−N An , Gn =
n− 1 + α− δ

n+ α+ β +N + 1
Cn , (C.13)

Fn = −En −Gn + (δ + 1)(β + δ + 1) . (C.14)

Relation (C.11) is proven for small n by direct computation. Assuming that it holds up to a given n,
we transform the l.h.s. of (C.11) for n+ 1 as follows

λ̃(m) rn+1(m) =
λ̃(m)

An

(
(λ(m) +An + Cn) rn(m)−Cn rn−1(m)

)
(C.15)

=
1

An

(
(λ(m) +An + Cn)(En r̃n+1(m) + Fn r̃n(m) +Gn r̃n−1(m)) (C.16)

−Cn(En−1 r̃n(m) + Fn−1 r̃n−1(m) +Gn−1 r̃n−2(m))
)
.

We have used the recurrence relation (C.2), then the recursion hypothesis. The terms λ(m)r̃j(m)
(j = n + 1, n, n − 1) are replaced thanks to the recurrence relation (C.2) and, using the explicit
expressions of An, Cn, En and Fn, this expression reproduces the r.h.s. of (C.11) for n+ 1. It proves
(C.11) for any n.

In the same way, introducing r̃ ′
n(m) = rn(m;α, β,−N , δ − 1), one has the property

λ̃ ′(m) rn(m) = E′
n r̃

′
n+1(m) + F ′

n r̃
′
n(m) +G ′

n r̃
′
n−1(m) , (C.17)

where

λ̃ ′(m) =
N (m+ β + δ)(N −m+ β)

β + δ
, (C.18)

E′
n =

n−N + 1

n+ 1 + β + δ
An , G′

n =
n+ α+ β +N
n+ α− δ

Cn , F ′
n = −E′

n −G′
n +N (β +N ) . (C.19)

The functions r satisfies also the following properties

µ̃(n) rn(m) = Hm r̃n(m+ 1) + Im r̃n(m) + Jm r̃n(m− 1) , (C.20)

where

µ̃(n) =
(n + 2 + α+ β +N )(N − n+ 1)(β + δ + 1)

N + 1
, (C.21)

Hm =
m+ 2 + β + δ

m−N Bm , Jm =
m−N − β − 1

m+ δ
Dm , (C.22)

Im = −Hm − Jm + (α+ β + 2 +N )(β + δ + 1) , (C.23)

and
µ̃ ′(n) rn(m) = H ′

m r̃ ′
n(m+ 1) + I ′m r̃ ′

n(m) + J ′
m r̃ ′

n(m− 1) , (C.24)
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where

µ̃ ′(n) =
N (n+ β + δ)(n + α− δ + 1)

β + δ
, (C.25)

H ′
m =

N −m− 1

m+ β + δ + 1
Bm , J ′

m =
δ +m− 1

N −m+ β + 1
Dm , (C.26)

I ′m = −H ′
m − J ′

m + (α− δ + 1)N . (C.27)

Let us define

Pn(m) =

√
(α− δ + 1)N (β + 1)N
(α+ β + 2)N (−δ)N

n−1∏

i=0

Ai√
AiCi+1

m−1∏

j=0

Bj√
BjDj+1

rn(m;α, β,−N − 1, δ) , (C.28)

where Pn(m) stands for Pn(m;α, β,−N − 1, δ). Let us emphasize that we do not simplify the nor-
malization coefficients in (C.28) since we do not fix the sign of Ai or Bj . These polynomials satisfy
the recurrence relation

m(m−N + δ) Pn(m) =
√
AnCn+1 Pn+1(m)− (An + Cn) Pn(m) +

√
An−1Cn Pn−1(m) , (C.29)

and the difference equation

n(n+α+β+1) Pn(m) =
√
BmDm+1 Pn(m+1)−(Bm+Dm) Pn(m)+

√
Bm−1Dm Pn(m−1) . (C.30)

The orthogonality relation reads

N∑

m=0

Pn(m)Pn′(m) = δn,n′ . (C.31)
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