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Over the last 15 years, x-ray microtomography has become a useful technique to obtain morphological,

structural, and topological information on materials. Moreover, these three-dimensional (3D) images can be

used as input data to assess certain properties (e.g., permeability) or to simulate phenomena (e.g., transfer

properties). In order to capture all the features of interest, high spatial resolution is required. This involves

imaging small samples, raising the question of the representativity of the data sets. In this article, we (i) present

a methodology to analyze the microstructural properties of complex porous media from 3D images, (ii) assess

statistical representative elementary volumes (REVs) for such materials; and (iii) establish criteria to delimit

these REVs. In the context of cultural heritage conservation, a statistical study was done on 30 quarry samples

for three sorts of stones. We first present the principles of x-ray microtomography experiments and emphasize

the care that must be taken in the 3D image segmentation steps. Results show that statistical REVs exist for these

media and are reached for the image sizes studied (1300 × 1300 × 1000 voxels) for two characteristics: porosity

and chord length distributions. Furthermore, the estimators used (porosity, autocorrelation function, and chord

length distributions) are sufficiently sensitive to quantitatively distinguish these three porous media from each

other. Lastly, this study puts forward criteria based on the above-mentioned estimators to evaluate the REVs.

These criteria avoid having to repeat the statistical study for each new material studied. This is particularly

relevant to quantitatively monitor the modifications in materials (weathering, deformation . . . ) or to determine

the smallest 3D volume for simulation in order to reduce computing time.

DOI: 10.1103/PhysRevE.89.053304 PACS number(s): 07.05.Pj, 81.05.Rm, 81.70.Tx

I. INTRODUCTION

Natural materials such as bones, snow, stones, or sand, and
manmade materials such as paper, fluidized beds, or concrete,
are examples of porous media. These materials are studied
in order to characterize their microstructural properties, to
better understand and/or better predict their behavior, and
to improve their end-use properties in the case of manmade
materials. Such analyses require a thorough three-dimensional
(3D) description of the microstructure. For example, in
the case of building stone conservation, analyses focus on
deterioration properties and especially on weathering effects.
Weathering is governed mainly by water transfer within the
stones and is highly dependent on the structural characteristics,
i.e., morphology, texture, and topology. A prerequisite for
modeling weathering mechanisms is to characterize weathered
stones from buildings and unweathered stones extracted from
quarries or from buildings, but in places where the sampled
stones can be assumed to be unweathered by environmental
agents. Simulations and models to predict weathering require
a realistic tridimensional description of the phases constituting
the materials.

A powerful “nondestructive” method to characterize the
3D inner microstructure of porous materials at the micrometer
scale is x-ray computed tomography (XCT). First developed
for materials science in synchrotron facilities, this technique
is now widely used for the 3D characterization of materials
[1–6] due to laboratory setups that are fully competitive.

*rozenbaum@cnrs-orleans.fr
†sabine.rollandduroscoat@3sr-grenoble.fr

Thanks to continuous improvements in x-ray tubes and x-ray
detectors, laboratory systems can now achieve resolutions
down to 1 μm. Investigating a given characteristic or property
on realistic 3D images entails capturing all the features at
the scale of interest of the phenomenon, i.e., the pore scale
in the case of porous media. In most cases, therefore, high
spatial resolution is required, which means imaging small
samples.

However, working with small samples raises the question
of the representativity of the data sets: are the microstructural
characteristics or physical properties determined on the 3D
volumes representative of the macroscopic characteristics or
properties? Furthermore, in some cases where simulations are
time consuming, it is interesting to investigate the properties
on the smallest possible volume. Different definitions of a
representative elementary volume (REV) can be found in the
literature (e.g., [7,8]).

Despite the fact that these definitions result in different
strategies to assess properties and in different REV sizes,
they all respect the separation scale lmicro ≪ lREV ≪ lmacro,
where lmicro, lREV, and lmacro denote, respectively, the char-
acteristic length at the microscale, the representativity, and
the macroscale. The separation scale means that the volume
is small enough to capture the microstructural features and
large enough to represent the macroscopic property. The
REV is much larger than heterogeneities such as grains or
pores but should be smaller than the macroscopic structural
dimensions. The second common point of these definitions is
the fact that the REV is estimated for a given characteristic
or property [9,10] and must be independent of the point
of calculation (localization of the volume in 3D space).
Al-Raoush and Papadopoulos [10] showed, for example, that
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the REV determined for porosity is smaller than the REV
determined for particle size or coordination number. However,
these approaches present the drawback of being difficult to
implement or are biased.

Nevertheless, many procedures have been proposed in
the literature to determine the representative volume [7,11–
15]. One possibility is to evaluate the “deterministic” REV
[7,8,16,17], which is implemented by taking a small volume
within an image and calculating the property of interest (e.g.,
porosity). The small volume is then expanded in all directions
and the property is recalculated. The “deterministic” REV is
then determined as the volume value over which the property
of interest remains constant [7].

Another approach is using the “statistical” REV [16,18–20],
defined as the size of a volume beyond which the mean of the
estimated property (or characteristic) becomes approximately
constant, and the coefficient of variation, defined as the ratio
between the standard deviation and the mean, is less than a
given value. Hence, a given characteristic in a heterogeneous
material can be determined either by a few measurements on
large volumes, or by measurements of many small volumes of
material. The key point in this approach is that the “statistical”
REV must be considered as a function of several parameters,
including the physical property, the contrast of properties,
the volume fractions of components, the desired relative
precision for the estimation of the property, and the number of
independent samples at one’s disposal.

In the literature dealing with quantitative 3D image analysis
obtained from XCT measurement, it is often assumed that the
REV exists and is smaller than the maximum imaged volume.
However, this hypothesis is not always verified (and is rarely
the case in building stone conservation studies). The aim
of the present article is therefore to propose a methodology
to analyze the microstructural properties of stones used in
historical buildings, and beyond that, a methodology that can
be extended to all such complex materials. This method is
illustrated using three different stones described in Sec. II A:
(i) the samples were imaged using microtomography
(Sec. II B), (ii) the data sets obtained were preprocessed
(Sec. II C) before (iii) microstructural measurements of poros-
ity, autocorrelation length and chord distribution (Sec. II D),
and the representativity of the data sets was then analyzed
(Sec. II E). Results are presented and discussed in Sec. III,
where we focus in particular on the existence of REV, and the
possibility of distinguishing these stones by image analysis.
Section IV summarizes our conclusions.

II. MATERIALS AND METHODS

A. Stones

The Saint-Maximin limestones analyzed in this study
come from a quarry to the north of Paris (Saint-Maximin,
France). Two sediment beddings commercially denoted
“Roche Franche” (RF) and “Roche Franche Fine” (RFF) were
selected. These stones were widely used in the construction of
monuments in Paris [21]. These rocks, formed 45 million years
ago, are beige-colored sedimentary limestones composed
essentially of calcite and quartz. Although they appear globally
similar to the naked eye, the RF bedding is coarse grained while

the RFF stone has finer solid phases but with large fossils. Their
porosities, determined by hydrostatic weighing [22], are about
0.35 (RF) and 0.25 (RFF). The samples used in this study were
rod samples drilled parallel to the stone bed. Two blocks of
RF stones from two quarries (denoted hereafter RF1 and RF2)
and a single one for RFF were selected. For the three different
types of stone (RF1, RF2, and RFF), ten cylinders, 6 mm in
diameter, were drilled. Note that each set of ten samples was
extracted from a small volume (less than 10 cm3) in order to
preserve local properties.

B. X-ray microtomography

For 3D image acquisition by x-ray microtomography, a
specimen is placed on a rotary stage between the x-ray source
and the detector. The specimen is rotated step by step, taking
one projection image at each angular position. Due to absorp-
tion by the material, the x-ray beam is attenuated when passing
through a specimen. The change in intensity of the x-ray beam
is recorded, resulting in gray level images (projections). Using
a filtered back projection algorithm, a computer reconstructs
the projections to obtain cross-sectional images of the sample
(tomograms). Stacking these reconstructed images forms a
3D image of the sample (volume dataset). At each space
position of the resulting dataset, a gray value corresponds
to the effective x-ray attenuation coefficient. Hence, if the
principal compounds of the object are known and have a
sufficient density contrast, the distribution of these compounds
within the object can be easily deduced. Theoretically, with a
monochromatic x ray (e.g., from a synchrotron beamline), the
relation between pixel value (attenuation coefficient) and the
compound’s mass density is well defined by the Beer-Lambert
equation [23]. With a polychromatic x-ray beam, which is the
case for laboratory XCT, artifacts are inevitable and difficult
to remove.

It is therefore difficult to associate pixel values with material
densities in an absolute and quantitative manner. Frequently
encountered artifacts include: (i) the beam hardening effect
[24], where an object of uniform density appears to have a thick
and dense skin, or (ii) the ring effect [25], generally caused
by temporary and spurious bad pixels in the detector. These
effects can be reduced by the reconstruction software, but only
to a certain extent and less effectively for a multicomponent
object. For the stone samples, microtomography analyses
were performed using an industrial XCT device Nanotom
180NF (GE Phoenix|x-ray, Wunstorf, Germany) available at
the ISTO. This unit has a 180-kV nanofocus x-ray tube
and a digital detector array (2304 × 1152 pixels, Hamamatsu
detector). Samples were placed in the chamber and rotated
by 360 deg during acquisition. The resulting projections were
converted into a 3D image stack using a microcluster of four
personal computers (PCs) with the Phoenix 3D reconstruction
software (filtered backprojection Feldkamp algorithm [26]).
The reconstruction software contains several different modules
for artifact reduction (beam hardening, ring artifacts) to
optimize the results. Finally, the 16-bit 3D image is converted
into an 8-bit image (256 gray levels) before preprocessing. The
samples were mounted and waxed on a glass rod. An operating
voltage of 110 kV and a filament current of 59 μA were
applied. The distance between the x-ray source and the sample
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and between the x-ray source and the detector was 15 and
500 mm, respectively, giving a voxel size of 3 μm. The 2000
projection images (angular increment of 0.18°) were acquired
during stone rotation (with an acquisition time of 4 hours).
As the cone beam geometry created artifacts, the first and the
last 76 cross-sectional images were removed. The volume of
interest that was selected was a cube of 1300 × 1300 × 1000
voxels (1000 cross-sectional images) representing a volume of
3.9 × 3.9 × 3.0 mm3.

C. Preprocessing

One of the main objectives of 3D image analysis is
to retrieve reliable quantitative measures of the features of
interest. Prior to estimating characteristics (e.g., porosity,
specific surface, Euler number) or simulating properties
(e.g., conductivity, permeability) on these 3D images, the
different phases have to be distinguished (segmentation step),
since image quantification requires proper segmentation of
the solid and void phases. Segmentation is the process of
partitioning the gray level voxels of the 3D image into distinct
phases. Unfortunately, artifacts and/or noise often prevent
segmentation of these 3D images [27]: acquired real data are
usually noisy, with a signal-to-noise ratio depending on the
quality of the acquisition equipment. If the data are acquired
from a laboratory-CT scanner, the noise may be linked to
blurring, partial volume effect, hardening of the beam, or due
to its conical geometry, making the reconstruction difficult.

Hence, in addition to acquiring high-quality images, one
must preprocess the images in order to minimize these
drawbacks. This consists in a noise reduction (filtering),
followed by a thresholding step. The preprocessing step was

FIG. 1. (Color online) (a) 2D zoom of an original image from
one of the ten RF1 samples (256 × 256 pixels). The dark gray levels
correspond to the pore phase, medium gray levels to the silica
phase, and light gray levels to the calcite phase. (b) Image (a) after
application of the mean filter. (c) thresholding of image (a), where the
pore phase is in white (the solid phase is in black). (d) thresholding
of image (b), where the pore phase is in white (the solid phase is in
black).

done by algorithms developed by Le Trong et al. [28], which
are detailed below.

1. Filtering

As the gray level value of a voxel is related to the x-ray
absorption of the sample at the voxel position, pores appear
in dark gray, silica compounds in medium gray and calcite
compounds in light gray [Fig. 1(a)]. Even if these different
phases are distinguishable to the naked eye, direct thresholding
of the original image is not possible. As previously explained,
this is related to the presence of noise that restricts the selection
of a gray level as the limit between the solid and void phases.
Thus, the signal-to-noise ratio (SNR) of the original 3D image
of one of the RF1 samples presented in Fig. 1(a) was 3.48. The
SNR of an image is defined here as the ratio of its mean value
to its standard deviation [29].

Figure 2 shows that the histogram of this 3D original image
presents only two distributions. This indicates that the calcite
and silica phases have a very large overlap in the histogram
(within the [100, 255] gray level range) and are not separable
with this histogram. In other words, some voxels with a given
gray level can belong either to the calcite phase or to the
silica phase. As shown in the following, this phenomenon is
also encountered for voxel gray levels around 100, even if a
minimum is present.

Hence, most of the segmentation complexity is related to
the presence of noise and blur (the borders between the phases
are not well defined) [28]. To solve this problem, different
filters (mean and median filters and closing-opening) were
applied for noise reduction [30]. The 3D mean filter with
a kernel of 3 × 3 × 3 voxels [30] was found optimum to
minimize the noise without (too much) loss of information
(loss of smaller details only). After application of the mean
filter, the SNR reached 3.90 [compare Figs. 1(a) and 1(b)].
The histogram of the filtered image contrasts strongly with
that of the original image (Fig. 2), as three distributions were
distinguishable.

FIG. 2. (Color online) Gray scale histograms recorded for the
original image and after the mean filter operation on the sample
shown in Figs. 1(a) and 1(b). For the filtered original image, the
[0–93] gray levels correspond to the pore phase, the [94–143] gray
levels to the silica phase, and the [144–255] gray levels to the calcite
phase.
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2. Thresholding

The second step in image preprocessing is thresholding.
As after the filtering step three distributions are easily
distinguished (Fig. 2), direct thresholding of the phases is
possible. The thresholds are the gray values corresponding
to the local minima of the histogram. Hence, all the voxels
belonging (i) to the [0, ξL] range represent the pore phase, (ii)
to the [ξL, ξH ] range represent the silica phase, and (iii) to the
[ξH , 255] range represent the calcite phase. As the transfer of
water in stones is the main focus of interest, the threshold value
used here was ξL (for the ten RF1 and ten RF2 stone samples
ξL � [90, 99] and for the ten RFF stone samples levels ξL

� [77, 96]). In other words, the value 1 was assigned to the
porous phase (gray levels � [0, ξL]), and the value 0 to the solid
phase (gray levels �]ξL, 255]). After segmentation, a binarized
medium was obtained and is represented by only two phases.

Hence for the 3D image presented as an example [Fig. 3(a)],
an optimum thresholding value of ξL = 93 was obtained for
the 3D filtered image (Fig. 2). Figures 1(d) and 3(c) show the
filtered image thresholded at the minimum between the first
two distributions (ξL = 93). Comparison of ten segmented

two-dimensional (2D) images located approximately regularly
along the 3D image with their respective 256 gray level 2D
images [see Figs. 1(b) and 1(d) and see Figs. 3(b) and
3(c)] showed that the segmentation could be considered as
satisfactory (pore phase in white and solid phase in black with
few errors).

Note that thresholding the original image at the minimum
gray level between the two distributions [ξL = 104 for the
example in Fig. 1(a)], i.e., without the filtering step, led to a
binarized image [Fig. 1(c)] with a lot of “bad” voxels (black
voxels in a white phase and vice versa). As a result, the porosity
of the segmented original image was 28.87%, while that of the
filtered image was 24.72%. This indicates again that the porous
and solid phases have a very large overlap in the histogram
(some voxels with a given gray level can belong either to the
porous phase or to the solid phase) and that the filtering step
is obligatory (denoising step).

D. Structural parameters

Different estimators were then calculated on the seg-
mented images. Most of these estimators were described in
Refs. [31–33].

FIG. 3. 3D images of the RF1 (a), RF2 (d), and RFF stones (g) after the filtering step. The images were visualized by using VG-Studio
software.1 The volume dimensions are 800 × 800 × 800 voxels. The pore phase is transparent; the medium gray levels correspond to the silica
phase, and light gray levels to the calcite phase. 2D cuts of the 3D volumes are represented in Figs. 3(b), 3(e), and 3(h) for the RF1, RF2, and
RFF stones, respectively. Segmentations of these 2D cuts are reported in Figs. 3(c), 3(f), and 3(i).
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FIG. 4. (Color online) Characterization of the porosity for the 30
analyzed samples. The porosities were calculated on the whole sample
volumes (1300 × 1300 × 1000 voxels). The continuous lines are the
mean values obtained from the ten values available for each sort of
stone.

1. Porosity

Total porosity (φ) is defined as follows:

φ = Vp

Vp + Vs

, (1)

where Vp and Vs are the volume of the pore and solid phase,
respectively. For a 3D digitized medium, Vp and Vs are the
number of voxels corresponding, respectively, to the porous
phase and to the solid phase.

2. Autocorrelation function

The autocorrelation function RZ(�r) is a statistical de-
scription of a porous medium [31,33]. This function can
be interpreted as the probability of finding two randomly
selected points that are both in the same phase at a given

distance |r |. For an isotropic medium with r = |⇀r |, RZ(�r) =
RZ(r), the autocorrelation function depends on distance alone.
Otherwise, the one-dimensional autocorrelation functions for
�r parallel to the Ox, Oy, or Oz axis (where Ox, Oy, and
Oz define an orthogonal reference), respectively noted RZx ,
RZy , and RZz, give information about isotropy or anisotropy,
since pore space anisotropy is revealed as a disparity between
the one-dimensional autocorrelation functions along different
directions. A characteristic length scale is L, defined as the
integral of the autocorrelation function. It represents a length
scale characteristic of the spatial structure [34]:

L =
∫ ∞

0

RZ(r)dr. (2)

FIG. 5. Autocorrelation functions (RZx,RZy , and RZz) and the average value RZ for a RF1 sample (a), a RF2 sample (b), and a RFF sample (c).

053304-5



O. ROZENBAUM AND S. ROLLAND DU ROSCOAT PHYSICAL REVIEW E 89, 053304 (2014)

FIG. 6. (Color online) Characterization of the autocorrelation
functions for the 30 analyzed samples. These characteristics were cal-
culated on the whole sample volumes (1300 × 1300 × 1000 voxels).
Correlation lengths lc (a) and integrals of the autocorrelation functions
L (b). The continuous lines are the mean values of the ten values
recorded for each sort of stone.

Another length scale obtainable from the autocorrelation
function is its correlation length lc, defined as the distance
at which the autocorrelation function falls to zero. This
parameter lc provides a convenient length scale beyond
which correlations have died out. lc represents a length scale
characterizing the short-range order due to exclusion-volume
effects (impenetrable objects) and is significantly larger than
the typical grain size [35].

3. Chord distribution

Chord distributions are stereological tools used to describe
the interface between pore and solid phases [31,33]. The chord
distribution gives the probability of having a chord length
between r and r + dr. Chord distribution can be calculated
either for the pores [fp(r), or pore chord distribution] or for
the solid [fs(r), or solid chord distribution]. A particular case
is distinguishable if both the pore and solid chord distributions
present exponential decreases. This type of porous medium
is called a long-range random medium [31,32]. In other
words, the pore and solid phases in the datasets are randomly
distributed. The mathematical expressions of these exponential

decrease distributions are [e.g., 32]

fp(r) ≡ e(−r/αp) (3)

and

fs(r) ≡ e(−r/αs ), (4)

where αp is the persistence length for the porous phase and αs

is the persistence length for the solid phase.

E. REV estimation

In this work, we decided to analyze the representativity
of our data sets using two of the statistical approaches
found in the literature [18–20]. Both approaches specify that
the REV size depends on the property studied and on the
acceptable accuracy to estimate it, as well as on the number
of independent realizations that can be measured. The main
difference between these two approaches lies in the definition
of the accuracy of the result.

Gusev [20] investigated the properties for n independent
subvolumes of different sizes. He defined the REV volume
thus: the average made of the estimation “should be accurate
enough and the scatter of the estimates should be small.”

The scatter was defined as
D2

P (V )√
n

, where n is the number of

realizations for each subvolume and D2
P (V ) is the variance

obtained from the measurements of the properties P obtained
on n subvolumes of size V .

Kanit et al. [18,19] refined this approach. The REV was
defined as a function of the physical properties of each
constituent, their contrast, the microstructure, the required
precision, and the number of realizations. The size of this
static REV VREV depends on [18].

(1) The integral range A3 [36] that gives “information
on the volume size of the structure for which the parameter
measured in this volume has a convenient statistical
representativity

(2) The point variance of the considered property P ,DP

(3) The mean property P

(4) A relative error ε

(5) The number of realizations n

via the following relationship in the case of structural proper-
ties such as porosity or persistence lengths:

VREV = 4D2
P

A3

nε2
. (5)

The volume of the REV can be deduced from Eq. (5), and in
the case of a cubic sample, an REV size that equals lREV =
VREV

1/3 can be defined.
The magnitude D2

P A3 can be experimentally obtained [16]
from the following equation:

D2
P (V ) = D2

P

A3

V
, (6)

where D2
P (V ) is the variance obtained from the measurements

of the properties P carried out on independent subvolumes of
size V .
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III. RESULTS AND DISCUSSION

A. Data acquisition and preprocessing

The 30 samples were measured and preprocessed (filtered
and segmented) following the procedure described in Secs. II B
and II C. Figure 3 illustrates the binarization steps for a
single sample of each stone. 3D images were visualized by
using VG-Studio software.1 They correspond to cubes of
800 × 800 × 800 voxels. The differences in terms of porosity
or pore sizes between the three types of stone can be observed
on the 3D views, as well as on the 2D slices. At the observation
scale, RFF clearly exhibits a smaller total porosity than both
RF1 and RF2 stones. RF1 and RF2 stones look similar, while
the RFF stone is less homogeneous with finer grains and pores.
The presence of a large fossil [Figs. 3(h) and 3(i), on the left
bottom corner] creates a large pore within this sample. This
phenomenon is encountered throughout the volume.

B. Structural parameters

The measurements of the microstructural characteristics
of the 30 samples are reported in Figs. 4–8 for porosities,
correlation functions (and their characteristics), and chord
distributions (and their characteristics), respectively. Table I
gives the average values for each characteristic and the
associated standard deviation.

1. Porosity

The pore volume fraction of the 30 stones was determined.
Results are reported in Fig. 4 and Table I. For the three stone

1VG-Studio software, http://www.volumegraphics.com.

types, the mean porosities obtained on the microtomographic
data sets are smaller than those obtained by hydrostatic weight-
ing. This comes from the fact that the experimental conditions
chosen do not allow one to see details smaller than 33 μm3

(voxel size) and pores smaller than this value account for a
significant proportion of the porosity. A comparative study
of the samples was therefore carried out at the observation
scale, but it must be remembered that it only applies to
pore sizes larger than 33 μm3. From the total porosities
(Table I and Fig. 4), the RFF and RF1/RF2 types can be
distinguished, as can the RF1 and RF2 stones. Hence, with
porosity measurements alone, it is possible to distinguish the
two sediment beddings of the RF1 and RF2 samples.

2. Autocorrelation function

The autocorrelation functions RZx , RZy , and RZz and the
average value RZ for the 30 stones were determined. Examples
of the results obtained for one stone from each series are
shown in Figs. 5(a), 5(b), and 5(c) for a single RF1, RF2, and
RFF sample, respectively. Similar results were obtained for
all the samples belonging to the same stone. Except for the
RZz function and for the large lags, no particular disparity was
observed for the one-dimensional autocorrelation functions
along the orthogonal directions (RZx , RZy) and RZ . This
means that these samples do not show any anisotropy in
the bedding plane and present very slight anisotropy in the
direction perpendicular to the sediment bedding. The absence
of correlation peaks indicates that the analyzed stones are
random media. Moreover, lc and L were calculated from Rz

for the 30 samples (Fig. 6). Table I summarizes the mean lc
and L found for each type of rock. In the case of lc values, no
difference from the mean values was observed for any type of
stone. This means that the autocorrelation function does not

FIG. 7. Chord length distribution for the 30 samples (top: pore phase, bottom: solid phase): (a) and (d) for the RF1 samples, (b) and (e) for
the RF2 samples, (c) and (f) for the RFF samples.

053304-7



O. ROZENBAUM AND S. ROLLAND DU ROSCOAT PHYSICAL REVIEW E 89, 053304 (2014)

FIG. 8. (Color online) Characterization of the persistence length
for the 30 analyzed samples. The persistence lengths were calculated
on the whole sample volumes (1300 × 1300 × 1000 voxels). The
continuous lines are the mean values of the ten values recorded for
each sort of stone.

enable the different types of stones to be distinguished using
the correlation length lc. The L values distinguish between RFF
and RF1/RF2 stone types but, due to the strong data variance, it
is difficult to discriminate between the RF1 and RF2 samples.

3. Chord length

The pore and solid chord distributions were measured for
the 30 samples (Fig. 7). The pore and solid chord distributions
for the ten RF1 and the ten RF2 samples decreased expo-
nentially. These stones were therefore classified as long-range
random media. The solid chord distributions of the ten RFF
samples also decreased exponentially, while their pore chord
distributions showed more complex morphologies (Fig. 7).
This is probably due to the occasional presence of large fossils

that can create large pores. Furthermore, the dispersion of the
chord distributions in the RFF samples is higher than in the
other samples.

As all the chord distributions (except for the pore chord
distribution of the RFF samples) decrease exponentially, they
were fitted by Eqs. (2) and (3) in the long chord range (i.e.,
r > 50 voxels) and the persistence lengths are reported in
Fig. 8 and in Table I. For the RF1 and RF2 samples, the mean
persistence lengths for the porous phase and the solid phase
were close but distinct (Fig. 8). Furthermore, the two sets of
pore chord distributions (and solid chord distributions) are not
superimposed. The dispersions observed for these two sets of
stones illustrate the slight differences (of grain size, for ex-
ample) and/or the heterogeneities in the media for the studied
volumes, at the image resolution used. These two stones can
therefore be considered similar, and even if the differences
between them are weak, they are distinguishable. The RFF
chord distributions (pore and solid) are clearly distinct from
the RF1 and RF2 chord distributions. This is confirmed by the
mean persistence length of the RFF samples for the solid phase,
which is about 66% (about 84%, respectively) higher than the
mean persistence length of the RF1 samples (RF2 samples,
respectively). Hence, the porous media of the RFF samples are
clearly different from those of the other two stones, and the
strong dispersions show that the RFF samples are more hetero-
geneous than the others. To conclude, the chord distributions
enable the distinction not only between the RFF and RF1/RF2
stone types, but also between the RF1 and RF2 samples.

C. Representativity

Two types of analysis were carried out to evaluate the
representativity of a sample or a set of samples. In the
following, the side length l represents the cubic root of
the volume.

1. Porosity

The representativity of each sample from each stone type
was tested using the approaches of Gusev [20] and Kanit [18].
The porosity was measured for five independent subvolumes of
different side lengths on the 30 samples. Results are presented
in Figs. 9(a)–9(c) for one sample of each sort of stone. The
scatter, as defined by Gusev [20], appears to be small enough
(less than 0.015) for a side length larger than l = 200 voxels.
To refine these results, the method proposed by Kanit [18] was
applied to estimate a representative volume for a given error
and a number of realizations. We chose a single realization
(n = 1) and an error of 5%. The results for the 30 samples
are presented in Table II. It can be seen that, for each sample,
the volume obtained for the REV is smaller than the field
of view. This means that the sample is locally homogeneous.
However, depending on the type of stone, the volume obtained

TABLE I. Mean structural characteristics (porosity, autocorrelation function, and chord distribution).

Porosity lc L αp αs

Sample [−] [voxels] [voxels] [voxels−1] [voxels−1]

RF1 0.237 ± 0.010 591.5 ± 19.5 18.83 ± 1.15 13.97 ± 0.66 32.68 ± 1.66
RF2 0.274 ± 0.010 583.5 ± 35.4 18.88 ± 0.57 15.35 ± 1.00 29.51 ± 1.68
RFF 0.101 ± 0.016 590.5 ± 14.3 24.18 ± 1.20 − 57.31 ± 7.35
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can vary. For RF1 samples lREV varies from a minimum value
lREV (min) = 194 voxels to a maximum value lREV (max) = 388
voxels. This also holds for the other two stones: lREV (min) =
185 voxels and lREV (max) = 522 voxels for RF2 stone; lREV

(min) = 281 voxels and lREV (max) = 692 voxels for RFF stone.

2. Chord length distribution

A similar approach was adopted for a single sample (the
RF1 sample presented in Fig. 1) on chord distribution for the
pore and solid phases. The results are shown in Figs. 9(d) and
9(e) for Gusev’s approach and in the text for Kanit’s approach.
The scatter as defined by Gusev is smaller than 0.015 for
cubic volumes whose side length is larger than 250 voxels.
The methodology proposed by Kanit gives a lREV = 250
voxels for the persistence length in the solid phase and lREV =

125 voxels for the persistence length in the pore phase for a
single realization and a relative error of 5%. The REV for chord
length distributions is thus smaller than the imaged volume.

3. Synthesis of the representativity analysis

For all the samples, a REV for porosity exists and the
volumes of the REV are always much smaller than the 3D
image sizes. We were also able to find a REV to characterize
chord distribution in the solid and pore phases. Therefore, all
the functions and characteristics calculated within this study
are valid and the observations made on the differences between
the three types of stone are relevant.

The size of REV obtained for porosity is larger than that
obtained for chord distribution. This is coherent with the fact
that a REV depends on the property of interest [10,16,18,20].

FIG. 9. Data evolved in the REV studies: porosity evolution as a function of the volume for five independent subvolumes for (a) an RF1
sample, (b) an RF2 sample, and (c) an RFF sample. Evolution of persistence lengths in the solid phase (d) and pore phase (e) for five independent
subvolumes for the RF1 sample of Figs. 1 and 9(a). Black dots represent the minimum and maximum values. The continuous lines are the
mean values of the five independent subvolumes.
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TABLE II. Estimations of the representative elementary volumes (REVs) for porosity and corresponding cubic side lengths lREV for an
error of 5% and a single realization (n = 1) for the 30 samples.

RF1 RF2 RFF

Sample REV (voxels) lREV (voxels) REV (voxels) lREV (voxels) REV (voxels) lREV (voxels)

1 0.96 × 109 328.7 0.98 × 109 331.0 0.60 × 109 281.4
2 1.12 × 109 346.2 0.17 × 109 185.6 3.17 × 109 489.8
3 0.55 × 109 273.5 0.71 × 109 297.0 1.43 × 109 375.7
4 1.58 × 109 388.3 3.84 × 109 521.8 3.12 × 109 487.0
5 0.20 × 109 194.3 0.52 × 109 269.0 8.95 × 109 692.1
6 0.85 × 109 315.9 1.23 × 109 357.6 1.52 × 109 383.5
7 0.86 × 109 316.9 0.43 × 109 251.2 6.25 × 109 614.1
8 1.31 × 109 365.2 2.04 × 109 422.5 1.38 × 109 371.0
9 0.57 × 109 277.4 0.25 × 109 210.6 1.86 × 109 409.8
10 1.13 × 109 347.3 1.60 × 109 390.0 1.31 × 109 364.3
Average 0.91 × 109 315.4 1.18 × 109 323.6 3.06 × 109 446.9
Standard deviation 0.38 × 109 52.7 1.05 × 109 97.7 2.76 × 109 119.1

As the REV volume depends on the location of the
sample within the block of stone, i.e., it depends on the local
heterogeneities within the stone, it would be more accurate to
speak of locally homogeneous media.

It appears that the side lengths for porosity lREV have the
same order of magnitude as the correlation length lc or are close
to 10 times the solid persistence lengths αs . The side length
of the REV estimated from the chord size distributions has the
same order of magnitude of 10 ×L. This may indicate that the
correlation function and the lengths that characterize it suffice
to decide whether a volume is representative or not for porosity
or chord size distribution. One limitation of this analysis is that
the chord size distributions must be fitted by functions that are
representative of the structural disorder of porous media [31].
This was not possible in the present study, for example, for the
pore chord distributions of the RFF samples. The calculation
or simulation can therefore be done on a smaller volume than
the imaged one, which saves computing time.

Finally, thanks to these criteria, all the microstructural
measurements presented in a previous study conducted on the
whole imaged volume [33] are validated.

IV. CONCLUSIONS

We have presented in this article a complete methodology
to analyze the microstructural properties of complex porous
media such as stones from 3D microtomography images.
We focused particularly on the segmentation step, as this
determines the final results. In the present study, a simple 3D
mean filter sufficed to denoise the 3D images and hence easily
separate the solid phase from the porous phase. In some cases,
this preprocessing step is not so easy and a more sophisticated
strategy must be employed (e.g., [37]).

A statistical study was carried out on 30 samples for
three sorts of stones (ten for each sort of stone) showing
that statistical representative elementary volumes (REVs)
exist for these media and are reached for image sizes of
1300 × 1300 × 1000 voxels. Fortunately, we have also shown
that it is not necessary to carry out an extensive study on ten
samples (or more!) each time for each new porous medium, as
general criteria have been established: the length for porosity
lREV is on the same order of magnitude as the correlation
length lc, and the side length of the REV for the chord size
distribution has the same order of magnitude of 10 × L. In
other words, it is sufficient to (i) acquire the largest 3D image
possible at a given resolution, (ii) calculate the autocorrelation
function, and (iii) use at least one of these two criteria to check
whether the REV is reached. On that condition, the different
characteristics observed on the 3D images are relevant and
validated. This is the case for the three types of stone studied
here.

The estimators used enabled two sorts of porous media to be
quantitatively distinguished, namely, the two RF stones from
the RFF stone. They are also sufficiently sensitive to observe
local inhomogeneities in the media and hence, to separate two
similar media (RF1/RF2) that present subtle differences. This
means that the quantitative study of material modifications
such as dissolution and recrystallization within a porous
medium (e.g., weathering of stones, deformation of a structure,
etc.) can be carried out, provided that the REV is imaged.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support
provided by the Région Centre, France, under the PASTIS
project.

[1] N. Burlion, D. Bernard, and D. Chen, Cem. Concr. Res. 36, 346

(2006).

[2] A. Kaestner, E. Lehmann, and M. Stampanoni, Adv. Water

Resour. 31, 1174 (2008).

[3] J. Lambert, I. Cantat, R. Delannay, A. Renault, F. Graner, J. A.

Glazier, I. Veretennikov, and P. Cloetens, Colloids Surf., A 263,

295 (2005).

[4] M. Stampanoni, G. Borchert, P. Wyss, R. Abela, B. Patterson,

S. Hunt, D. Vermeulen, and P. Rüegsegger, Nucl. Instrum.
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