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[1] Heterogeneity is the single most salient feature of
hydrogeology. An enormous amount of work has been
devoted during the last 30 years to addressing this issue.
Our objective is to synthesize and to offer a critical appraisal
of results related to the problem of finding representative
hydraulic conductivities. By representative hydraulic
conductivity we mean a parameter controlling the average
behavior of groundwater flow within an aquifer at a given
scale. Three related concepts are defined: effective
hydraulic conductivity, which relates the ensemble
averages of flux and head gradient; equivalent
conductivity, which relates the spatial averages of flux and
head gradient within a given volume of an aquifer; and
interpreted conductivity, which is the one derived from
interpretation of field data. Most theoretical results are
related to effective conductivity, and their application to real

world scenarios relies on ergodic assumptions. Fortunately,
a number of results are available suggesting that
conventional hydraulic test interpretations yield
(interpreted) hydraulic conductivity values that can be
closely linked to equivalent and/or effective hydraulic
conductivities. Complex spatial distributions of geologic
hydrofacies and flow conditions have a strong impact upon
the existence and the actual values of representative
parameters. Therefore it is not surprising that a large body
of literature provides particular solutions for simplified
boundary conditions and geological settings, which are,
nevertheless, useful for many practical applications. Still,
frequent observations of scale effects imply that efforts
should be directed at characterizing well-connected
stochastic random fields and at evaluating the
corresponding representative hydraulic conductivities.
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1. INTRODUCTION

1.1. Significance of Hydraulic Conductivity to Earth
Sciences

[2] The concept of hydraulic conductivity dates back to

the middle nineteenth century, when Darcy [1856] per-

formed experiments to show that fluid displacement in

porous materials is governed by a linear relationship

between velocity and hydraulic gradient. Dupuit [1863]

noticed the parallelism with heat conduction and, being

heavily influenced by the work of Fourier [1822], expanded

the work of Darcy, providing the mathematical framework

that led to the generalized form of Darcy’s law as it is used

nowadays:

q xð Þ ¼ �K xð Þrh xð Þ; ð1Þ

where x is a vector of space coordinates, q is a seepage

velocity vector, h is hydraulic head, and K is the hydraulic

conductivity tensor. This tensor can be written asK = krg/m,

where k is the intrinsic permeability tensor, r is fluid density,

g is the acceleration of gravity, and m is viscosity. That is, K

depends on the properties of themedium through k (the larger

and better connected the pores, the larger k is) and the fluid

through r and m. Hydraulic conductivity is a key parameter in

several branches of Earth sciences and engineering, notably

hydrogeology, soil sciences, geotechnics, and petroleum

engineering. Because of the broad spectrum of disciplines

some nomenclature ambiguities have arisen. In civil

engineering, hydraulic conductivity is often termed perme-

ability, which is the way geologists and petroleum engineers

term intrinsic permeability. Here we will use the term

hydraulic conductivity.

[3] Darcy’s law is an empirical law resulting from exper-

imental evidence. However, it can be viewed from at least

two other perspectives. Historically, early developments in

groundwater flow arose from potential theory because

hydraulic head is the energy per unit weight of water. Under

slow laminar flow conditions, water flux is linearly propor-

tional to head loss, which is another way of stating Darcy’s

law. This linearity between potential loss and flux is

observed in many other phenomena, starting from Fourier’s
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law, where thermal conductivity relates heat flux and

temperature gradient. In fact, the publication of Fourier’s

[1822] book led to many laws equivalent to (1) [Narasim-

han, 1999]: Ohm’s law, which relates electricity current to

the gradient of electrical potential through electrical con-

ductivity; Fick’s law, which relates diffusive fluxes of

matter to the gradient of concentration through the molec-

ular diffusion coefficient; Hooke’s law that relates mechan-

ical stress to the gradient of displacements through the

elasticity modulus, etc. All these phenomena are historically

and mathematically equivalent to water flux in porous

media. As we will see, the singularity of hydraulic conduc-

tivity results from its large but structured variability.

[4] Darcy’s law can also be viewed as an expression of

Newton’s second law: momentum conservation. For a given

pore geometry and velocity field the force that the solid exerts

over a Newtonian fluid is proportional to the flux. In the

absence of gravity this force must be balanced by a pressure

drop to maintain equilibrium. Therefore flux is proportional

to pressure drop, which is yet another way of stating Darcy’s

law. As a consequence, Darcy’s law can also be viewed as the

porous medium version of Navier-Stokes equations.

[5] By controlling the direction and magnitude of flow,

hydraulic conductivity plays a key role in many applica-

tions, including the protection of natural groundwater bod-

ies, the restoration of polluted bodies, the preservation of

wetlands, and long-term storage of toxic or radioactive

materials. Since groundwater accounts for a large percent-

age of the total water consumption throughout the world, it

is clear that proper understanding of hydraulic conductivity

is crucial in planning and providing solutions to many

environmental, economic, and societal challenges.

1.2. Motivation and Background

[6] To some extent the difficulties in properly under-

standing and identifying hydraulic conductivity can be

traced to its almost intrinsic spatial variability. Over 30

years have passed since Freeze [1975] published a paper

pointing to the effect of heterogeneity on groundwater flow

across a column. While the paper had some limitations

[Dagan, 1976; Gelhar et al., 1977], it brought to the

attention of most hydrogeologists the importance of ac-

counting for heterogeneity in hydrologic analysis. Actually,

hydraulic conductivity (K) is arguably one of the most

variable parameters in the Earth sciences. Laboratory meas-

urements of K span more than 12 orders of magnitude. Even

in seemingly homogeneous aquifers, measured values of K

may range over some orders of magnitude. This realization

spurred a large amount of work on the problem of finding

the effect of heterogeneity on flow and transport. Since

hydrologic analyses of flow are largely based on the concept

of hydraulic conductivity, an immediate question is whether

the heterogeneous distribution can be substituted by a

representative value, and, if so, what would such a value

be. In short, one could ask two key questions: (1) Which are

the actual values that can be considered representative? (2)

How can one obtain them? These questions, in turn,

generate some additional considerations, including whether

representative values can actually be defined and how

accurately can they be obtained on the basis of available

data and information.

[7] The aim of this paper is precisely to address all of

these questions. We will only review works dealing with

representative hydraulic conductivities. Still, we must stress

the large volume of literature produced in a number of

disciplines with the aim of finding representative parameters

in the theory of conductive media. Such disciplines would

include electrical conductivity (see, e.g., Fokin [1996] for a

review and Kaganova [2003]), thermal conductivity [e.g.,

Caldimi and Mahajan, 1999; Boomsma and Poulikakos,

2001], galvanomagnetic conductivity [e.g., Kaganova and

Kaganov, 2004; Bergman and Stroud, 2000], and electronic

conductivity [e.g., Du et al., 2004].

[8] Either a deterministic or a random model may be

chosen to face real problems in hydrogeology. As discussed

by Dagan [1997], the choice is always affected by how

uncertainty is viewed. Deterministic approaches are based

on viewing parameters as unique, but uncertain, local

quantities at some given scale. Stochastic approaches are

based on viewing reality as one among the ensemble of

possible spatial distributions (realizations) of the parameter.

This is motivated by recognizing that spatial variability is

important yet impossible to describe in a precise manner.

This view implies that parameters and state variables are

inherently uncertain and require a nondeterministic frame-

work of analysis. The formalism adopted for studying

spatial variability and its associated uncertainty considers

the independent or dependent groundwater variables as

regionalized, i.e., as realizations of random functions. A

spatial random function (SRF), Z(x, w), is a function of

space coordinate, x, whose outcome is nondeterministic;

that is, it has a component defined in a probability space

(this variation is represented by another ‘‘coordinate,’’ w,

which is usually suppressed to simplify notation). For a

given point, x1, Z(x1, w) is a random variable. For two given

points, x1 and x2, Z(x1, w) and Z(x2, w) are two (generally)

nonindependent random variables. Their dependence is

usually characterized by the correlation between these two

variables, which is a function of location and separation

distance. On the other hand, fixing w = w0 (i.e., providing an

individual realization of the SRF) renders a single space

function. The collection of all the space functions for the

different w values is called the ensemble. When spatial and

ensemble averages coincide, the SRF is said to be ergodic.

The topic of spatial random functions is a large one by itself

and is needed for understanding much of what is written

here. Fortunately, many comprehensive reviews are avail-

able, including those of Matheron [1965], Journel and

Huijbregts [1978], Dagan [1989], Samper and Carrera

[1990], Gelhar [1993], and Rubin [2003].

[9] In this paper we address saturated groundwater flow

in both a deterministic and a stochastic framework. Under

steady state the governing equation is obtained from mass

balance and reads

r � K xð Þrh xð Þ½ � ¼ Q xð Þ; ð2Þ
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where Q is an external sink/source term. This equation is

valid at a certain spatial scale, which is generally referred to

as support volume.

[10] When the approach is stochastic, the variables that

appear in (2) become random, so that we can formally write

it as

r � K x;wð Þrh x;wð Þ½ � ¼ Q xð Þ: ð3Þ

Notice that considering the independent variable K as a SRF

turns the dependent variable, h, into another SRF, while Q

can be either random (the notation would then be Q(x, w))

or deterministic. Equation (3) is then a stochastic partial

differential equation.

1.3. The Problem of Scales

[11] The above definitions carry implicitly the validity

of the flow equation at some local (support) scale. We will

be seeking representative values of K at different scales.

So some formalization is required regarding scales. Several

attempts have been made at defining them. Dagan [1986,

1989] considered spatial variability at three different

scales: pore, formation, and regional. This concept has

been further elaborated by Gelhar [1993]. At the pore

scale, physical variables are defined in terms of averages

over a volume containing many molecules (classical con-

tinuum mechanics). In modeling natural formations, het-

erogeneity at the pore scale is not explicity accounted for.

The local (or formation) scale is of the order of the

formation thickness, and flow and transport are generally

of a three-dimensional nature at this scale. Many problems

of interest in hydrogeology, such as pumping tests in the

vicinity of the well and solute transport near the source,

occur at this scale. The regional or aquifer scale is much

larger than the aquifer thickness. Hydraulic parameters are

averaged over depth, and flow is mainly two-dimensional.

Local-scale variations can be smoothed out. This scale is

of interest in applications such as management and long-

range pollution.

[12] Variability of hydraulic conductivity at the local

scale in sedimentary aquifers occurs over lengths (closely

related to the concept of correlation distance) of the order of

meters in the horizontal direction and about 1 order of

magnitude smaller in the vertical direction [Gelhar, 1986].

On the other hand, characteristic lengths at the regional

scale are of the order of hundreds to thousands of meters

[Delhomme, 1979; Clifton and Neuman, 1982; Hoeksema

and Kitanidis, 1985]. In fact, field evidence suggests that

the correlation length of K(x) consistently increases with the

domain size. This is in line with recent geological models

based on process-imitating concepts and sequential stratig-

raphy [Teles et al., 2004, and references therein], and it

suggests that stationarity of K(x) is not a real property of the

medium but an artifact of the scale of observation. This

prompted Neuman [1990, 1994] to model K as a process

that is distributed over a continuous hierarchy of scales,

forming a self-similar random variable with homogeneous

increments.

[13] Normally, we are not interested in hydraulic heads or

fluxes at individual volumes that coincide exactly with the

support volume at which equation (3) was obtained. Thus

we need to specify the equations that are valid at different

(in our case larger) scales. At this stage we should ask

ourselves some fundamental questions: (1) Is the formal

structure of the equation maintained after a change in the

scale of the problem? (2) If not, what is the proper

representation of flow processes at a predefined scale? (3)

If so, what are the different parameters values to be used at

each scale? (4) Is there a way to bridge parameter values

across different scales? Much of what follows in this paper

is devoted to answering these questions. The traditional

approach in hydrogeology, which might be questionable in

some cases (as we will explore later), consists of applying to

aquifers similar laws to those derived at the local scale. The

issue is then to find the representative parameters to be used

at that particular scale. The main question is, How repre-

sentative are representative parameters? The answer is that

ideally a representative parameter should yield an average

behavior of the aquifer at a given scale. Depending on the

averaging procedure, starting from Darcy’s law we can

obtain effective, equivalent, or interpreted parameters, de-

fined as follows.

1.4. Effective Parameters

[14] Effective parameters are based on averaging over the

ensemble of realizations. Thus the definition of effective

hydraulic conductivity is obtained from the generalization

of Darcy’s law that results from relating the expected values

of specific discharge and head gradient

hqi ¼ �Keffrhhi; ð4Þ

where angle brackets indicate ensemble averaging in the

probability space of hydraulic conductivity, that is, aver-

aging all the possible head and specific discharge fields that

could be obtained with the ensemble of hydraulic

conductivity fields. If the value that relates both expecta-

tions, Keff, exists, it is a second-order tensor and is called

the effective hydraulic conductivity. The tensorial nature of

Keff may be a consequence of statistical anisotropy,

boundary conditions, or domain geometry, as will be

analyzed in sections 2.2 and 2.3.

1.5. Pseudoeffective or Apparent Parameters

[15] The name effective is used only when the value

appearing in (4) is constant throughout the domain. In this

case the effective parameter can be considered as a charac-

teristic property of the medium. The presence of boundaries

or sink/sources would cause Keff in (4) to be variable in

space (actually, the most important variations would arise

near the boundaries or the sources). Then even though (4) is

still a proper definition, the resulting parameter is a function

of space and cannot (in principle) be termed effective. In

such cases some authors introduced the term pseudoeffec-

tive parameters [e.g., Sanchez-Vila, 1997]. Dagan [2001]

coined the term ‘‘apparent conductivity’’ for this Keff being

a function of location, which has then been used in a
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number of publications [e.g., Riva et al., 2001; Tartakovsky

et al., 2002; Guadagnini et al., 2003]. Still, we prefer to use

the term ‘‘pseudoeffective’’ to emphasize that average

quantities appearing in the definition of this parameter are

computed in the probability space. The only difference with

the concept of effective parameters is that a pseudoeffective

value is not a characteristic of the medium but changes with

location and is influenced by the presence of a boundary or

by the nonstationarity of the medium (we will address this

topic in sections 2.3, 2.6, and 2.8). We will use this

terminology throughout the paper.

1.6. Equivalent Parameters (or Block-Averaged
Parameters)

[16] A different approach to the problem relies on aver-

aging in physical space. The resulting representative pa-

rameter is termed equivalent. Alternative terminologies that

are often employed are block-averaged or volume-averaged

parameters. Several authors refer to these as upscaled

parameters, since these are usually representative of some

average behavior observed over blocks larger than the

support scale. Along these lines an equivalent hydraulic

conductivity, Kb, can be defined by means of an averaged

version of (1).

q ¼ �Kbrh: ð5Þ

Here the over bar refers to averaging in the spatial

(volumetric) sense, that is,

q ¼ 1

V

Z

V

qdV rh ¼ 1

V

Z

V

rh dV: ð6Þ

Even if K is isotropic at the local scale, upscaling may lead

to a tensorial Kb. Notice that an expression equivalent to (5)

would be

Krh ¼ Kbrh: ð7Þ

A discussion about conditions of existence and properties of

such parameters will be presented in sections 3 and 4.

[17] When the averaging volume is very large, with a

representative size that is several times larger than the

integral scale of the underlying (random) heterogeneous

parameter, the averaging process comprises all scales of

heterogeneity. In such a case, ergodicity would imply that

equivalent and effective (or pseudoeffective) parameters be

identical. A comprehensive discussion about conditions

under which subsurface can be characterized by a unique

integral scale within a predefined observation window is

presented by Neuman and Di Federico [2003].

1.7. Interpreted Parameters (or Estimated Parameters)

[18] Interpreted parameters are again defined in physical

space, as the ones obtained from the interpretation of field

data, although this is often restricted to the interpretation of

hydraulic tests. Thus they can also be termed estimated

parameters. This causes the definition to be quite loose, as it

involves interpretation issues. In general, tests are analyzed

with some underlying simplifying hypotheses that are not

completely met in reality. A clear example is the assumption

of medium homogeneity, while reality is heterogeneous.

When applying standard interpretation methods to a hy-

draulic test, one obtains a set of parameter values that are

somehow ‘‘representative’’ of the global behavior of the

aquifer at the scale of the test. The key point here is that the

values obtained depend on the interpretation method and

therefore do not have direct physical meaning. An example

would be the estimation of transmissivity from a hydraulic

test. Field hydrogeologists would interpret the test using a

classical method (Theis or Cooper-Jacob) to obtain a value

that they would later use in their models or calculations.

Since interpreted parameters are the ones used in practice,

the salient question here is whether interpreted parameters

bear any relationship to effective, pseudoeffective, or equiv-

alent parameters.

1.8. Structure of the Paper

[19] The objective of this paper is to review literature

results regarding representative (i.e., effective, pseudoeffec-

tive, equivalent, and interpreted) hydraulic conductivities.

Unfortunately, these concepts (including the existence and

the actual values of such parameters) depend on the flow

regime, boundary conditions, and assumptions regarding the

underlying structure of the spatial random function hydrau-

lic conductivity. This has led to a large variety of methods

and results. We classify existing results on representative

parameters according to flow configurations. Section 2 is

devoted to effective and pseudoeffective hydraulic conduc-

tivity for mean parallel flow, where most results are avail-

able, including the pioneering results on the topic. Most

methods will be reviewed in section 2. Equivalent values

derived under the same flow conditions are presented in

section 3. Section 4 is devoted to convergent flow, where,

apart from effective, pseudoeffective, and equivalent param-

eters, interpreted values become relevant. A discussion on

issues arising from scale effects is presented in section 4.

Section 5 is devoted to other flow configurations. The paper

ends with some discussion about relationships between

classical and modern approaches and major results. A set

of key conclusions and an appraisal of remaining challenges

are then proposed.

2. MEAN PARALLEL FLOW: EFFECTIVE AND
PSEUDOEFFECTIVE PARAMETERS

[20] This section is devoted to compiling the most

important methodologies and relevant results available in

the literature regarding effective and pseudoeffective hy-

draulic conductivity for mean parallel flow. Section 2 is

structured over increasing levels of difficulty: It starts with

isotropic, unbounded, and stationary media under steady

state conditions and progresses to consider anisotropic

media, bounded domains, and transient flow. The remainder

of section 2 is devoted to different types of nonstationary

media. Various reviews covering part of the topics
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addressed here are already available in the literature. The

most recent ones are those of Dagan [2001], Rubin [2003],

and Neuman and Di Federico [2003].

2.1. Isotropic Stationary Media, Steady State Flow,
and Unbounded Domains

[21] As will become clear in the following, steady state

parallel flow in stationary media is one of the particular

situations where effective hydraulic conductivity exists.

2.1.1. Bounds of the Principal Values of Effective
Hydraulic Conductivity
[22] The evaluation of Keff has been the subject of several

studies since the 1960s. Matheron [1967] obtained the

upper and lower bounds for Keff in any given direction by

using energy dissipation considerations. He found that Keff

was bounded by the arithmetic (KA) and the harmonic mean

(KH) of the point values of conductivity. Mathematically,

the principal values of the Keff tensor are bounded by

KH ¼ hK�1i�1 � Keff ;ii � hKi ¼ KA; i ¼ 1; . . . ; n; ð8Þ

n being space dimensionality.

[23] The solution for Keff in an unbounded domain under

the assumption that the SRFK(x,w) is isotropic isKeff =KeffI

(I being the identity tensor). Matheron [1967] demonstrated

that in a two-dimensional infinite domain, and under not very

restrictive conditions, Keff is equal to the geometric mean,

KG, of the point values of K. The conditions for this equation

to hold are that the ensemble of all multivariate moments for

K/hKi and hKi/K are equal and invariant to rotation. These

conditions are met, for example, when K(x, w) is a multi-

lognormal stationary random function with isotropic corre-

lation structure. Later, Adler and Mityushev [2003] proved

that the actual necessary conditions for Keff = KG are a little

less restrictive than those imposed by Matheron.

2.1.2. Perturbative Methods
2.1.2.1. Perturbations: General Ideas and Main Results
[24] Most of the results regarding effective parameters in

heterogeneous media have been obtained using perturbation

methods. This general methodology is widely applied in

many other fields in science. It allows deriving analytical

results or simplifying the numerical burden associated with

Monte Carlo methods. The essence of small perturbations

techniques is to expand the dependent variable in an

asymptotic sequence and to derive different partial differ-

ential equations (PDEs) for each of the terms in the

expansion. By solving them, we obtain the solution for

the dependent variable (heads in the case of saturated

groundwater flow) as a sequence. Closure and convergence

analysis then become critical.

[25] The starting point consists of expanding the inde-

pendent variable about its expected value, which is, in

general, a function of x. In hydrogeological problems, while

some authors use as an independent variable K(x), most

prefer to use Y(x) = ln K(x). In the latter case we can use

Reynolds’ decomposition to write

Y xð Þ ¼ hY xð Þi þ Y0 xð Þ; ð9Þ

where Y0(x) is a zero-mean perturbation of the variable

around its expected value, hY(x)i. Exponentiating each side

of equation (9) and noticing that KG(x) = exp[hY(x)i], an
alternative expression for K reads: K(x) = KG(x) exp[Y

0(x)].
In the special case of stationary media, KG is not a function

of location.

[26] The next step consists in formally expanding h(x)

[Dagan, 1989]:

h xð Þ ¼ h 0ð Þ xð Þ þ h 1ð Þ xð Þ þ h 2ð Þ xð Þ þ . . . : ð10Þ

Strictly speaking, an expansion of this kind, widely used in the

stochastic literature, does not constitute an asymptotic se-

quence. This is so since random quantities defined on infinite

probabilistic support, such as h(i)(x), can take arbitrarily large

values. The crucial points here are that the method relies on

computing only statistical moments of the random variables

involved, and moments are amenable to asymptotic expan-

sions. Incorporating (9) and (10) into Darcy’s law, and

expanding exp(Y0(x)) into a Mac Laurin series, yields

q ¼ �KG

X

j�0

Y0 xð Þ½ �
j!

j
 !

r
X

i�0

h ið Þ xð Þ
 !

: ð11Þ

The effective hydraulic conductivity can then be obtained by

ensemble averaging (11):

qh i ¼ �KG

X

j�0

Y0 xð Þ½ �
j!

j
 !

r
X

i�0

h ið Þ xð Þ
 !* +

: ð12Þ

[27] To provide an expression that formally looks like (4),

we need to obtain expressions for the different terms in the

expansion of (12), which formally include h(i)(x). These

terms can be obtained by performing a similar expansion in

the groundwater flow equation (3), considering no external

sources (even though they could be incorporated). Under

conditions of stationarity in Y (i.e., rhY(x)i = 0) we can

write the steady state flow equation as the following set of

sequential equations:

r2h 0ð Þ xð Þ ¼ 0 ð13Þ

r2h ið Þ xð Þ þ rY0 xð Þrh i�1ð Þ xð Þ ¼ 0 i � 1: ð14Þ

[28] From (13), and noticing that the domain is infinite,

h(0)(x) is a deterministic function. Moreover, for mean

uniform flow conditions, h(0)(x) � hh(x)i, arising from the

fact that hh(j)(x)i = 0 for j > 0 [e.g., Dagan, 1989]. On the

contrary, from (14) and as Y0 is an SRF, all the h(i)(x), i = 1,

2, . . . terms are the solution of the different stochastic PDEs

and therefore are random as well. In (12), there is a double

infinite series of ensemble averages of products of Y0j and
rh(i)(x). Each term is assigned an order equal to (i + j). The

terminology ‘‘small perturbations’’ in itself means that the

terms of increasing order are of lesser significance. Using

the ‘‘small perturbations’’ argument, we can truncate the
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expansion of (12). By retaining only terms up to second

order in the expansion we arrive at

qh i ¼ �KG 1þ s2
Y

2

� �
r h xð Þh i þ Y0rh 1ð Þ xð Þ

D E� �
: ð15Þ

Here sY
2 is the variance of the natural logarithm, Y, of

hydraulic conductivity. An expression similar to (15) but

formally incorporating all higher-order terms (before trun-

cation) was already presented by Gelhar and Axness [1983].

When sY
2 is small, the small perturbation methodology

applied to (12) converges to the exact solution, and trunca-

tion after a few terms, such as in (15), provides acceptable

to very good results.

[29] The last step in the methodology is to write the last

term on the right-hand side of (15) in terms of rhh(x)i. As
we will show later in this section, this is generally not

possible. Whenever it is possible, we actually arrive at an

expression formally equal to (4), so that a low-order

approximation for Keff is readily obtained.

[30] The first applications of the methodology for the

derivation of effective parameters were performed by

Shvidler [1962] and subsequently by Matheron [1967].

These authors already concluded that

Keff ¼ hKi þ O s2
Y


 �
; ð16Þ

where the O(sY
2 ) term is always negative. This last term in

(16) was called ‘‘the deterioration of permeability’’ by

Matheron and was already found to depend on the problem

dimensionality. Notice that for lognormal hydraulic con-

ductivity fields hKi = KG exp(sY
2 /2) ’ KG(1 + sY

2 /2). Thus

there is a direct relation between (15) and (16), pointing out

that when an effective conductivity value exists, the hY0

rh(1)(x)i term must be negative.

[31] The first compact expression for (15) for mean

uniform flow conditions and stationary isotropic conductiv-

ity fields was presented by Gutjahr et al. [1978] as

Y0rh 1ð Þ xð Þ
D E

¼ �s2
Y

n
r h xð Þh i; rhh xð Þi ¼ constant; ð17Þ

n being the number of space dimensions. Direct comparison

of (15) and (4) allowed Gutjahr et al. to obtain the following

expression for Keff

Keff¼ KG 1þ 1

2
� 1

n

� �
s2
Y

� �
: ð18Þ

[32] From (18), Gelhar and Axness [1983] conjectured an

extrapolation valid for large sY
2 by suggesting that it is

possible to consider (18) as the sum of the first two terms in

the expansion of an exponential (this is known in hydro-

geology as Matheron’s conjecture [Matheron, 1967]), so

that the equation becomes

Keff ¼ KG exp
1

2
� 1

n

� �
s2Y

� �
: ð19Þ

[33] This avoids the problem of having negative Keff

values in one dimension for large sY
2 values, as would be

the case in (18).

[34] Assuming that the univariate distribution of K(x0) is

lognormal, alternative equations to (19) are given as

Keff ¼ KA

n�1
n KH

1
n ð20aÞ

Keff ¼ hKn�2
n i n

n�2: ð20bÞ

Equation (20a) was already conjectured by Matheron

[1967], even though it was not rigorously proved. Actually,

Matheron arrives at a different analytical expression:

Keff ¼
n� 1

n
KA þ 1

n
KH; ð21Þ

which is not correct. He found that (21) constituted a very

low order approximation and conjectured (20a) as a

potential exact solution to the problem. Equations (19)

and (20a) are rigorously valid for n = 1, 2. Dagan [1993]

derived, using small perturbations, the terms up to order sY
4

for the expression of Keff and found these to be in

agreement with the expansion of (19). Later, De Wit

[1995] derived the term of order sY
6 , providing the

following expression

Keff ¼ KG 1þ 1

2
� 1

n

� �
s2
Y þ 1

2
� 1

n

� �2
s4
Y

2
þ 1

2
� 1

n

� �3
s6
Y

6
þ e

" #

ð22aÞ

e ¼ � s6
Y

3n3
þ b

n
: ð22bÞ

The quantity e in (22b) vanishes for n = 1, 2. This is not the

case for three-dimensional flows, where it is found

numerically that e is approximately equal to �0.0014sY
6

for a Gaussian log conductivity field. De Wit’s solution is

also valid for nonsymmetric log conductivity configura-

tions, and then the value of b is obtained as a nine-

dimensional integral. Figure 1 illustrates these results

depicting the normalized effective conductivity for three-

dimensional mean uniform flows as obtained by means of

the exponential conjecture (19) (solid curve) together with

the sixth-order (insY) approximation (22a) withb =sY
6 /(3 n2)

(dash-dotted curve) and e =�0.000467sY
6 or e =�0.0014sY

6

for log conductivity field characterized by an exponential

(dashed curve) or Gaussian (dotted curve) covariance

function, respectively. Similar methodology and results for

the Gaussian case were presented at about the same time by

Abramovich and Indelman [1995].

2.1.2.2. Small Perturbations Combined With Green’s
Functions
[35] Several methods can be used to derive (17). Because

of their applicability to more complex problems we present

the main steps of some of these methodologies when
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applied to unbounded domains. The Green’s function meth-

odology is based on obtaining a formal mathematical

expression for hY0rh(1)(x)i. We start by writing the formal

random solution to (14) as

h ið Þ xð Þ ¼ �
Z

V

rx0Y
0 x0ð Þrx0h

i�1ð Þ x0ð ÞG x; x0ð ÞdV
i ¼ 1; 2; . . . ;

ð23Þ

where V is the domain and G(x, x0) is the deterministic

Green’s function for the Laplace equation in V, i.e., the

solution to

r2G x; x0ð Þ ¼ �d x� x0j jð Þ ð24Þ

in V, subject to homogeneous boundary conditions. Some

boundary integrals also appear in the general solution in a

bounded domain. From (24), and taking advantage of the

fact that rh(0)(x) = rhh(x)i = constant, we can write

Y0rh 1ð Þ xð Þ
D E

¼ �
Z

V

Y0 xð Þrx0Y
0 x0ð Þh irG x; x0ð ÞdV

� �
r hh i:

ð25Þ

Now the integral appearing in (25) is a deterministic

quantity and can be evaluated analytically or numerically.

Evaluating (25) in unbounded domains would lead to (17).

[36] A very similar approach, also based on Green’s

function, was taken initially by Shvidler [1962] and

Matheron [1967] in the study of effective parameters under

different flow configurations and was applied to other

problems by Dagan [1982, 1987]. The methodology was

explained in detail by Dagan [1989].

2.1.2.3. Small Perturbations Combined With
Covariance Spectra
[37] An alternative to the use of Green’s functions is based

on the spectral representation theorem. Under the condition

that K(x,w) is a stationary random function, both Y0(x,w) and
h(1)(x, w) can be represented through a Fourier-Stieltjes

integral [Gelhar, 1986]. Then, the first stochastic PDE in

(14) becomes a linear equation with constant coefficients in

the spectral space. It is then possible to write the spectral

density of hydraulic heads from the spectral density of log

conductivities. This approach has been successfully used in

works by Bakr et al. [1978],Mizell et al. [1982], and Gelhar

and Axness [1983] among many others. The methodology

was explained in detail by Gelhar [1993].

[38] The spectral representation theorem states that any

stationary SRF (in general, a stationary random process) can

be written in terms of a stochastic process, Z, with orthog-

onal increments, as follows:

Y0 xð Þ ¼
Z þ1

�1
exp ik � xð ÞdZY kð Þ: ð26Þ

Here k = (k1, k2, k3) is the wave vector in spectral space. By

using the same type of representation for h(1)(x) and from

(14) we can relate the stochastic processes ZY and Zh,

respectively, for log conductivity and heads

dZh kð Þ ¼ ik � J
kj j2

dZY kð Þ: ð27Þ

After some manipulations in Fourier space it is possible to

express the last term in (15) in terms of the spectral density

function of Y(x). The results for isotropic media coincide

with those obtained using a Green’s function approach.

Applications of the methodology to bounded domains lead

to a truncated, and thus approximated, spectral representa-

tion of the random processes involved.

2.1.2.4. Residual Flux Theory Approach
[39] Neuman and coworkers [Neuman and Orr, 1993;

Neuman et al., 1996; Tartakovsky and Neuman, 1998a,

1998b; Guadagnini and Neuman, 1999a, 1999b; Riva et

al., 2001; Tartakovsky et al., 2002; Guadagnini et al., 2003]

analyzed effective and pseudoeffective hydraulic conduc-

tivity by means of moment equations of transient and steady

state groundwater flow. Under steady state the predictor of

the flux, hqi, is written as

hqi ¼ �hKirhhi þ r; r ¼ �hK0rh0i; ð28Þ

where it can be easily recognized that hqi is expressed in

terms of a Darcian component, which is governed by the

hydraulic conductivity predictor, hKi, and a (generally) non-
Darcian one, which is termed residual flux, r. It has been

shown by Neuman and Orr [1993] and Neuman et al.

[1996] that for a bounded domain, W, with impermeable

Neumann boundaries, the residual flux is given exactly by

the compact explicit expression

r xð Þ ¼
Z

W

a y; xð Þryhc yð Þ dy: ð29Þ

Figure 1. Normalized effective conductivity for three-
dimensional mean uniform flows as obtained by means of
the exponential conjecture (19) (solid curve). For compar-
ison, the dash-dotted curve is the sixth-order (in sY)
approximation (22a) with b = sY

6 /(3 n2), and the dashed and
dotted curves are (22a) with e = �0.000467sY

6 or e =
�0.0014sY

6 , representing a log conductivity field character-
ized by an exponential or Gaussian covariance function,
respectively. Reprinted with permission from De Wit [1995].
Copyright 1995, American Institute of Physics.
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Here hc is the solution of the following deterministic flow

problem

r � hK xð Þirhc xð Þ½ � þ hf xð Þi ¼ 0; ð30Þ

where hf(x)i is the mean source term and the boundary

conditions are provided in terms of (ensemble) mean

quantities. The kernel

a y; xð Þ ¼ K0 xð ÞK0 yð ÞrxrT
yGr y; xð Þ

D E
ð31Þ

is a second-rank positive semidefinite symmetric tensor,

Gr(y, x) being the random Green’s function associated with

the groundwater flow problem, i.e., the solution of the

(random) groundwater flow equation for the case where

the source function is replaced by the Dirac delta function

d(x � y), subject to homogeneous boundary conditions

[Greenberg, 1971]. In the general case of prescribed non-

zero (random) flux along Neumann boundaries, (29) has to

be supplemented with a series of boundary integrals. As an

alternative the residual flux can be expressed by means of

an implicit expression:

r xð Þ ¼
Z

W

a y; xð Þry h yð Þh i dyþ
Z

W

d y; xð Þ r yð Þ dy; ð32Þ

where a is given by (31) and d forms a second-order,

positive semidefinite tensor given by

d y; xð Þ ¼ K0 xð ÞrxrT
yG y; xð Þ

D E
: ð33Þ

It is precisely the integrodifferential nature of the residual

flux that renders the flux predictor nonlocal and thus non-

Darcian, so that a (pseudo)effective conductivity does not

exist with the exception of a few particular cases. This is a

very important point to emphasize, since the methodologies

directly based on perturbations of random quantities do not

allow recognizing general conditions of existence of effec-

tive conductivities. A discussion about generally nonuniform

flow configurations will be presented in sections 4 and 5. In

the special case of flow in an infinite domain with (statisti-

cally) homogeneous hydraulic conductivity under a uniform

mean hydraulic gradient rhc = rhhi = const, the second

integral in (32) must vanish, and therefore the residual flux

can be localized exactly, i.e., r(x) = �KC(x) rhh(x)i.
[40] Owing to symmetry considerations, applicable only

to infinite domains, KC(x) is constant throughout the do-

main, and an effective conductivity value can be defined as

Keff ¼ hKiI�KC; KC ¼ KC xð Þ ¼
Z

W

a y; xð Þ dy: ð34Þ

The salient feature of this expression is that the evaluation

of the integral term in (34) requires a closure model. Closure

can be obtained by a large eddy diffusivity approximation

[e.g., Kraichnan, 1987], leading to

a y; xð Þ � hK0 xð ÞK0 yð ÞirxrT
y G y; xð Þ; ð35Þ

where G is a deterministic Green’s function defined as the

solution of the deterministic groundwater flow equation, with

K = hKi. Alternatively, one can use perturbation expansion

techniques. By doing so, the equations recovered for infinite

domain provide the same solutions as the methodologies

presented so far. We emphasize that a key theoretical

advantage of the residual flux–based approach is that the

variables expanded are deterministic moments rather than

random quantities. Expansion of moments is performed in

series of a parameter representing a measure of the standard

deviation of log-hydraulic conductivity, the smallness of

which can be assessed. Key advantages of this methodology,

as opposed to the others, are that (1) it does not require

restrictions about the probability density function (pdf) of

K and (2) it can incorporate conditioning on different types

of information. An important application is the possibility of

addressing bounded domains, as we will see in section 2.3.

2.1.2.5. Other Perturbative Techniques
[41] Another method also based on perturbations is

stochastic diagrammatic analysis. The basic idea is to

perform a perturbation expansion similar to the one defined

by (9) and (10). The difference lies in the way the resulting

equations are treated. The resulting terms involving the

integral of n-point correlations are presented in a concise

form using Feynman’s diagrams. These diagrams are appli-

cable in bounded domains and are not restricted to small

perturbations. Christakos et al. [1995] used this method to

discuss the existence of an effective conductivity in hetero-

geneous media, arriving essentially at the same conclusions

that can be drawn by means of the residual flux approach.

An additional advantage of the diagrammatic method is that

it allows obtaining results for partial summations at any

given order in the expansion of (12) thus providing some

insight to the solution in a number of cases. These partial

summations cannot provide the full solution to any given

order, and therefore the method is limited when applied to

obtaining higher-order results in closed form.

[42] Stepanyants and Teodorovich [2003] used a different

perturbative approach based on the decomposition of seep-

age velocity into a potential plus a solenoidal function. Then

they expanded the product K�1(x)q(x) in terms of pertur-

bations. Using a diagrammatic method, they can compute

the low-order terms of the effective conductivity, providing

the following result:

Keff ¼ KG exp �s2
Y=2


 �
1� n� 1

n
s2
Y þ 1

2

n� 1

n

� �2

s4
Y

" #�1

:

ð36Þ

This result cannot be directly applied to large sY
2 values,

since these would provide a decreasing Keff value for

increasing degree of heterogeneity in three dimensions. In

addition to this it does not provide the exact solution Keff =

KG in two dimensions. On the other hand, when Matheron’s

conjecture is applied to (36), the final results are in

agreement with (19).

[43] Another perturbative technique was initially used by

Noetinger [1994]. His approach consisted of expanding in a
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geometrical series the inverse of a linear integral operator

that involves a Green’s series. Noetinger then writes the

effective conductivity as the sum of an infinite number of

terms:

Keff ¼
X1

N¼0

KN; ð37Þ

where each KN term includes high-order correlation

functions such as hexp(Y0(r)Y0(r1). . .Y
0(rN)i. For lognormal

conductivity media, Noetinger [1994] summed up all the

terms that do not include correlations between different

points. This is equivalent to finding the exact expression for

Keff for vanishing correlation length. The final expression

corresponds exactly to (19), thus revealing that (19) is an

exact result for negligible correlation length. Unfortunately,

this methodology provides no additional insight with

respect to other methodologies when applied to correlated

conductivity fields.

2.1.3. Nonperturbative Methods
2.1.3.1. Self-Consistent Approach
[44] The self-consistent approach, also termed embedding

matrix approach [Dagan, 1981], is based on the following

idea: We start with a homogenized medium with a hydraulic

conductivity value equal to Keff, which is unknown. An

inclusion is incorporated into this medium. The shape and

dimension of the inclusion depend on the problem analyzed,

typically an n-dimensional sphere in isotropic media. The K

value assigned to the inclusion, Kinclusion, is drawn at

random from a predefined pdf of K, p(K). For each

particular value of Kinclusion, there is a different head

distribution solution. The Keff value is defined as that of a

homogeneous medium whose head distribution equals the

average of the inclusion head distributions. It is clear from

the definition that the solution must always be obtained

through an iterative process. In an isotropic medium, Dagan

[1981] obtained the following solution for Keff:

Keff ¼
1

n

Z1

0

p Kð Þ
K þ n� 1ð ÞKeff

dK

2
4

3
5
�1

: ð38Þ

This methodology is not limited to small variances of the

log conductivity field. Moreover, if p(k) is assumed to be

lognormal, it provides the exact solution both for the one-

(Keff = KH) and the two-dimensional (Keff = KG) cases

[Dagan, 1993]. However, equation (38) leads to an

underestimation of Keff in three dimensions. The self-

consistent approach has been widely used to derive effective

parameters in anisotropic media and bimodal conductivity

fields, as will be presented in sections 2.2 and 2.7.

2.1.3.2. Method of Moments
[45] The method of moments [Kitanidis, 1990] takes

advantage of the formalism of periodic media. Kitanidis

assumed that the conductivity field is periodic in the three-

dimensional space and that the period in all three directions

is known. Ergodicity can then be invoked by setting the

periodic distance to infinity. The equivalence of ensemble

parameters to those obtained by large periodization volume

averaging has been demonstrated rigorously by Owhadi

[2003]. The method consists of averaging out in real space

(not in the ensemble) the effects of gradually varying flow

(steady state being the limit for infinite time). Under these

conditions, Kitanidis [1990] obtains that the effective con-

ductivity is given by a volume integral over one single

period. The volume integral involves functions that satisfy a

Poisson-type PDE with periodic boundary conditions. By

considering a volume which tends to infinity, he recovers an

expression for Keff which coincides with (18). This method

involves a rigorous mathematical formalism, and though it

has not been widely used in the hydrogeological literature, it

is commonly applied in other branches of physics.

2.1.3.3. Variational Method
[46] The variational method consists of writing the actual

expression for effective conductivity in Fourier space in

order to eliminate the nonlocalities that arise from the

solution to the flow equation using Green’s functions.

Auxiliary correlation functions are obtained through varia-

tional principles in an optimization process. Using this

method, Hristopulos and Christakos [1997] provided an

expression for effective hydraulic conductivity in an n-

dimensional isotropic unbounded domain,

Keff ¼
Kh i
2

1þ 1� 4s2
K

n Kh i2

 !1=2
2
4

3
5; ð39Þ

sK
2 being the variance of hydraulic conductivity. In the case

of a small heterogeneity, equation (39) reduces to

Keff ¼ Kh i � s2
K

n Kh i : ð40Þ

According to Bulgadaev [2003], equation (40) was already

obtained by Landau and Lifshitz [1960] in the field of

electrodynamics. The solutions provided in (40) are subject

to serious restrictions. For instance, in the case of lognormal

hydraulic conductivity these reduce to

Keff ¼
KG

2
exp s2

Y=2

 �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

n
exp s2

Yð Þ � 1½ �
r )(

ð41aÞ

Keff ¼ KG exp s2
Y=2


 �
1� 1

n
exp s2

Y


 �
� 1

� ���
: ð41bÞ

Then, for two-dimensional flow, values of sY
2 larger than

0.4 would lead to imaginary values for Keff in (41a), while

sY
2 > 1.1 leads to negative values in (41b). Similar

restrictions apply in three dimensions. All these results

contradict the claim of Hristopulos and Christakos [1997]

that the solution is not restricted to moderate heterogeneity.

2.1.3.4. Renormalization Methods
[47] Noetinger [1994, 2000] used a renormalization

group method to develop the Keff value for a lognormal
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hydraulic conductivity field. The approach consists of

defining a cutoff value in Fourier space, L, and then finding

an analytical relationship between Keff(L + dL) and Keff(L).

By considering the limit of L which tends to zero, Noe-

tinger found out that (19) is an exact result, thus criticizing

the results of De Wit [1995] obtained by a perturbations

approach. Since De Wit’s correction is very small for the

usual range of sY
2 values found in practical applications, this

discrepancy between the two methods is very difficult to

assess and not completely significant.

2.1.3.5. Other Methods
[48] Madden [1976] modeled two-dimensional heteroge-

neous media as a random network and concluded that

the geometric mean can be used to predict conductivity of

heterogeneous mixtures of materials. His result is in

line with later findings that the geometric mean of locally

random hydraulic conductivities can be used, under

certain flow conditions, as representative of the overall

conductivity of the medium.

[49] An approach in principle similar to that of Noetinger

[1994] was presented by Teodorovich [1997, 2000]. Again,

the idea is to expand the inverse of an operator. While the

approach of Noetinger [1994] was in terms of perturbations,

Teodorovich [1997, 2000] wrote it in terms of a Feynman

path integral. This allows the author to work without

perturbations. In any case the results obtained by this

method are quite different from those reflected in the

literature. The final expression for Teodorovich [1997,

2000] in a three-dimensional isotropic medium is given by

Keff ¼ Kh i s2
K

Kh i2

 !
1� erf sY=2ð Þ½ �

" #�1

; ð42Þ

where erf( ) stands for error function. This solution is not in

agreement with solutions presented in section 2.1

(and validated numerically), thus questioning the applic-

ability of the method to the problem of finding effective

conductivities.

2.2. Anisotropic Media

[50] The limiting case for an anisotropic medium is that

of a perfectly stratified aquifer. When a head gradient is

imposed parallel to stratification, the total flow equals that

of a homogeneous medium with hydraulic conductivity KA

(arithmetic mean of point K values). Contrariwise, if flow is

perpendicular to stratification, the homogenous counterpart

for hydraulic conductivity would be KH. These results can

be traced back at least to Terzaghi and Peck [1948].

Invoking ergodic arguments, we can state that the effective

hydraulic conductivities for flow parallel or perpendicular to

stratification are hKi and hK�1i�1, respectively.
[51] We return now to fields where heterogeneity is not

deterministic. Let us consider a heterogeneous domain

where K(x, w) is taken as locally isotropic but statistically

anisotropic, meaning that a covariance structure exists and

is directionally dependent. Let l1, l2, and l3 be the

correlation scales in the principal directions of correlation.

If the global coordinate system (x1, x2, x3) is taken to

coincide with these principal directions, the effective con-

ductivity expressed in these coordinates will exist and will

be a diagonal tensor.

[52] To our knowledge, Gelhar and Axness [1983] were

the first to address the problem of effective conductivity in a

two-dimensional anisotropic infinite domain under mean

uniform flow conditions (actually they did it as the limiting

case l3 ! 1 in a three-dimensional problem). They found

that Keff is a diagonal tensor whose principal components

are given by

Keff ;i ¼ KG 1þ s2
Y

1

2
� lj

l1 þ l2

� �� �
; i; j ¼ 1; 2 and i 6¼ j:

ð43Þ

It is more convenient to write the solution to the effective

conductivity for the two-dimensional case in terms of the

anisotropy ratio of the correlation structure. If we define the

anisotropy ratio e = l2/l1(�1) and we further consider (43)

as the first terms of an exponential expansion, we can write

Keff ;1 ¼ KG exp
1

2
� e

1þ e

� �
s2
Y

� �
ð44aÞ

Keff ;2 ¼ KG exp
1

2
� 1

1þ e

� �
s2
Y

� �
: ð44bÞ

[53] In Figure 2, Keff,1 and Keff,2 are presented as a

function of e and sY
2 based on (44). The asymptotic limits

are well known. For e = 1 we get Keff,1 = Keff,2 = KG, thus

recovering (18) and (19). The other limiting case is that of

e ! 0, which is equivalent to a layered system and allows

recovering Keff,1 = hKi and Keff,2 = hK�1i�1. Other inter-
esting results that can be extracted from (44a) are that for

any given value of the anisotropic ratio, e, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Keff ;1 � Keff ;2

p
¼ KG ð45aÞ

Keff ;1

Keff ;2
¼ exp

1� e

eþ 1
s2
Y

� �
: ð45bÞ

[54] The last expression shows that the nonlinear rela-

tionship between the anisotropy ratios of the effective

hydraulic conductivity and that of the log conductivity

correlation scales [Sanchez-Vila and Carrera, 1997]. From

(45), and if one has information about e (coming from

geostatistical analysis of data or geological analogues) and

sY
2 and KG (coming from laboratory- or field-based data), it

would be possible (in principle) to evaluate the individual

directional effective parameters and assess the principle

directions of the effective conductivity tensor.

[55] Since Gelhar and Axness [1983] several authors

have considered the case of anisotropic correlation struc-

tures in three dimensions. The closed-form results were

RG3002 Sanchez-Vila et al.: REPRESENTATIVE HYDRAULIC CONDUCTIVITIES

10 of 46

RG3002



presented by Dagan [1989] for the case of an axisymmetric

covariance function, with l1 = l2 and e = l3/l1. The

corresponding result, relying on a perturbation expansion

truncated to second order in sY, is

Keff ;1¼ Keff ;2¼ KG 1þ c

2
s2
Y

� �
ð46aÞ

Keff ;3¼ KG 1þ 1

2
��

� �
s2
Y

� �
; ð46bÞ

with

c ¼ 1

1� e2
1� effiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

e2
� 1

r !
for e < 1:

ð47Þ

Expression (47) was provided by Dagan [1989] with a

different notation. Using again the argument that the terms

in (46) are the first terms in an exponential expansion, we

arrive at the following formulae:

Keff ;1¼ Keff ;2¼ KGexp
�

2
�2Y

� �
ð48aÞ

Keff ;3¼ KG exp
1

2
��

� �
�2Y

� �
ð48bÞ

so that

ffiffi
½

p
3�Keff ;1 � Keff ;2 � Keff ;3 ¼ KGexp

�2Y
6

� �
: ð49Þ

Notice that (49) does not depend on e. In the particular case

of isotropy (e ! 1), c ! 1/3 and

Keff ;1 ¼ Keff ;2 ¼ Keff ;3 ¼ KGexp
�2Y
6

� �
; ð50Þ

while for e!0, c = 1 and Keff,1 = Keff,2 = KA and Keff,3 =

KH. The result is illustrated in Figure 3, depicting (48a) and

(48b) as a function of sY
2 and e.

[56] The exponential expressions (48a) and (48b) were

challenged by Indelman and Abramovich [1994a]. They

first rewrote (46) in a more compact way:

Keff ;i¼ KG 1þ 1

2
�ai

� �
s2
Y

� �
i ¼ 1; 2; 3; ð51Þ

with a1 = a2 = (1 � c)/2 and a3 = c. Then they found the

fourth-order (in sY) term and wrote their final expression as

Keff ;i ¼ KG 1þ 1

2
� ai

� �
s2
Y þ 1

2

1

2
� ai

� �2

þgi

" #
s4
Y

( )
: ð52Þ

Therefore the fourth-order term in the exponential expan-

sion of (45a) and (45b) does not coincide with the term in

(52), except for the particular cases where gi = 0. The gi
terms were given by Indelman and Abramovich [1994a] and

De Wit [1995] as a sixth-order integral in Fourier space

(fourth-order in two dimensions), which they computed

numerically. The gi terms vanish for e = 0 or e = 1 and reach

a maximum value for e � 0.21. The actual value also

depends on the type of variogram selected (being highest for

the Gaussian variogram). Indelman and Abramovich

[1994a] and De Wit [1995] show that in two dimensions,

Figure 2. Dependence of horizontal and vertical effective conductivities, Keff,1 (44a) and Keff,2 (44b),
respectively, on the anisotropy ratio, e, and log conductivity variance, sY

2 .
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equation (44) is consistent with the fourth-order expansion.

Later Spector and Indelman [1998] provided a simplified

mathematical analysis to obtain the gi terms in two

dimensions by means of a simple integral. In particular,

denoting g = �g1 = g2, the function g = g(e) is provided in

Figure 4. These are key results since they allow recognizing

that Keff in anisotropic media depends not only on the

statistical parameters of log conductivity but also on the

actual shape of its correlation function.

[57] A simplified approach based on empirical arguments

was suggested by Ababou [1990]. His work is based on an

argument by Ababou and Wood [1990], who extended the

concept of power averaging for equivalent parameters (see

section 3) to ensemble power averaging. They presented a

generalized solution for effective values in terms of a p

norm in an isotropic medium:

Keff ¼ ½hKip�1=p: ð53Þ

[58] When the univariate distribution of K is lognormal,

the Keff value defined by (53) can be expressed in terms of

more commonly used averages quantities

Keff ¼ KG exp ps2
Y=2


 �
¼ KG KG=KHð Þp¼ KG KA=KGð Þp: ð54Þ

[59] From the definition of p norm (54), Ababou [1990]

conjectured an empirical value for the directional effective

conductivities in anisotropic media, which is given by

Keff ;i ¼ Kpih i½ �1=pi ; pi ¼ 1� 2

n

lH

li

; ð55Þ

where li is the correlation scale in the i direction and lH is

the harmonic average of the directional correlation scales;

that is,

lH ¼ 1

n

Xn

i¼1

l�1
i

 !�1

: ð56Þ

In the isotropic case, p = 1 � (2/n), and (55) coincides with

(19) in one, two, and three dimensions.

[60] In the case of two-dimensional anisotropy, (55)

coincides with (44). In three dimensions the self-consistent

approach in anisotropic media was used first by Poley

[1988] and then by Dagan [1989] by incorporating inclu-

Figure 3. Dependence of normalized effective conductivities Keff,1/KG = Keff,2/KG and Keff,3/KG

(equations (48a) and (48b)) on sY
2 and e.

Figure 4. Function gamma as a function of e in two
dimensions [from Spector and Indelman, 1998].
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sions of ellipsoidal shape in the homogenized medium.

Dagan [1989] provided closed-form solutions for the axi-

symmetric case:

Keff ;1 ¼ Keff ;2 ¼
1

2

Z1

0

p Kð Þ
K � Keff ;1


 �
c e*ð Þ þ 2Keff ;1

dK

2
4

3
5
�1

ð57aÞ

Keff ;3 ¼
Z1

0

p Kð Þ
K þ � e*ð Þ Keff ;3 � K


 � dK

2
4

3
5
�1

; ð57bÞ

where the expression for c is exactly that of (47), with e

replaced by e* = e(Keff,1/Keff,3)
1/2. This result is restricted to

e < 1. The same type of approach was used by Fokker

[2001] for obtaining solutions for some anisotropic two- and

three-dimensional settings.

[61] So far we have considered fields where K was

locally isotropic. Anisotropy can be caused not only by

the spatial structure of heterogeneity but also by the local

permeability (e.g., orientation of the grain fabric [van den

Berg and de Vries, 2003]). In this case both types of

anisotropy have to be superimposed. This is relevant when

we compare data obtained from the field to those from

samples that are taken to the laboratory and disturbed or

repacked. Under these circumstances, microscale anisotropy

is removed and is therefore not sampled in the laboratory

tests. Since local anisotropy could be relevant for (generally

reactive) solute transport process, this topic should be

further explored in future research.

2.3. Bounded Domains

[62] Neuman and Orr [1993] analyzed the existence and

properties of Keff in bounded domains, with different

boundary conditions. One of the most relevant points is

that in this case it is impossible to write a single value for

Keff that satisfies (4) at any given point in the domain. This

will also be the case in nonuniform flow conditions, as we

will see in section 4.

[63] The work of Neuman and Orr [1993] was expanded

by Paleologos [1994] and Paleologos et al. [1996] for the

particular case of a box-shaped domain where flow is driven

by two opposing constant head faces, while the remaining

boundaries are impervious. Paleologos et al. write the

resulting expression as

Keff ¼ KG exp
1

2
� D

� �
s2
Y

� �
; ð58Þ

where this expression applies for the mean flow direction.

The actual expressions for D in isotropic and anisotropic

domains is given by Paleologos et al. [1996]. In the general

anisotropic case, D is a location-dependent quantity

expressed as a triple integral that incorporates the three

directional correlation scales of Y and the size of the

domain. Figure 5 provides the effective hydraulic con-

ductivity at the midpoint in the box (the point located

farthest away from the boundaries) as a function of a

normalized boundary distance. It is clear that when the

Figure 5. Generalized normalized directional effective conductivity versus sY
2 as a function of the

domain size in an isotropic three-dimensional domain. In the perpendicular direction the domain is
unbounded. The term 2r is the ratio between the total domain size and the integral distance of hydraulic
conductivity [from Paleologos et al., 1996].
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domain is very large compared to the integral distance, the

effective conductivity equals that of the unbounded domain

(equation (19) or equations (48a) and (48b)). The result

would tend toward the arithmetic mean for a negligible size

of the domain.

[64] Equation (58) was used by Danquigny et al. [2004]

to calculate the equivalent hydraulic conductivity of a

heterogeneous medium reconstructed within a sand box.

They used ergodic arguments and compared their obtained

equivalent parameter with the effective value provided by

(58). Danquigny et al. found a very good agreement, thus

providing an empirical result to somehow validate the

expression of Paleologos et al. [1996]. The results of

Paleologos et al. [1996] are based on the simplification

that when the domain size changes, the first two statistical

moments of the K field remain constant.

[65] Tartakovsky et al. [2002] analyzed the existence of

pseudoeffective parameters and their tensorial properties in

a two-dimensional rectangular domain. The log conductiv-

ity field is Gaussian and exhibits an isotropic exponential

correlation. Flow is driven by a given head difference

between two constant head boundaries, with impervious

lateral boundaries. The authors started from the work of

Neuman and Orr [1993] and Guadagnini and Neuman

[1999a] and, under the assumption that mean head gradient

and the residual flux vary slowly in space, approximated the

latter as

r xð Þ � k xð Þr h xð Þh i; ð59Þ

where the tensor k is defined as

k xð Þ ¼ I� B xð Þ½ ��1
A xð Þ ð60Þ

A xð Þ ¼
Z

W

a y; xð Þdy; B xð Þ ¼
Z

W

d y; xð Þdy: ð61Þ

These definitions lead to the following expression for the

pseudoeffective conductivity:

Keff xð Þ ¼ Kh iI � k xð Þ: ð62Þ

Tartakovsky et al. then evaluated the tensor (62) by means

of a perturbation-based closure approximation. Their

analytical solution evidences that the off-diagonal terms

are much smaller than the diagonal ones in all cases

analyzed.

[66] An additional effect of boundaries is caused by the

possibility of considering random boundary conditions.

Oliver and Christakos [1996] found that assuming random

boundary conditions, the effective hydraulic conductivity

changes near the boundary and that this effect dissipates at a

distance between 2 and 4 times the integral scale depending

on the covariance function. Coupling this result with Figure

5, we can argue that the actual results of Paleologos et al.

[1996] are also applicable to random boundary conditions

whenever the term 2r (in Figure 5) is larger than 4.

[67] A very special case of three-dimensional bounded

domains is that of an aquifer that is infinite in the horizontal

directions, but not in the vertical, because of the presence of

impervious boundaries (top and/or bottom of the aquifer).

The first analysis was performed by Dagan [1989]. He

studied the effect of one impermeable boundary. The

approach is that of perturbations by using the method of

images to obtain the corresponding Green’s function. His

main conclusion is that the presence of an impervious

boundary has a very small effect on Keff except at points

located very close to the boundary.

[68] In some practical applications the variable of interest

is the total flow rate integrated along the vertical. In this

case it is common to introduce a parameter which is termed

transmissivity, T, which can also be modeled as an SRF. In

this context, Dykaar and Kitanidis [1993] evaluated two

possible (intuitive) estimators: (1) Keff times the aquifer

thickness and (2) an effective transmissivity within a three-

dimensional domain given by the geometric mean of the

vertically integrated K values. They found that both quan-

tities overestimate the Teff value obtained by numerical

simulations. Tartakovsky et al. [2000] found the actual

expression for Teff in terms of the statistical moments of

log conductivity, the vertical aquifer thickness, B, and the

vertical correlation scale, l3, of log conductivity:

Teff ¼ BKG 1þ 1� b

2
s2
Y

� �
ð63Þ

b ¼ l2
3

ffiffiffi
p

p
l�1
3 erf l�1

3


 �
þ exp �l�2

3


 �
� 1

� �
: ð64Þ

Here b(l3) is a monotonic increasing function, ranging

between b = 0 for l3 ! 0 and b = 1 for l3 !1, leading to

the limiting values Teff = BKA and Teff = BKG for l3 ! 0

and l3 ! 1, respectively. The result is depicted in Figure

6, which shows the dependence of Teff on sY
2 and l3.

2.4. Numerical Solutions: Monte Carlo Approach

[69] The Monte Carlo method is conceptually simple and

needs no particular assumptions. This method has been

widely used in the literature of effective parameters since

it allows assessing the accuracy of low-order approxima-

tions of the kind we explored in sections 2.1, 2.2, and 2.3

and analyzing general complex scenarios that are not

amenable to direct analytical solutions. In the Monte Carlo

method one starts by assuming that the multivariate prob-

ability distribution of the input variable, K(x, w), is fully

known. Equally likely hydraulic conductivity fields (termed

realizations) are synthetically generated. The flow equation

with appropriate boundary conditions is then solved for

each realization. Finally, statistics of model outputs are

computed. Specifically, it is possible to obtain numerically

both hqi and rhhi, so that an effective or pseudoeffective

hydraulic conductivity can be computed. On the other hand,

a key theoretical disadvantage of the Monte Carlo method is

that it does not allow us to rigorously prove the existence of

such parameters.
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[70] One of the critical points in a Monte Carlo analysis is

the generation of a large number of conditional realizations

of the input random field given the multivariate pdf of the

SRF. Several methods are now available in the geostatistical

literature. Without being exhaustive some of the existing

generation methods are the following: the turning bands

[Mantoglou and Wilson, 1982]; the nearest-neighbor method

[Smith and Freeze, 1979]; the matrix-decomposition method

[Clifton and Neuman, 1982]; the sequential simulation, both

for multi-Gaussian [Gómez-Hernández, 1991] and indicator

fields [Gómez-Hernández and Srivastava, 1990]; the prob-

ability field simulation [Froidevaux, 1993]; the truncated

Gaussian method [Matheron et al., 1987]; Boolean-type

methods [e.g., Jussel et al., 1994a] as well as other

structure-imitating methods [e.g., Koltermann and Gorelick,

1996; Deutsch and Tran, 2002]; simulated annealing

[Deutsch and Journel, 1992; Deutsch and Cockerham,

1994]; and process-imitating methods [see Koltermann

and Gorelick, 1996 for a review], as well as other genetic-

type methods [e.g., Webb and Anderson, 1996; Teles et al.,

2004].

[71] Freeze [1975] first applied the Monte Carlo method

in the context of one-dimensional flow to find the ensemble

head distribution, therefore being able to check numerically

the result for effective hydraulic conductivity. The first

simulations in two and three dimensions specifically

used to analyze effective conductivity values were carried

out by Smith and Freeze [1979] and Desbarats [1992],

respectively. It is important to stress that numerical simu-

lations are always carried out in finite domains. Despite

that, in many cases the results are analyzed as if

corresponding to infinite domains. This simplification holds

whenever the domain is very large with respect to the

corresponding directional integral scales of Y or K.

[72] There are many interesting applications of the Monte

Carlo approach to compute effective conductivity values.

Follin [1992] was able to confirm numerically the validity

of Keff = KG in a two-dimensional infinite domain up to at

least sY
2 = 16. Dykaar and Kitanidis [1992] were able to

confirm the three-dimensional expression for unbounded

domains given in (19) up to sY
2 = 6.

[73] In uncorrelated media, Shrestha and Loganathan

[1994] confirmed the results of Freeze [1975] for one-

dimensional steady state saturated flow. In anisotropic

media, Naff et al. [1998] tested the validity of (46a). They

found quite a good agreement between theory and the

numerical solution for sY
2 < 1. They also found that the

term in sY
4 was practically irrelevant, so that an approxi-

mation up to the order of sY
2 was sufficiently accurate for

the range of variances tested. Revelli and Ridolfi [2000]

applied the Monte Carlo method to find effective values in

unconfined aquifers and found that for increasing sY
2 values,

there is a very slight increase in the Keff value when the

nonlinearity associated with unconfinement is incorporated

into the numerical model. The Monte Carlo approach has

also been used to compute numerically effective conductiv-

ities in bimodal fields [e.g., McCarthy, 1990].

2.5. Transient Flow

[74] The initial works on transient flow were carried out

by Alonso and Krizek [1974] and Freeze [1975] in one-

dimensional flow to study the particular problem of con-

solidation. In those works, hydraulic conductivity was

considered random but with a negligible correlation dis-

tance. Dagan [1982] was the first author to incorporate

nonnegligible correlation distances in the analysis of tran-

sient flow. He analyzed both the cases of transient flow with

average head gradients slowly varying in time and periodic

flow. In the former case, and from a perturbations expansion

approach, an effective hydraulic conductivity Keff(t) can be

defined as a function of time, t. For short times, Keff is equal

to the arithmetic mean, KA, and relaxes gradually with time

Figure 6. Dependence of Teff/(BKG) (equation (63)) on sY
2 and l3.

RG3002 Sanchez-Vila et al.: REPRESENTATIVE HYDRAULIC CONDUCTIVITIES

15 of 46

RG3002



to the steady state value, Keff,ss. The actual solution for an

infinite domain can be written as

Keff tð Þ � Keff ;ss

KA � Keff ;ss
¼ b tð Þ ð65Þ

b tð Þ ¼ 1

s2
Y

Z
CY x� x0ð ÞG x; x0; tð Þdx0: ð66Þ

Function b(t) incorporates the covariance function of Y, CY

and the transient Green’s function. Dagan [1982] provided

the actual closed-form expression for (66) in the case of an

exponential covariance function:

b tð Þ ¼

exp t*ð Þerfc
ffiffiffiffi
t*

p� �
in one dimension

1�
ffiffiffiffiffiffiffi
pt*

p
exp t*ð Þerfc

ffiffiffiffi
t*

p
 �
in two dimensions

�2
ffiffiffiffiffiffiffiffiffi
t*=p

p
þ 1þ 2t*ð Þ exp t*ð Þerfc

ffiffiffiffi
t*

p
 �
in three dimensions

8
>>>><
>>>>:

t* ¼ KGt

Sh iI2Y
; ð67bÞ

where IY is the integral scale of Y and S is storativity, which

is also modeled as a correlated SRF. The relaxation time,

defined as the time where Keff(t) approaches its asymptotic

value, equivalent to that of the steady state case for the same

boundary conditions, is much larger for one-dimensional

flow than for two- and three-dimensional flows. Another

important point is that the correlation between log

conductivity and storativity does not influence the value of

Keff at the leading order. Further discussion about the

relaxation time values for these problems is given by Dagan

[1989]. El-Kadi and Brutsaert [1985] conducted numerical

Monte Carlo simulations of unsteady gravity drainage from a

large unconfined aquifer to analyze the applicability of

effective parameters under general nonuniform flow condi-

tions in heterogeneous aquifers. Their main result is to stress

the importance of properly accounting for boundary

conditions in the evaluation of transient effective parameters.

[75] Indelman [1996] derived expressions for the tran-

sient effective conductivity in the Fourier-Laplace space for

the case of unbounded domains of statistically homoge-

neous log conductivity and showed that the effective

conductivity is a local property of the medium in the

Fourier-Laplace space. This locality is lost when the gov-

erning equation is written in physical space, so that a

pseudoeffective conductivity does not exist in general. This

result calls into question the general applicability of (65).

[76] Tartakovsky and Neuman [1998a] use the residual

flux theory to obtain an approximation to second order (in

sY) for a transient effective conductivity that is nonlocal in

time but local in space:

q x; tð Þh i ¼ �KG 1þ s2
Y

2

� �
r h tð Þh i þ

Z t

0

k* x; t� tð Þr h tð Þh idt

ð68Þ

k� x; t� tð Þ ¼ K2
G

Z

V

CY x� x0ð Þrxrt
x0G x0; x; t� tð Þdx0: ð69Þ

To arrive at these expressions, the authors first localized the

exact average equations under the assumption that mean

flow and residual flux vary slowly in space and time and

then used perturbations. As in the work of Indelman [1996],

Tartakovsky and Neuman found that the transient effective

conductivity is local in Fourier-Laplace space. The solution

of Tartakovsky and Neuman [1998b] for infinite domain and

gradually varying flow coincides with that of Dagan [1982].

One of the advantages of their methodology is that it can be

used for bounded domains.

[77] One must not confuse transient effective conductiv-

ity values caused by the transient effects of head gradients

with the variability in the steady state values with time,

Keff,ss(t), because of other causes such as variation of the pdf

of K with time. One such example is provided by Whitaker

and Smart [1997] where effective conductivity is associated

with enhanced dissolution of carbonates and therefore

correlated with rainfall and evolving in time.

2.6. Nonstationary Conductivity Fields

[78] There are several possibilities for nonstationarity in

the SRF function, K(x, w). In this section we will address

three different topics. Nonstationarity may arise because of

the presence of space variations in mean conductivity. It

might also arise from a variogram displaying no sill

(unbounded variance). Finally, we will also address the

case where second-order moments are not sufficient to fully

characterize the random K field, i.e., when K processes are

not multi-Gaussian. We do not analyze here the case of

spatially variable variance and autocovariance functions,

which may emerge from conditioning the (log) conductivity

field to point measurements of K. This topic will be

discussed in section 5. Nonstationarity usually generates

nonuniform mean flow conditions, so we cannot generally

use the results presented so far.

2.6.1. Mean Conductivity Variable in Space
[79] This is another case where it is impossible to define

effective values, as, logically, they must depend on position.

Therefore we would talk here about pseudoeffective hy-

draulic conductivities which can be interpreted as parame-

ters derived by a localization of the exact (or approximated)

mean flow equations. Gelhar [1993] analyzed the case of

trending media by means of perturbation and spectral

analysis. For a three-dimensional isotropic case, with an

exponential correlation function and in the case of a trend

(in mean conductivity) only in the direction of the mean

gradient, he found the following compact expression:

Keff xð Þ ¼ KG 1þ s2
Y

6
þ s2

Y Alð Þ2
5

" #
; ð70Þ

valid for Al � 1. Here l is the (isotropic) correlation scale

of log conductivity, and A is a trend parameter, which is

considered to be small but finite and is interpreted as

proportional to a typical scale of nonuniformity in the mean

hydraulic gradient. The author then shows that use of the

spectral density function of log conductivity proposed by

ð67aÞ
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Mizell et al. [1982] leads to the following expression in the

case of two-dimensional media:

Keff xð Þ ¼ Kg 1þ 3

8

A

a

� �2

s2
Y

" #
;

A

a
� 1; a ¼ 1:045

le

;

ð71Þ

where le is the separation distance at which correlation

decreases to exp(�1). Equations (70) and (71) allow one to

observe that a trend in hydraulic conductivity will generally

produce an increase in the pseudoeffective conductivity

along the direction of the trend.

[80] Probably the first analysis of pseudoeffective hy-

draulic conductivity in the presence of a trending mean

hydraulic conductivity was performed by Loaiciga et al.

[1993]. They carry out a perturbations expansion to first

order in sY using the spectral method. With our notation

their expression for Keff in one-dimensional space can be

expressed as

Keff xð Þ ¼ exp m xð Þð Þ 1� s2
Y

blþ 1

� �
: ð72Þ

where m is the (deterministic) trend of hYi, which is a

function of x, and b = dm/dx (assuming m is a continuous

and differentiable function). In the equation it is specifically

noted that Keff is a function of location. Owing to the first-

order approximation this result does not provide the proper

solution, Keff = KG, for m = 0. Loaiciga et al. [1993]

provided an expression in integral form for Keff in three

dimensions. The main result is that Keff is necessarily

anisotropic. Later, Loaiciga et al. [1994, 1996] completed

the work by providing solutions for two and three

dimensions and found a solution of the type

Keff xð Þ ¼ exp m xð Þ½ � 1� s2
YF b; I; qð Þ

� �
; ð73Þ

where q is the angle between hydraulic gradient and the

direction of the trend.

[81] A second-order (in sY) perturbation expansion was

used by Rubin and Seong [1994] to find effective hydraulic

conductivity when the mean hydraulic gradient is either

parallel or perpendicular to the trend in mean log conduc-

tivity. They wrote their results in a compact expression

Keff xð Þ ¼ KG xð Þ 1þ s2
Y

1

2
� A

� �� �
; ð74Þ

where the actual expression for A is an integral in the

spectral space that depends on whether the direction of the

trend is parallel to the mean hydraulic gradient. In this case

their expression reduces to

A ¼ 1

2p

Zþ1

�1

r̂Y kð Þ k
4
1 þ k21k

2
2 þ �2k41

k4 þ �2k21
dk; ð75Þ

where k is a coordinate vector of components (k1, k2) in

Fourier space and r̂Y(k) is the Fourier transform of the

correlation function of the log conductivity. Alternatively,

when they are perpendicular,

A ¼ 1

2p

Zþ1

�1

r̂Y kð Þ k
4
1 þ k21k

2
2

k4 þ �2k22
dk: ð76Þ

This result is depicted in Figure 7, which shows (74) for

both cases (trend normal or parallel to the mean hydraulic

head gradient).

[82] Their work was extended by Indelman and Rubin

[1995, 1996], who provided a solution for any given angle

between trend and mean gradient in the case of a linear

trend in the mean log conductivity, i.e., K(x) = KG(x = 0)

exp(l � x + Y0(x)), which allows recovering the following

consistent second-order (in sY) expansion:

Keff ;ij xð Þ ¼ KG xð Þ dij þ s2
Y

1

2
dij � aij

� �� �
; i; j ¼ 1; 2ð Þ

ð77aÞ

aij ¼
1

2pð ÞD
Zþ1

�1

r̂Y kð Þ ki þ igið Þkj
k2 � 2ic � k

dk; g ¼ l � J
J2

J;

c ¼ 1=2l � g:

ð77bÞ

Here D is the number of space dimensions and i and J are

the imaginary unit and the mean head gradient, respectively.

[83] A different methodology for obtaining pseudoeffec-

tive parameters in a trending medium was proposed by Li

and McLaughlin [1995]. The methodology is an extension

of the spectral method to express a nonstationary stochastic

process as an integral in Fourier space in terms of random

Fourier increments. One advantage is that it allows incor-

porating any type of trend in mean K (not necessarily linear

or exponential) and also boundaries. Li and McLaughlin

applied the method to the case of infinite domain, expo-

nential trend, and mean gradient parallel to the trend and

recovered results which are similar to those of Indelman and

Rubin [1995].

2.6.2. Nonstationary Variogram
[84] Here we consider the effect of nonstationary behav-

ior described in terms of power law semivariogram or, in

other words, by conceptualizing the (log) hydraulic con-

ductivity as a self-affine fractal. We would rather not focus

either on the motivations leading to a multifractal represen-

tation of nature or on the underlying theory. An excellent

review of these topics has been recently provided by

Neuman and Di Federico [2003]. Our aim is to present

the implication of this conceptual framework on the

existence and actual expressions for the effective and

pseudoeffective hydraulic conductivity.

[85] Neuman [1994] analyzed the effect of the nonsta-

tionary structure of a random (log) permeability field on the

effective conductivity. He started from the premise that the

spatial heterogeneity of many geologic media can be

described by treating log conductivity as a multiscale

random field defined over a continuum, so that such a field

can be modeled by a power law semivariogram. Following
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Neuman [1990], he then noted that a log conductivity field

characterized by a semivariogram g(s) = A0 s
2H (where s is

distance, A0 is a constant, and H is the Hurst coefficient)

can be conceptualized as an infinite hierarchy of mutually

uncorrelated statistically homogeneous random fields with

exponential semivariograms (for H � 1/2). He then inves-

tigated theoretically the implications of such power law

behavior on the expression of the effective hydraulic con-

ductivity of a medium sample of finite size, L, under mean

uniform flow conditions,

Keff Lð Þ ¼ KG exp A0 L2H 1

2
� b

n

� �� �
; ð78Þ

where 0 � b � n, somehow describing the degree of

medium anisotropy. In essence, Neuman [1994] derived

(78) as an extension of the results for stationary anisotropic

random fields just by replacing the variance in those

expressions by A0 L
2H. From (78) it is clear that in isotropic

fields (b � 1) the effective conductivity should decrease

with L in one dimension, does not depend on L in two

dimensions, and increases with L in three dimensions.

[86] Beckie et al. [1994] studied the interaction between

subgrid and resolved scales when solving Darcy’s flow

regimes. They concluded that a nonlocal form of Darcy’s

law is a more appropriate descriptor of the medium behavior

when hydraulic conductivity is characterized by many

scales of variability. In this case they demonstrated numer-

ically that errors derived by the use of a local form of

Darcy’s law with an effective parameter are most relevant at

the smallest resolved scales of the model.

[87] Di Federico et al. [1999] adopted the conceptual

framework of Neuman [1994] and developed an expression

for the pseudoeffective (the authors refer to it as ‘‘effec-

tive’’) conductivity of a box-shaped porous medium. The

log conductivity field is modeled as a statistically aniso-

tropic fractional Brownian motion [e.g., Mandelbrot and

Van Ness, 1968]. The box is oriented parallel to the

principal coordinates of statistical anisotropy, and flow is

driven by two constant head boundaries between lateral no-

flow boundaries. Starting from (61), they derived the

following second-order expression

Keff x;H;llð Þ ¼ KG 1þ s2 H;llð Þ 1

2
� Dst x;Hð Þ

� �� �
; ð79Þ

where ll is a low-frequency cutoff, s2(H, ll) = A ll
2H/2H,

and the function Dst is given by equation (51) of Di

Federico et al. [1999]. A generalization of (79) to higher

order in s
2 is

Keff x;H;llð Þ ¼ KG exp s2 H;llð Þ 1

2
� Dst x;Hð Þ

� �� �
: ð80Þ

Figure 7. Normalized pseudoeffective hydraulic conductivity (equation (74)) for a trending medium.
The expected value of log conductivity, hY(x)i, depends on the space coordinate, x, as hY(x)i = m0 + a
x, where m0 and vector a = ai (i = 1, 2, .., n, n being space dimensionality) are constants. Space
coordinate and a are normalized with respect to the log conductivity integral scale. Adapted from Rubin
and Seong [1994].
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The result of Di Federico et al. [1999] offers a quite unique

perspective. First, it applies to a continuum of scales. Then,

it implies that the natural logarithm of Keff, Yeff, is given by

the sum of two components, respectively accounting for

unresolved fluctuations at scales larger and smaller than

those of a grid block represented by their investigated

domain. This suggests that (in principle) an effective

property can be interpreted as a random quantity, and Di

Federico et al. complemented (80) with expressions for the

variance-covariance of effective values. Neuman and Di

Federico [2003] then showed evidence that (1) averaging

(80) over the box yields lower and upper effective

conductivities independent of x and (2) the box-scale

effective conductivity for a superimposed multiscale

hierarchy of modes increases with the box size.

2.6.3. Non-multi-Gaussian Fields
[88] Most of the results presented so far are based on

statistical distributions of the conductivity field, which are

an extension of the normal or lognormal univariate distri-

bution to the multivariate one (multi-Gaussian or multilog-

Gaussian). The main advantage of this type of model is that

the first-order (mean) and the second-order (covariance

function) moments are enough to fully characterize the

spatial random function K. Journel and Deutsch [1993]

state that the multi-Gaussian model is a maximum entropy

model, i.e., a model that minimizes unwarranted structural

properties and maximizes spatial disorder. For this reason,

high conductivity values (or low conductivity ones) are least

connected using a multi-Gaussian model.

[89] As shown, for example, by Koltermann and Gorelick

[1996] or Teles et al. [2004], real geological structures are

seldom multi-Gaussian but rather present some connected

paths of high or low conductivity values that are relevant to

groundwater flow and solute transport. Sanchez-Vila et al.

[1996] showed the importance of connectivity of high K

values in groundwater flow, while Gómez-Hernández and

Wen [1998] showed the impact of the multivariate distribu-

tion choice on traveltime estimations. Connectivity issues

are also important in environmental applications such as

leachate evolution from landfill sites or seawater intrusion

[Nobes, 1996].

[90] Most of the studies in effective conductivity for non-

multi-Gaussian random fields have been carried out numer-

ically. Initial work was presented by Silliman and Wright

[1988], who focused on the possibility of having continuous

paths of high hydraulic conductivity values and studied how

this could affect groundwater flow in the subsurface.

Another relevant work is that of Jussel et al. [1994b]. They

created a numerical simulation using a Boolean approach to

simulate a highly heterogeneous gravel deposit mimicking

field-based observations. They obtained an effective con-

ductivity that was higher than the value that would corre-

spond to a multi-Gaussian field and associated this result

with numerical errors and not with the non-multi-Gaussian

nature of the field.

[91] As mentioned above, one of the effects of multi-

Gaussianity is that extreme values are poorly connected.

Sanchez-Vila et al. [1996] evaluated the effective hydraulic

conductivity of two-dimensional domains where this con-

nectivity between high K values was artificially enhanced.

They found a consistent deviation from (19), so that in all

cases analyzed Keff > KG in all directions. Similar results

were obtained by Zinn and Harvey [2003]. This result does

not contradict (19), as the latter equation was obtained

under some restrictive hypotheses upon the spatial laws

characterizing K(x, w) and K�1(x, w). These restrictions are

not necessarily met in non-multi-Gaussian log K fields.

[92] Pickup et al. [1994] and Pickup and Hern [2002]

studied, again numerically, effective hydraulic conductivity

in a two-dimensional model of cross-bedded sandstones

derived from pictures coming from outcrops. They found

different values for the Keff tensor depending upon whether

laminae display a low or a high angle and whether spacing

between laminae is wide or not. They found that close

spacing led to lower Keff,ij values and that the off-diagonal

term in the tensor was comparable to the smallest principal

Keff,j value.

[93] Away to overcome the problem of finding analytical

effective values in non-multi-Gaussian fields was carried

out by Poeter and Townsend [1994]. They studied a two-

dimensional section of a braided fluvial aquifer with en-

hanced connectivity. They started by finding the paths with

the highest percent of high hydraulic conductivity hydrof-

acies and obtained an analytical approximation of the

effective conductivity by computing the harmonic average

of the conductivities along those paths.

2.7. Bimodal Fields

[94] A bimodal distribution models the medium as if it

were composed of two different populations, with propor-

tions p1 and p2 = 1� p1, respectively. This would be the case

whenever we can find low-conductivity inclusions in an

otherwise transmissive field (silt-clay deposits in a sandy

aquifer) or the opposite (sand lenses embedded in clayey-

silty deposits). Within each population, K can be either

homogeneous or heterogeneous. The initial studies on this

tropic were performed by Desbarats [1987] in sand-shale

aquifers and using a numerical approach. His key finding was

that the effective hydraulic conductivity is a function of the

shale volume fraction, the spatial covariance structure, and

the dimensionality of the flow system. In the case of isotropic

hydraulic conductivity his results coincide with those

obtained by Dagan [1979] using a self-consistent approach.

[95] Numerical approaches to the problem can be subdi-

vided respective to the actual goal. One approach is to find

rule-of-thumb solutions for effective conductivity based on

numerical results [McCarthy, 1991]. For example,Desbarats

and Srivastava [1991] found that geometric averaging

worked very well in their particular problem. Another

possibility is to export results based on small perturbations.

This was the approach taken by Rubin [1995], who provided

a closed-form solution for the isotropic case,

Keff ¼ exp m1p1 þm2p2ð Þ

� 1þ p1s
2
1 þ p2s

2
2 þ p1p2 m1 �m2ð Þ2

6

 !
; ð81Þ
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where mi and si
2 are the mean and variance of the log

conductivity subset i (i = 1, 2), respectively. This result was

questioned by Rubin because in a bimodal medium the

global sY
2 value can be quite high. By means of comparison

with numerical simulation performed by Desbarats [1990],

Rubin [1995] found that the result obtained by a self-

consistent approach is much closer to the numerical solution

than (81). Assuming no variability within the facies, i.e., s1
2 =

s2
2 = 0, the self-consistent approach leads to the following

solution

Keff ¼
1

3

p1

K1 þ Keff

þ p2

K2 þ Keff

� �
: ð82Þ

[96] Analytical solutions based again on a self-consistent

approach for the particular case of ellipsoidal inclusions in

an otherwise homogeneous medium were presented by

Pozdniakov and Tsang [2004]. They provided a suite of

analytical solutions depending on the dimensionality of the

problem and whether the orientation of the ellipsoids is

fixed or random. Simple cases lead to closed-form solu-

tions. As an example, for parallel flow conditions and

inclusions (facies 1) elongated and highly conductive, the

effective conductivity in the direction of the inclusions is

given as the solution of

�bKeff þ e �p2
bK1 � p1

h i ffiffiffiffiffiffiffiffi
bKeff

q
þ ebK1ffiffiffiffiffiffiffiffi

bKeff

q þ 1þ p1
bK1 � 1
� �

¼ 0;

ð83Þ

where bKeff = Keff/K2, bK1 = K1/K2, and e is the ellipsoid

aspect ratio (�1). The value in the perpendicular direction is

Keff = K2, provided that bK1 is very large.

[97] Jankovic et al. [2003] used a self-consistent ap-

proach in a medium composed of a large number of

spherical inclusions of different K values drawn from a

lognormal distribution embedded in a matrix of conductiv-

ity K0. The volume of the inclusions is fixed. This field can

be considered as a bimodal distribution where one of the

two populations (the matrix) has a Dirac delta pdf. In this

medium, Keff is obtained as the solution of the following

equation:

Z1

0

Keff � K

Keff þ K=2
p Kð ÞdK ¼ 0; ð84Þ

which is actually equivalent to (38).

[98] Another possibility is to derive empirical rules for

the Keff values based on extension of the solution for a

single inclusion and then test them numerically [Knudby,

2004]. For high permeable inclusions, Knudby arrived at a

compact expression,

K�1
eff ¼ K�1

A � K�1
H


 � p1 � p�1
1 1� Lnð Þ2

p1 � p�1
1

þ K�1
H ; ð85Þ

where Ln is an average normalized distance between the

inclusions in the direction of mean flow. Equation (85) was

assumed by Knudby [2004] to be an extension of the

formula presented by Bumgardner [1990] for a single

inclusion.

2.8. Media Composed by Multiple Materials

[99] Although one can find several examples of hydro-

geologic models based on the description of geological

features and several approaches have emerged to deal with

highly heterogeneous natural formations composed of mul-

tiple geological facies (for reviews see Koltermann and

Gorelick [1996] and Winter et al. [2003, and references

therein]), there are only a few applications of these concepts

for determining effective or pseudoeffective properties in

such media.

[100] As discussed by Winter et al. [2003], there are

different conceptual models which can be used to represent

media with multiple materials. Composite media models,

which are typically nonstationary, can be used when a

sufficient amount of data is available. In essence, a com-

posite medium model conceptualizes the porous formation

as a doubly stochastic process where randomness is due to

both (1) the random geometry of blocks of different

materials (or facies) and (2) the distribution of properties

such as hydraulic conductivity within each facies.

[101] One group of composite media models corresponds

to homogeneous media with randomly located spherical

inclusions. Here the geometry of facies is unknown while

properties of materials are deterministic. Early studies of

effective properties in such media were carried out by

Batchelor [1974]. Later Begg and coworkers [e.g., Begg

and King, 1985; Begg et al., 1985] analyzed the effect of

inclusions of an arbitrary shape.

[102] Shvidler [1986, 1988] treated a composite medium

as a dual continuum, thus modeling the system by contin-

uum superimposition of the different phases, and derived

formal expressions for effective conductivity of a random

composite [Shvidler, 1986] and a periodic medium [Shvi-

dler, 1988]. The particular case of steady state and transient

saturated flow in a confined aquifer where the hydraulic

conductivity is arranged into a set of doubly periodic

‘‘black’’ and ‘‘white’’ rectangles, corresponding to two

completely different materials, was studied analytically by

Kacimov et al. [1999]. They calculated the effective con-

ductivity of the medium and showed it to be an anisotropic

tensor.

[103] Bertin et al. [2000] studied the case of inclusions of

low permeability placed in a high-permeability matrix by

means of a double-porosity model. They decompose the

domain into two subdomains and show analytically that

flow through the inclusions can be decomposed into two

different regimes corresponding to source flow (not con-

tributing to effective conductivity) and translation flow

(contributing to Keff). Then, temporal variations in the flow

regime translate differently into the two subdomains, lead-

ing to variations in Keff(t). Bertin et al. defined different

relaxation times for each subdomain.

[104] Tartakovsky and Guadagnini [2004] used random

domain decomposition [Winter and Tartakovsky, 2000] to
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derive and analyze the pseudoeffective conductivity of

geologic media composed of several materials with uncer-

tain geometries and conductivities. Tartakovsky and Gua-

dagnini provided an analytical solution for Keff for the

special case of one-dimensional steady state flow in a

bounded domain in the absence of sources. The porous

medium is composed of two materials that are separated by

a (randomly located) contact point; hydraulic conductivity

within each material forms a stationary random process.

Upon considering the location, b, of the point of contact

between the two materials as a truncated Gaussian variable

with mean hbi and standard deviation sb the pseudoeffec-

tive conductivity of the random composite medium

becomes

Keff
�1 xð Þ ¼ erf uð Þ � erf u0ð Þ

erf u1ð Þ � erf u0ð Þ
1

Kh1

� 1

Kh2

� �
þ 1

Kh1

; ð86Þ

where

u ¼ x� hbiffiffiffi
2

p
sb

 !
; u0 ¼ � hbiffiffiffi

2
p

sb

; u1 ¼
1� hbiffiffiffi

2
p

sb

; ð87Þ

and Khi = KGi exp(�sYi

2/2), where i = 1, 2, are the

harmonic means of Ki(x). These expressions reveal that

Keff(x) = Khi, when x is deep within material i, in

accordance with the classical results of Dagan [1989]. If

the geometry is deterministic (sb = 0), Keff(x) becomes a

step function.

[105] A different approach has been undertaken by Lu

and Zhang [2002], who described a medium composed of a

multiplicity of materials by means of a multimodal spatial

variability according to which a number of mutually exclu-

sive materials (or categories) fill space. The spatial distri-

bution of categories, each of which represents a geologic

facies, has its own architecture, described by indicator

random variables. Their main result is that a bimodal log

conductivity field may be well approximated by an equiv-

alent unimodal field when one of the two materials is

dominant. Although Lu and Zhang did not explicitly rec-

ognize it, it can then be argued that in this case one can

employ classical solutions for effective parameters in two-

dimensional unimodal formations. Contrariwise, when the

bimodal distribution has two more or less equally important

modes, it cannot be adequately represented by an equivalent

unimodal distribution. We also note that Neuman [2003] has

demonstrated that the multiscale model of Di Federico and

Neuman [1997] and Di Federico et al. [1999] is consistent

with the type of multimodal representation of Lu and Zhang

[2002].

3. MEAN PARALLEL FLOW: EQUIVALENT
PARAMETERS

[106] One of the questions arising in groundwater flow

problems is how to treat heterogeneity in aquifer models.

For this purpose it is important to find equivalent parame-

ters, i.e., parameters capable of reproducing some average

behavior for any volume of the discretized system at a

certain scale. A representative scale of this volume does not

necessarily need to coincide with that at which we have

obtained our measurements (data support). Equivalent

parameters are associated with a particular geometry and

boundary conditions and are defined as spatial averages

computed within a single realization of the (otherwise

random) process. The problem of finding equivalent param-

eters is termed upscaling [Wen and Gómez-Hernández,

1996], because it involves increasing the size of the domain

over which the parameters are defined. A review of upscal-

ing methods is given by Cushman et al. [2002] and Farmer

[2002]. The latter classified upscaling methods in terms of

the relationship between length scales of heterogeneity and

upscaling grid. Here we focus less on the methods and

present only the results related to equivalent parameters,

some of which were already included in the review by

Renard and de Marsily [1997].

3.1. Block Averaging

[107] The literature in equivalent (block) parameters is

quite recent. Rubin and Gómez-Hernández [1990] provided

the pioneering paper on the topic of block conductivity in

two-dimensional flow and square numerical blocks. They

defined block conductivity (in this section we use Kb or Keq

interchangeably to denote equivalent hydraulic conductivi-

ty) as the ratio between the average local flow and the

average gradient in a given block, both of which are

computed along the direction of the expected head gradient

value. The mathematical definition of Kb, which is assumed

to have tensorial properties, is

q ¼ �Kbrh:

The above equation has already been presented here as (5).

The over bar indicates averaging in the spatial sense, as

defined in (6).

[108] Gómez-Hernández [1991] developed a methodolo-

gy to obtain all the components of the tensor in (5) for a

two-dimensional case; this methodology consists of two

steps: (1) computing the flow for different boundary con-

ditions generating variations in the mean flow direction and

(2) using least squares to find the optimal values of Kb,xx,

Kb,yy, and Kb,xy. An alternative approach is to project

average flow vector and head gradient over a given direc-

tion d. By multiplying both sides of (5) by d, one can define

the directional equivalent conductivity Kb as the scalar

value that satisfies

Kb ¼ �

Z

V

q � d dV
Z

V

rh � d dV
: ð88Þ

[109] In general, we would have to rely on numerical

solutions to obtain Kb. As an example, Figure 8 depicts a

sketch of the method. If we were able to solve the flow

problem for a very refined mesh (Figure 8a), then a block

could be isolated (Figure 8b) where we would know the

heads and flows along the boundaries. The Kb value in a

given direction, let us say the x direction, would be obtained
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by setting d = (1, 0) in (88). The two quantities involved in

(88) would then be [Sanchez-Vila et al., 1995]

Z

V

q � d dV ¼Q1 þ Q2

2
Lx þ

Q3 � Q4

2
xG3 � xG4ð Þ þ Q3 þ Q4ð Þ

� xG3 þ xG4

2
� x1 þ x2

2

� �
ð89Þ

Z

V

rh � d dV ¼
Z

G

h d � n dG�
Z

V

hr � ddV ¼ H2 � H1


 �
Ly;

ð90Þ
where Qi is the flow rate across the ith boundary and xGi is

the center of gravity of the fluxes at the boundary. In mildly

heterogeneous aquifers, and also when the blocks are very

large compared to the integral scale, the first term in the

right-hand side of (89) is the dominant one. Under this

situation the actual solution can be obtained by using

simpler boundary conditions, such as those specified in

Figure 8c, which guarantee Q3 = Q4 = 0. We stress the point

that these are the boundary conditions imposed in most of

the numerical studies of equivalent conductivities in the

literature, regardless of this limitation.

[110] By using a perturbation approach, Rubin and

Gómez-Hernández [1990] derived a general expression for

Kb(x) from (88),

Kb xð Þ ¼ KG 1þ Y0 xð Þ þ 1

2
Y02 xð Þ þ 1

J1h i Y0 xð Þj01 xð Þ � Y0 xð Þ j01 xð Þ
� �� �

;

ð91Þ

where hJ1i is the ensemble mean (uniform) gradient and

j01(x) is the residual of the head gradient, j1, caused by

aquifer heterogeneity at a given point x. With such a

definition, Kb(x) is an SRF, characterized by its mean,
hKbi, and variance, sKb

2,

Kbh i ¼ KG 1þ s2
Y

2
þ 1

J1h i CYj1
0ð Þ � CYj1


 �� �
ð92Þ

s2
Kb

¼ K2
GCY; ð93Þ

where CYj1
(x � x

0) is the cross covariance of Y and j1 and

CYj1 ¼
1

V2

Z

V

Z

V

CYj1 x� x0ð Þ dxdx0

CY ¼ 1

V2

Z

V

Z

V

CY x� x0ð Þ dxdx0:
ð94Þ

[111] Gómez-Hernández [1991] expanded this work to

simulate directly block conductivity values conditioned

upon measurements at the local scale. A further extension

allows providing the moments of the natural logarithm of

the block conductivity, Yb(x) = ln Kb(x), as [Sanchez-Vila et

al., 1995]

Yb xð Þ ¼ ln KG þ Y0 xð Þ þ 1

2
Y0 2 xð Þ þ 1

J1h i

� Y0 xð Þj01 xð Þ � Y0 xð Þ j01 xð Þ
� �

� 1

2
Y0 xð Þ
� �2

; ð95Þ

Ybh i ¼ Yh i þ s2
Y � CY

2
þ 1

J1h i CYj1 0ð Þ � CYj1


 �
; ð96Þ

s2
Yb

¼ CY: ð97Þ

Figure 8. Derivation of block conductivities: (a) refined mesh, (b) isolated block, and (c) simple
boundary conditions. The approaches of Rubin and Gómez-Hernández [1990] and of Indelman and
Dagan [1993b] are based on studying the block in Figure 8b under the same conditions of the regional
flow domain (Figure 8a). The Darcian approach is based on applying the boundary condition indicated in
Figure 8c.
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[112] These analytical results can be further simplified

when the correlation function of Y is isotropic and the

blocks are either squares (in two dimensions) or cubes (in

three dimensions). Under these simplifying conditions,

Ybh i ¼ Yh i þ 1

2
� 1

n

� �
1� að Þ s2

Y ð98Þ

s2
Yb

¼ as2
Y; ð99Þ

where a depends on the normalized block size (with respect

to the integral distance) and the variogram model, as

illustrated in Figure 9.

[113] A complete analysis of a three-dimensional block

conductivity tensor was performed by Zijl and Stam [1992]

for a thin grid block using a perturbations expansion. Their

main result was that the zero-order term is symmetric and

positive definite, with principal components equal to the

arithmetic and harmonic depth averages of the local con-

ductivities along the horizontal and vertical directions,

respectively. The first-order correction (to be superimposed

to this zero-order term) is, in general, a nonsymmetric

tensor, and so principal directions do not exist. Stam and

Zijl [1992] further provided guidelines to discern situations

where higher-order terms can be neglected.

[114] Equivalent conductivity is extremely influenced by

boundary conditions. Wessel-Berg and Bergmo [2002] de-

rived analytical expressions for Kb in the case of a block

where part of the boundary is impervious and flow only

takes place through a few gaps.

3.2. Bounds and Combinations

[115] The most restrictive bounds to equivalent conduc-

tivities descend from an extension of equation (8):

KH � Keq;ii � KA i ¼ 1; 2; 3ð Þ: ð100Þ

This implies that the equivalent value for any direction is

bounded between the harmonic and the arithmetic mean of

the local K values within the block. The difference between

this equation and (8) is that now averages are taken in the

physical rather than in the probability space. These bounds

are quite restrictive, and a number of authors have attempted

to find less restrictive bounds. A comprehensive summary

of the different bounds available in the literature is given by

Renard and de Marsily [1997].

[116] A combination of the limits of (100) can be used to

obtain a back-of-the-envelope calculation of Keq in a given

block. The idea is based on an extension of Matheron’s

equation (20a) to the real space, thus writing

Keq ¼ K
n�1
n

A K
1
n

H: ð101Þ

[117] While this equation is formally equal to (20a), the

conceptual difference is, again, that averages are now taken

within the block. On the basis of the idea of flow parallel or

perpendicular to layering, Cardwell and Parsons [1945]

derived improved bounds for Keq by progressively averag-

ing along the three coordinate directions within a block

composed by N � N � N elements,

1

N2

X

m

X

n

NP
l

1
Klmn

¼ Kmin � Keq � Kmax ¼ N
X

l

N2

P
m

P
n

Klmn

2
4

3
5
�1

;

ð102Þ

where l, m, and n stand for the block numbering in the x1,

x2, and x3 directions, respectively. The left-hand-side

member of (102) corresponds to the arithmetic average

along x2 and x3 of the harmonic average along x1. The right-

hand-side term is the harmonic average along x1 of the

arithmetic averages along x2 and x3.

[118] As these bounds are narrower than those provided

by (100), averaging them could be a good approximation

for Keq in certain cases. This idea was suggested by

Guérillot et al. [1990], who proposed using a simple

combination of the Kmin and Kmax values defined in (102)

for Keq

Keq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmin � Kmax

p
: ð103Þ

Extensions of the Carwell-Parsons-Guérillot methodology

to account for rather different bounds and combinations of

these were presented by Romeu [1994].

3.3. Power Averaging

[119] Since the work of Journel et al. [1986] many

authors have used a combined analytical-numerical method

to estimate equivalent parameters based on a power-aver-

aging formula. Gómez-Hernández and Gorelick [1989]

present the discrete version of a spatial average p norm as

Figure 9. Parameter a (defined in (99)) as a function of
normalized block size and correlation model [from Sanchez-
Vila et al., 1995].
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an estimator of Kb for very large blocks (large enough so

that the equivalent value can also be viewed as a pseudoef-

fective value) according to

Kb ¼
1

N

XN

i¼1

K
p
i

" #1=p
ð104Þ

[120] The immediate extension of (104) to derive block

conductivity values was presented by Desbarats [1992] by

defining

Kb ¼
1

V

Z

V

K xð ÞpdV
� �1=p

ð105Þ

and further providing the statistics of Yb as

Ybh i ¼ lnKG þ p

2
s2
Y � CY


 �
ð106Þ

s2
Yb

¼ CY: ð107Þ

[121] Simple average values can be derived directly from

(105). When p = 1, 0, and �1, we would obtain Kb = KA,

KG, and KH, respectively. These are exact results for some

particular cases (e.g., for a perfectly stratified block) but can

be used as fast simple values to obtain adequate results in

real examples when only a rough approximation is needed

[e.g., Phillips and Belitz, 1991]. Sarris and Paleologos

[2004] suggested a directional p value for the directional

equivalent value in anisotropic fields. They found that the

p1 value (in the direction of flow) that best fit their

numerical results is given as a bilinear relationship in terms

of the anisotropy ratio, e, and normalized block size.

[122] An important point to stress is that this type of

averaging procedure relies on an a priori knowledge of the

different averages. These are generally estimated from

available data, and therefore estimation errors can cause

relevant bias of the averaged values. An example is the

work of Jensen [1991], who analyzed several alternative

methods of estimating the geometric mean of the point K

values by properly weighting the extreme values.

[123] An alternative use of power-averaged upscaled

values is proposed by Desbarats and Bachu [1994]. They

presented a real case where local transmissivity values

obtained directly from vertical averaging over the aquifer

depth, B, of local hydraulic conductivity values clearly

overestimate the transmissivity values needed to fit their

data. They proposed the following definition for upscaled

transmissivity, Tb, obtained empirically:

T xð Þ ¼ BKB xð Þ; KB xð Þ ¼ 1

B

Z B

0

Kp xð Þdx
� �1=p

: ð108Þ

3.4. Numerical ad hoc Methods

[124] Fenton and Griffiths [1993] adopted a numerical

Monte Carlo approach to study block conductivity statistics

within a bounded rectangular domain. They concluded that

the block conductivity was reasonably modeled by a log-

normal distribution and that its mean and variance were

closely approximated by using the statistics of local aver-

ages conductivities. Thus they confirmed numerically the

validity of (98) and (99) in two dimensions.

[125] In cross-bedded sediments the core-scale anisotrop-

ic nature can influence the components of the three-dimen-

sional Kb tensor so that its off-diagonal terms cannot be

neglected in general [Bierkens and Weerts, 1994; Pickup et

al., 1994]. An accurate, though highly intensive, computa-

tional method for upscaling is that developed by Chen et al.

[2003]. It is based on a coupled local-global upscaling

approach that employs global coarse-scale simulations to

determine the boundary conditions for the fine-scale eval-

uation of Kb within an iterative process.

[126] Most of the analyses already presented deal with

blocks that are considered as rectangles or parallelepipeds.

An exception is offered by He et al. [2002], who introduced

an approach for the calculation of the Kb values in a general

quadrilateral grid cell. The method consists of triangulating

the cell so that the internal heterogeneity is accurately

resolved and then solving flow within the block numerically.

[127] Numerical upscaling has the disadvantage of select-

ing a priori the shape and size of the blocks. Sometimes this

results in inconsistencies at the boundaries, as blocks do not

adapt properly to some particular features. This problem can

by avoided by selective gridding, where the grid is not

defined a priori but rather is obtained by an iterative

procedure [Wen and Gómez-Hernández, 1998]. The geom-

etry of the coarse grid is built in order to have minimum

variances of flow velocities within the coarse blocks.

Selective upscaling is capable of handling complex geolog-

ical formations and flow patterns and provides a full

equivalent hydraulic conductivity tensor for each block.

These ideas were then extended by Wen et al. [2003],

who presented a numerical method based on the concept

of border regions (defined as a group of fine-scale cells

surrounding the coarse block).

[128] Numerical approaches for obtaining equivalent con-

ductivity values have several advantages. One of them is

their possibility of handling sensitivity analysis to different

conditions. As an example, Flodin et al. [2004] analyzed the

impact of several different local boundary conditions (con-

stant head, no flow, periodic, and mirror periodic) on the

calculated equivalent permeability values.

[129] A general combined analytical-numerical method is

that of homogenization. This method assumes that the

spatial function K(x) is periodic, with a periodicity cell,

W, which is much smaller that the aquifer size. The

differential equations are then solved with periodic bound-

ary conditions. This formulation was used by Dykaar and

Kitanidis [1992] and Lough et al. [1997] to obtain upscaled

values on a coarse grid. By using a homogenization method,

a number of authors have provided upper and lower bounds

for the principal values of Kb [Rubinstein and Torquato,

1989; Trykozko and Zijl, 2002; Telega and Bielski, 2003]. A

comprehensive summary of homogenization methods and
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variational principles applied to obtaining bounds for Kb

was given by Torquato [2002]. The errors in the homoge-

nization upscaling associated with the boundary conditions

and the size of the blocks were analyzed by Wu et al.

[2002].

[130] Another approach is based on wavelet theory. The

function Y(x) is treated as a noise signal, and wavelet theory

is used to filter out the higher frequencies (denoising

process), leading to a representation at the coarse scale

[Panda et al., 2000]. The final result depends on the wavelet

functions selected. As an example, Nilsen and Espedal

[1996] used a simple piecewise bilinear function, thus

producing a highly competitive algorithm, in terms of

computational speed.

3.5. Renormalization

[131] A highly efficient numerical method for obtaining

equivalent conductivities is that of renormalization [Le

Loc’h, 1987; King, 1988]. The method consists of upscaling

progressively, so that in each iteration a group of four

elements (in two dimensions), arranged as in a 2 � 2 mesh,

is replaced by a single upscaled value. This is done for the

full domain, so that the net result is a new mesh where the

elements have a double size in each direction, and the total

number of elements is a quarter of the initial value. If more

upscaling is needed, a new iteration of the process is

performed. The main point is to find the upscaled value

for the individual 2 � 2 (in two dimensions) or 2 � 2 � 2

(in three dimensions) elements. This is generally done

numerically. One should notice that in this type of config-

uration the selection of the numerical method is a crucial

step, as finite differences and finite elements could provide

quite different results. Another relevant aspect is related to

the boundary conditions used in the evaluation of the

upscaled value. Usually, simple Dirichlet and Neumann

boundaries are used in the evaluation. Alternative boundary

conditions consist of applying periodic boundary conditions

to the block, forcing mean flow in two different directions,

in order to obtain the full Kb symmetric tensor, as suggested

by Gautier and Noetinger [1997].

[132] A very good summary of the methodology of

renormalization and some results were presented at about

the same time by Renard and de Marsily [1997] and

Gautier and Noetinger [1997]. One of the advantages of

renormalization is its ability to capture high-permeability

well-connected paths. Nevertheless, when upscaling is per-

formed over very large blocks, a large degree of regulari-

zation is included in the problem, and the local details are

smoothed out rapidly [Tegnander and Gimse, 1998].

Renormalization is used to directly obtain estimates of the

uncertainty associated with the equivalent coarse grid

[Hastings and Muggeridge, 2001].

[133] A variation of the method was presented by Renard

et al. [2000]. The new method is called simplified renorm-

alization and consists of successive grouping of meshes of

size 2 � 1 (2 � 1 � 1 in three dimensions). Depending on

their relative disposition with respect to the mean flow

direction, each group of two elements is replaced by a

single value that is either the arithmetic or the harmonic

mean (depending on whether the two elements are placed in

parallel or in series with respect to the mean flow direction).

At each iteration the order of the grouping is changed.

Depending on the disposition used in the first iteration, a

different equivalent parameter value is obtained in a pre-

specified block. All possibilities are tested, and the final Kb

is provided as an average of the individual upscaled values.

3.6. Energy Dissipation Methods

[134] Indelman and Dagan [1993b, 1993c], and at about

the same time Bøe [1994], developed a method for upscal-

ing based on the concept of energy dissipation. They define

Kb as the tensor that maintains energy dissipation, E, within

a block. Energy dissipation is defined as the rate of

dissipation of mechanical energy per unit weight of fluid

and is a stochastic process locally defined as

E xð Þ ¼ rThKrh; ð109Þ

where the superscript T indicates transpose. The concept of

energy dissipation is very attractive, as it displays several

convenient properties: first, its positive definiteness and

additivity, and second, whenever energy dissipation is

conserved within each block, global conservation of energy

is insured. Hersvik and Espedal [1998] concluded that if

and only if this condition is preserved, then the mean

velocity in the full domain is also conserved.

[135] Exact upscaled values would then stem from the

following equality that should be applied to each given

block in the coarse discretization

rThKrh ¼ rTehKbreh: ð110Þ

Here eh is the head computed at the coarse scale. A proper

application of the method would require the solution of the

fine-scale problem. Therefore it is necessary to cast the

problem in statistical form and derive statistics for Kb. In

isotropic domains with regular size blocks, Indelman and

Dagan [1993a] find

Kb;G ¼ KG 1þ 1

2
� 1

n

� �
s2
Y

� �*
1þ 1

2
� 1

n

� �
s2
Yb

� �
ð111Þ

s2
Yb

¼ 1

W
2

Z
H rð ÞCY rð Þdr: ð112Þ

Here Kb,G is the geometric mean of the Kb values, and H(r)

is defined as the joint area of overlap of two elements of the

partition W whose centers are located at a distance r. In the

case of an axisymmetric partition the expression becomes

[Indelman and Dagan, 1993c]

Kb;ii ¼ ~KG;ii exp Y0
b


 �
ð113Þ

Y0
b xð Þ ¼ 1

W

Z

W

Y0 xþ x0ð Þdx0; ð114Þ
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and ~KG,ii are the upscaled hydraulic conductivity geometric

means. The latter is an expression that involves KG, the

dimensionality of the problem, sY
2 , sYb

2, and a number of

integrals in Fourier space. This upscaling methodology was

successfully used by Bierkens [1996] to analyze a complex

confining layer at various spatial scales.

3.7. Other Methods

[136] A simple and fast upscaling method was presented

by Aasum et al. [1993]. The idea is to subdivide the block

into four equally sized subblocks. In each subblock the full

tensor is obtained by, first, finding the principal directions

through a simple search system and then obtaining the

principal values of the tensor by a combination of arithmetic

and harmonic means. Then, an analytical method is used to

obtain the full block tensor, based on an extension of the

method presented by Kasap and Lake [1990] for two

adjacent blocks.

[137] The pseudoempirical approach of Pozdniakov and

Tsang [1999] is conducive to the following expressions for

the statistics of Kb:

Kb;G ¼ KG exp s2
Y

1

2
� gs

� �� �
ð115Þ

s2
Yb

¼ Vss
2
Y; ð116Þ

where Vs and gs are upscaling functions. Pozdniakov and

Tsang showed that by a proper choice of these upscaling

functions it is possible to recover the results of Desbarats

[1992].

[138] Another approach is the weighted output least

squares (WOLS) approach [Nielsen and Tveito, 1998],

which casts the issue of finding upscaled parameters in

the framework of optimization problems. A norm is defined

that corresponds to the distance between the velocities

computed at the coarse and the fine scales. By using

optimization methods they find that it is possible to write

the problem in terms of minimization of a functional that

only incorporates the coarse scale, so that one does not need

to solve the fine scale. The applicability of this method

is questionable for low-permeability blocks. Holden and

Nielsen [2000] proposed an alternative WOLS method,

which is based on the coupled minimization of the velocity

norm and an energy norm (similar to the problem defined in

section 3.5). They called this method ‘‘global upscaling.’’

Their method needs the computation at the fine scale, so its

applicability for large real problems is questionable.

[139] The analysis of transient equivalent conductivities

has also been addressed through the study of continuous

time random walks (CTRW). While most of the applications

of CTRW to the computation of equivalent conductivity

values have been carried out in fractured media, the initial

application was performed in porous media [McCarthy,

1993]. Actually, the methodology allows obtaining diffu-

sivity values, and therefore some hypotheses must be made

regarding an effective storativity value. The work was then

extended by Noetinger and Estebenet [2000] and comple-

mented mathematically by Telega and Bielski [2003].

[140] Upscaling can also be carried out by means of

renormalization group analysis. The methodology has al-

ready been presented in section 2, as some of the methods

included in this group also allow obtaining effective param-

eters. Depending on the filtering methods used to truncate

the series in the spectral space, different methods are

available in the literature, all of them highly demanding in

numerical terms [Hristopulos and Christakos, 1999;

Eberhard et al., 2004].

[141] An analytical approach based on the analysis of

variance decomposition of Y(x) inside the block was

proposed by Veneziano and Tabaei [2001]. Using this

approach, they find an expression for Kb written as

Kb ¼ KG exp f bs2
i


 �� �
; ð117Þ

where f stands for a linear combination of the bsi2 terms,

which are some of the components that are obtained from

the application of the analysis of variance method.

3.8. On the Practical Use of Equivalent Parameters

[142] Durlofsky [1992] compared methods to define

upscaled parameters in order to represent properly average

flow values. He compares the performance of (1) a local

upscaled method [Durlofsky, 1991], which consists of

assigning block permeability values in two-dimensional

formations by numerically averaging the velocity fields

calculated on fine-scale grids over periodic boundary con-

ditions; (2) a sampling method, assigning an individual

sampled local value to the full block; and (3) a global

upscaled value assigned to the full domain. He concludes

that, in general, the local upscaled values perform best in

this comparison.

[143] The conceptual and technical difficulties of upscal-

ing have led some researchers [e.g., Cushman, 1986] to

stress the need for measurement devices that could acquire

data at a predefined scale in order to avoid upscaling issues.

Following this idea, some work has been devoted to answer

the specific question, How does a measurement device

integrate the local spatial data? A general approach would

be that proposed by Tidwell and Wilson [1999a], who

interpreted the measured value as an already upscaled value,

K
p
b xð Þ ¼

Z

V

b x� x0ð ÞKp x0ð Þdx0;
Z

V

b x0ð Þdx0 ¼ 1; ð118Þ

where V is the volume sampled by the measuring device and

b is a weighting function that is unique to the instrument. A

similar formula was proposed by Tidwell et al. [1999] (i.e.,

they set p = 1 in (118)). From equation (118) it is possible to

obtain an approximate implicit expression for Yb

Yb xð Þ �
Z

V

b x� x0ð ÞY x0ð Þdx0 þ p

2

Z

V

b x� x0ð Þ

� Y2 x0ð Þ � Y2
b xð Þ


 �
dx0: ð119Þ
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The effects of having different weighting functions for

upscaling in the measurement devices have been analyzed by

Zlotnik and Zurbuchen [2003].

[144] While in most cases upscaled hydraulic conductiv-

ities are used in groundwater flow and/or solute transport

simulations, in some cases they are interesting by them-

selves. One such example is the work of Benson et al.

[1994] on quality control of compacted soil liners. They

performed a numerical analysis and obtained liners with an

equivalent Kb value associated with a high probability of

being below a given threshold.

4. CONVERGENT FLOW

[145] Nonuniform flow in saturated porous media has

been addressed in the stochastic subsurface hydrology

literature much less frequently than uniform flow. This is

so despite the fact that most field methods used to obtain

conductivity or transmissivity values rely on convergent or

divergent flow scenarios. Therefore problems associated

with multidimensional nonuniform flows, of the kind en-

countered around extraction or injection wells, remain

largely unsolved, particularly those of solute transport. A

significant body of literature on representative parameters

under convergent flow conditions has emerged during the

last few years. We emphasize that all the results we review

here start from the premise that a formation can be modeled

in terms of a single geologic unit (or facies) with mild

heterogeneity. As such they might not be appropriate to

describe the type of structural heterogeneity discussed in

sections 2.7 and 2.8, where bimodal properties and multiple

materials are considered, respectively. This is a crucial point

that has not yet been addressed in the stochastic literature

when dealing with representative parameters of generally

nonuniform flows and that might have a profound impact on

the way one describes fluid and contaminant movement in a

generally statistically heterogeneous unit.

4.1. Pseudoeffective Parameters

[146] Starting from the work of Shvidler [1962] and

Matheron [1967], the search for effective medium hydraulic

parameters under convergent flow conditions has been the

subject of a plethora of publications. As will be demonstrated

in the following, the common finding of all these works is

that the constitutive equation (average Darcy’s law) for

nonuniform flow has a nonlocal structure and that it is

generally not possible to capture all relevant aspects of

convergent flow in a randomly nonuniform medium by a

single effective hydraulic conductivity or transmissivity.

Instead, a pseudoeffective parameter (hydraulic conductivity/

transmissivity), rendered by a convolution operator over

space, can be defined in some cases. This property depends

on the distance from the pumping well. In the following we

will present the main analytical and numerical results by

separately considering two- and three-dimensional scenarios.

4.1.1. Two-Dimensional Analysis
[147] Most existing work deals with two-dimensional

flow, where heads and fluxes are averaged over the vertical.

A common approach has been to model the natural loga-

rithm Y = ln T of aquifer transmissivity (T) as a statistically

homogeneous, multivariate Gaussian random field with a

given variance and spatial correlation function. There are

many cases when a two-dimensional approach can be

considered a proper modeling choice. First, many aquifers

are of limited thickness, particularly when compared to the

potentially large planar distances involved in a flow anal-

ysis. This might change when dealing with solute transport,

where plume characteristic lengths are sometimes compa-

rable with the domain extension along the third dimension.

Second, in fractures the nature of flow is mainly two-

dimensional. Last, in most real applications, all available

data regarding heads or conductivities are already obtained

as vertical spatial averages (wells and piezometers are

typically screened through the aquifer thickness).

[148] From the assumption that T is an SRF, it follows

that hydraulic heads and fluxes are also random. As an

immediate extension of the mean parallel flow scenario a

pseudoeffective transmissivity, Teff, is defined as the nega-

tive ratio between expected flux and head gradient at any

radial distance from a well.

[149] Matheron [1967] used a Green’s function approach

to investigate two-dimensional flow through an annulus

surrounding a well of zero radius and assumed fixed head

drawdown at the well and zero drawdown at some large

distance. He then provided an analysis of the first two

statistical moments of specific discharge in the limiting

situations when this annulus is very close or very far from

the singular extraction point. His main result is that the

pseudoeffective transmissivity is equal to the arithmetic

mean, TA, of the local T values near the well and equal to

the harmonic mean, TH, at points far away from the well.

These findings appear to be independent of the choice of

correlation function of T. Matheron actually quotes M. I.

Shvidler as the first to state that a single effective value

independent of location could not be defined in such a

flow configuration. The near- and far-field limits obtained

by Matheron [1967] were later recovered by Naff [1991]

by means of a perturbative analysis in an unbounded

domain.

[150] Dagan [1989] considered a prescribed flow rate

boundary condition at the well and by simple asymptotic

considerations concluded that if a well in an unbounded

aquifer pumps at a constant deterministic rate, then Teff near

the well is equal to TH, while Teff far from the well is equal

to its mean uniform flow counterpart, i.e., the geometric

mean, TG. Contrariwise, if hydraulic head is prescribed at

the well, the pseudoeffective transmissivity at the well

should become equal to TA, thus recovering the near-well

limit of Matheron [1967]. These limits have been verified

by subsequent studies and were complemented by closed-

form solutions for the space-dependent pseudoeffective

conductivity for unbounded [Indelman and Abramovich,

1994b] and bounded [Sanchez-Vila, 1997; Riva et al.,

2001] domains.

[151] Ababou and Wood [1990] conjectured that the

unconditional pseudoeffective conductivity for a Gaussian
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isotropic correlation function can be expressed as the Taylor

expansion of

Teff � TG exp
s2
Y

2

ln rG=rwð Þ½ �2

ln r1=rwð Þ½ �2
� 1

" #( )

rG ¼ rw exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ ln rw=lð Þð Þ2
h ir� �

;

ð120Þ

where rw is the well radius, r1 is the radius of the depression

cone, and rG is some critical radial distance at which the

pseudoeffective conductivity is equal to the geometric

mean. Therefore Teff is larger or smaller than TG at distances

smaller or larger than rG, respectively. This conjecture is in

contrast with later results of Indelman and Abramovich

[1994a, 1994b], Indelman et al. [1996], and Riva et al.

[2001], and it has the additional drawback of involving a

quantity such as the radius of the depression cone, which

depends on pumping duration and does not have a clear

practical meaning.

[152] Shrestha and Loganathan [1994] observed that

mean hydraulic heads evaluated by numerical Monte Carlo

simulations were correctly interpreted using an effective

medium approximation, which relies on the use of a

constant effective value, equal to TH. Shrestha and Loga-

nathan did not incorporate spatial correlation in their anal-

ysis, and no details are provided on the computational grid.

It can be argued that given the large flow rate and the

limited radius of influence assumed by Shrestha and Loga-

nathan, the whole domain is under the direct influence of

the well, thus explaining the result that is apparently in

contrast with other findings.

[153] Sanchez-Vila [1997] obtained an analytical solution

for Teff in terms of perturbations and Green’s functions for

steady state mean radial flow within an infinite domain. He

first proved that a sufficient condition for the tangential

component of the expected flux to vanish (hqqi = 0) was that

the correlation function of Y be isotropic and second-order

stationary. Then, he defined Teff in terms of the ensemble

values of the radial components of flux and head gradient:

Teff ¼ � qrh i
@ hh i=@r : ð121Þ

The resulting expression for Teff to second order in sY is

Teff¼ TG 1þ 1=2þMð Þs2
Y

� �
; ð122Þ

where M is a sum of domain integrals [see Sanchez-Vila,

1997, equation (32)] of the log transmissivity correlation

function and Bessel functions and varies with radial

distance, r, from the pumping well. In particular, for both

the exponential and the Gaussian correlation model, M is a

monotonic increasing function of r, rising from M = �1 at

the well to M = �0.5 for infinite radial distance from the

well.

[154] The actual shape of the solution can be seen in

Figure 10, which shows that Teff increases monotonically

from TH at the well to TG far from the well in agreement

withDagan’s [1989]observations. IndelmanandAbramovich

[1994b]and Sanchez-Vila [1997] noted that Teff reaches the

asymptotic TG values at distances of about 1.5–2 integral

scales from the well for the Gaussian isotropic correlation

Figure 10. Dependence of normalized pseudoeffective transmissivity (122) on radial distance r/d for the
isotropic Gaussian and exponential covariance models and two different values of sY

2 (sY
2 = 1.0 and 4.0)

[from Sanchez-Vila, 1997].
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model and 3–5 integral scales for the exponential one.

These results are consistent with numerical Monte Carlo

simulations of Neuman and Orr [1993].

[155] Apart from the work of Neuman and Orr [1993] the

inclusion of domain boundaries on the solution of the

stochastic well problem is quite recent. Riva et al. [2001]

considered the flow to a well within a randomly heteroge-

neous transmissivity field, where Y = ln T is modeled as a

statistically homogeneous random field with an isotropic

Gaussian correlation function. In this setting they prescribe

deterministically a constant pumping rate, Q, at the well and

a constant hydraulic head at a circular outer boundary at a

radius L from the well. Riva et al. based their analysis on

the nonlocal moment equations of Guadagnini and Neuman

[1999a] and developed a second-order (in sY) analytical

solution that yields expected values of vertically averaged

hydraulic head and flux and, consequently, pseudoeffective

transmissivities as function of distance from the well. Their

main result is encapsulated in the following expression for

Teff

Teff xð Þ ¼ TG 1þ s2
Y � 1

2
þ exp �p

4

L2

l2
x2

� �
þ x

8p

L2

l2
IK

� �� ��1

;

ð123Þ

where x is radial distance from the well, normalized to the

domain radius, L, and IK is a four-dimensional integral

(given by (H15) of Riva et al. [2001]). It can be shown from

(123) that Teff tends to the harmonic mean of the local

transmissivities at the well, thus recovering the limiting

result presented before. This result does not depend on a

predefined pdf of the log transmissivity.

[156] Figure 11 depicts the variation of Teff(x)/TG (there is

a difference in notation with respect to that of Riva et al.)

with normalized radial distance x for sY
2 = 0.1, 1, and 4

when L/l = 5 and 10, respectively. Figure 11 suggests that

pseudoeffective transmissivity is equal to the harmonic

mean, TH, at the well, tends toward the geometric mean,

TG, at intermediate distances, peaks above TG, and then

declines as one approaches the external Dirichlet boundary.

At the boundary, Teff remains somewhat larger than TG. It

can also be recognized that the normalized pseudoeffective

transmissivity becomes approximately 1 at about r/l � 2

for sufficiently large domains. From (123) it is possible to

derive some limiting values for Teff for different relative

sizes of the domain:

Teff ¼
TG

1þ s2
Y=2

ffi TG

exp s2
Y=2½ � ¼ TH; L=l ! 0 ð124Þ

Teff ¼
TG

1� s2
Y=2

ffi TG

exp �s2
Y=2½ � ¼ TA; L=l ! 1: ð125Þ

[157] In a subsequent development, Neuman et al. [2004]

noticed that from the theoretical and numerical results of

Neuman and Orr [1993] and Riva et al. [2001], close to the

well, that is in the region rw � r � 2l, Teff(r) behaves

approximately as a cubic polynomial having zero deriva-

tives at rw and 2l. Then, Neuman et al. [2004] approximat-

ed Teff(r) in this range via

Teff rð Þ ¼ 8H a0ð ÞTH þ 8G a0ð ÞTG; ð126Þ

a0 ¼ r= 2lð Þ; 8H a0ð Þ ¼ 1� 3a0 2 þ 2a0 3;

8G a0ð Þ ¼ 3a0 2 � 2a0 3:
ð127Þ

These results can be used in the framework of geostatistical

interpretation of pumping tests by means of type-curve

analysis (see section 4.3).

[158] A different approach to the problem of computing

Teff in convergent flow conditions was employed by

Noetinger and Gautier [1998]. They analyzed transient

converging flow using a perturbations expansion combined

with the diagrammatic method in order to sum up the

successive terms. For a second-order expansion they were

able to prove that the pseudoeffective transmissivity value

obtained coincides with the steady state value for a sufficiently

long test (while temporal convergence was very slow).

4.1.2. Three-Dimensional Analysis
[159] One of the earliest works related to the analysis of

the effective hydraulic conductivity under convergent flow

Figure 11. Normalized Teff(x)/TG versus normalized
distance, x, for (a) L/l = 5 (b) L/l = 10, and various
values of sY

2 , as obtained by (123) and numerical
simulations of Riva et al. [2001].
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conditions was that of Warren and Price [1961], who

studied the impact of a three-dimensional structure of

heterogeneous and uncorrelated hydraulic conductivity on

radial flow. Their key conclusion was that using the

geometric mean of the lognormally distributed hydraulic

conductivity provides an approximate and reasonable esti-

mate of the behavior of the aquifer.

[160] Shvidler [1966, 1985] has subsequently developed a

perturbation approach to solve a well-type flow and calcu-

lated the large time asymptotic behavior of the first-order

mean head in isotropic media for distances from the source

much smaller or larger than the scale of heterogeneity. He

found that the inverse ratio of the first-order mean head to

the homogeneous one tends to KH/KA in the proximity of

the source, while it tends to the ratio between the effective

conductivity typical of uniform mean flow and KA far from

the well.

[161] In statistically anisotropic heterogeneous unbound-

ed domains, with flow driven by a constant discharge

pumping well, an approximation to the pseudoeffective

conductivity is provided by Naff [1991]

Keff ¼ KG exp s2
Y=2


 �
þ b rð Þ

� �
; ð128Þ

where r = r/l is radial distance normalized to the horizontal

(isotropic) correlation scale of log conductivity and b(r) is

provided at first order by equation (28) of Naff [1991]. As

such, it is important to note that (128) is a mixture of first-

and higher-order expressions. Naff concluded that the

pseudoeffective conductivity is a first-order approximation

of the arithmetic mean close to the well. It then decreases

with radial distance toward a value that depends on the

anisotropy ratio, e. Specifically, when e � 0.01 (horizontal

correlation scale, l1 = l2, much smaller than the vertical

one, l3) and the flow approximates a two-dimensional

scenario, the harmonic mean is nearly recovered at distances

larger than 10l1. For the same distances the geometric mean

would be produced when the anisotropy ratio is slightly

larger than one, while the arithmetic mean would be

recovered for large e values. These results are in contra-

diction with most of the findings available in the literature,

thus questioning the validity of this mixed-order approach.

[162] From the results and approaches presented so far, it

is clear that the choice of the boundary conditions (partic-

ularly the condition imposed at the well) is of the utmost

importance in the analysis of flow processes around a

pumping well. The relevant choices are prescribed head or

prescribed flow. In three dimensions it is necessary either to

state a boundary condition at any point along the vertical of

the well or to use an integrated value. Thus it is not

surprising that different results can be found in the litera-

ture, depending on the choice of boundary conditions used

by the authors.

[163] Within this framework, early analyses of steady

state flow toward a fully penetrating well were performed

using a prescribed head at the wellbore. Indelman et al.

[1996] used the methodology developed by Indelman and

Abramovich [1994b] to model this problem as a singular

line with influx proportional to the conductivity for the case

of thick formations (vertical length much larger than log

conductivity integral scale) and for small well radius com-

pared to the horizontal integral scale of log conductivity.

Indelman et al. [1996] derived second-order expressions for

a pseudoeffective hydraulic conductivity defined as that of a

fictitious homogeneous medium that conveys the same

ensemble mean discharge as the heterogeneous formation

for the prescribed head at the well and a given vertically

averaged head at a piezometer located at a certain radial

distance from the well. This definition relies on the assump-

tion that hydraulic head is ergodic along the vertical. They

arrived at the following expression

Keff ¼ KA 1� l r; rw; eð Þ½ � þ Keful r; rw; eð Þ; ð129Þ

where Kefu is the effective conductivity for mean uniform

flow in the horizontal direction in the same aquifer and l is

a weighting coefficient that depends on location, anisotropy

ratio, and the well radius. A similar approach was used by

Dagan [2001], who obtained a similar result for a

pseudoeffective conductivity defined in accordance with

(121). On the basis of (129) it can be seen that Keff

approaches the arithmetic mean at the source (as opposed to

the harmonic mean in the case of prescribed flow rate at the

well). At large distances, Keff approaches the value typical

of uniform flow, as obtained previously by Indelman and

Abramovich [1994b] and Sanchez-Vila [1997]. Moreover,

Keff is sensitive to the anisotropy ratio and tends slowly to

its asymptotic value.

[164] Indelman [2001, 2003a] further investigated the

problem of averaging transient flows driven by sources

with a prescribed head boundary condition, derived an

average flow equation, and defined an effective conductiv-

ity tensor for an arbitrary heterogeneous formation in the

special case of uniformly distributed initial head. The

relevant point of his analysis is the derivation of a quite

general expression for the pseudoeffective conductivity

tensor in the Fourier-Laplace space that is completely

determined by the medium structure (as was also shown

by Tartakovsky and Neuman [1998a] for generally nonuni-

form flow conditions) and accounts for either given flux or

given head boundary condition at the well. Indelman then

particularizes this expression for the pseudoeffective con-

ductivity tensor in the case of an isotropic three-dimensional

medium.

[165] The other group of relevant results is based on

prescribing discharge at the well. Indelman [2000] analyzed

the average mean head distribution for flow toward a source

of instantaneous and constant discharge in unbounded

randomly heterogeneous two- and three-dimensional media.

He first applied perturbation and derived analytical expres-

sions for the mean Green’s function, which is the funda-

mental solution of the average flow equation. This allows

him to show that the mean head distribution coincides

asymptotically with that resulting from the application of

an effective medium flow model at large distances from the

instantaneous and constant rate source. These results are
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then used by Indelman [2001] within the context of con-

vergent well flow driven by a point source in an infinite

medium to show that the pseudoeffective conductivity is

equal to the harmonic mean at the source and then increases

with distance. The value typical of uniform mean flow is

reached within 2–3 integral scales from the source.

[166] The effects of a finite boundary were analyzed by

Guadagnini et al. [2003]. They provide an analytical

solution for pseudoeffective conductivity in a convergent

flow due to a fully penetrating well, discharging at a given

rate within a randomly heterogeneous, statistically aniso-

tropic aquifer delimited by two horizontal no-flow bound-

aries (separated by a vertical distance, B) and a vertical

boundary of cylindrical shape along which head is main-

tained at a prescribed value. They used two not exactly

equal (though quite similar) definitions of pseudoeffective

conductivity depending on whether it is defined from the

ensemble average extension of Darcy’s law or Thiem’s

solution. In the first case they used the second-order

approximation of the mean flux, while in the second they

used the specified total flow rate. In their work the loga-

rithm of hydraulic conductivity forms a statistically homo-

geneous random field characterized by an anisotropic

Gaussian spatial covariance function. Their key results are

synthesized in Figures 12 and 13, illustrating the effect of

statistical anisotropy ratio, e, on the variation of the nor-

Figure 12. Normalized pseudoeffective conductivity versus normalized distance, x, for various values
of the anisotropy ratio, e, at x3/B = 0.5 when L/B = L/l1 = 1; sY

2 = 1. Here L is the radial distance to the
external constant head boundary, B is aquifer thickness, sY

2 is variance of (natural) log conductivity.
Adapted from Guadagnini et al. [2003].

Figure 13. Normalized pseudoeffective conductivity versus normalized distance, x, for various values
of the anisotropy ratio, e, at x3/B = 0.5 when L/B = L/l1 = 10; sY

2 = 1. Here L is radial distance to the
external constant head boundary, and B aquifer thickness. Adapted from Guadagnini et al. [2003].
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malized pseudoeffective conductivity with dimensionless

radial distance x = r/L midway between the horizontal no-

flow boundaries (at x3/B = 0.5) when L/B = L/l1 = 1 and 10,

respectively. One of the main conclusions is that in all cases,

rendering the aquifer more stratified (by decreasing e from 1

to 0.1) causes the pseudoeffective hydraulic conductivities

to increase. This is because resistance to horizontal flow

becomes weaker and the aquifer is able to deliver a

prescribed discharge rate to the well under a reduced mean

hydraulic gradient.

[167] The pseudoeffective hydraulic conductivity values

obtained from an average extension of Thiem’s formula are

always larger than those obtained from an average extension

of Darcy’s law, though the two do not differ significantly

from each other. At distances that exceed two horizontal

correlation scales from the well and the outer boundaries,

both definitions stabilize.

[168] Effective conductivities under steady state condi-

tions can also be seen as the limiting values for transient

effective values at large times. This was the approach used

by Indelman [2003b], who derived closed-form (moderate

and) large-time approximations of the mean hydraulic head

in three-dimensional transient random flow driven by a fully

penetrating well pumping at a constant rate. On the basis of

these approximations he then offered a generalized form of

the Cooper and Jacob [1946] solution by deriving a large-

time asymptotic for the expected value of the drawdown.

The solution reveals that the pseudoeffective transmissivity

derived from the late time behavior of Indelman’s solution

coincides with the effective conductivity for uniform hori-

zontal flow (see his equation (30)). Another result of interest

that can be extracted from Indelman’s work is related to the

asymptotic expression for the first-order correction of the

mean drawdown, which includes a slightly different format

for the weighting function l of (129), which simplifies the

way of calculating it. This result asymptotically recovers

the steady state behavior of Indelman et al. [1996], which

was derived by direct averaging of the steady state flow.

Raghavan [2004, p. 13] commented on the significance of

these results by stressing that if one was ‘‘to use the

pressure-time curve to estimate permeability with time, then

the permeability decreases with distance.’’ This allows us

to qualitatively (albeit not quantitatively) recover the

behavior suggested by the analysis of the time derivative

of hydraulic head observed in a number of field tests [see,

e.g., Raghavan, 2004, Figure 4].

4.2. Equivalent Parameters

[169] As defined in section 1, the concept of an equivalent

hydraulic conductivity/transmissivity is closely related to

that of block support values. The underlying idea is to find a

single value (scalar or tensor) that could replace a hetero-

geneous distribution within a domain (block) in some given

sense. Under convergent flow conditions this usually means

that an area surrounding the extracted well is selected, some

boundary conditions are imposed, and the total outflow is

measured. The equivalent conductivity would then be

defined as the single value that should be assigned to the

area to obtain the same total outflow observed in the

heterogeneous scenario under the same boundary condi-

tions. In this sense, equivalent parameters can be viewed as

global quantities that characterize the ability of the medium

to convey fluid, and they are of direct use in numerical

computations of flow, when some upscaling is required.

Like the pseudoeffective parameters these are generally

influenced by the type of boundary conditions. While early

analyses of these topics tend to offer empirical solutions,

modern works try to propose analytical expressions, mainly

based on moment equations and perturbation approaches.

[170] To illustrate the concept and its practical applica-

tion, we consider the simple setting corresponding to an

annular domain where the inner annulus is the perimeter of

a pumping well. We specify prescribed deterministic heads,

hw and he, at the inner and outer boundaries, respectively.

These boundaries are located at radial distances rw and re
from the center of the domain. For a homogeneous medium

and under steady state conditions, T is related the total flow

rate, Q, by

T ¼ Q

2p he � hwð Þ ln
re

rw
: ð130Þ

Equation (130) is usually known as Thiem’s formula

[Thiem, 1906], even though it was initially presented by

Dupuit [1863]. Equation (130) is strictly valid only in

confined aquifers, although it can also be used in phreatic

aquifers under the restriction of small drawdown. Obviously,

if the medium was not homogeneous, but rather the

transmissivity displayed some variations in space, one could

still apply the same boundary conditions and, for a computed

or observed outflow, compute a value of block or equivalent

transmissivity, Teq, which is then rigorously defined as

Teq ¼
Q

2p he � hwð Þ ln
re

rw
: ð131Þ

On the basis of this definition, Cardwell and Parsons [1945]

proved that in a heterogeneous aquifer, Teq is bounded by the

weighted harmonic and the weighted arithmetic averages of

T(x) over the whole domain, that is,

W

Z

V

dV

r2T xð Þ

0
@

1
A

�1

� Teq �
1

W

Z

V

T xð Þ
r2

dV; W ¼
Z

V

dV

r2 xð Þ:

ð132Þ

With reference to this particular geometry, only a few

simplistic cases of heterogeneity are amenable to producing

an exact formula for Teq. One is the case where the

transmissivity values are only a function of the radial

distance from the well (e.g., when they are distributed within

circular, radially symmetric annuli). This configuration

yields

Teq ¼ ln re=rwð Þ
Zre

rw

dr

rT rð Þ

0
@

1
A

�1

; ð133Þ
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which coincides with the lower bound in (132). In contrast,

when T is constant within sectors extending from the inner to

the outer radius,

Teq ¼
1

2p

Z2p

0

T qð Þdq; ð134Þ

which corresponds to the arithmetic mean.

[171] The first paper that we are aware of dealing with the

topic of equivalent conductivities with nonuniform mean

flow is that of Gómez-Hernández and Gorelick [1989].

They first discretized the domain into elements and then

assigned the block T values by means of a discrete version

of a power-averaging formulation

Teq ¼
1

V

Z

V

T xð ÞpdV

0
@

1
A

1=p

: ð135Þ

The authors then propose the values to be assigned to the

power p by means of an empirical approach. In cases where

the degree of heterogeneity is mild (low variance of the

conductivity or log conductivity), the simple averaging

methods compete favorably with more sophisticated

methods as shown by numerical simulations performed by

Vidstrand [2001].

[172] An alternative to upscaling is to use an individual T

value drawn at random from those found within the block.

This simplified approach provides reasonable results for

mean uniform flow conditions but not in the case of flows

driven by source terms (such as convergent flow), as shown

numerically by Durlofsky [1992].

[173] Perhaps the most relevant empirical approach is that

of Desbarats [1992], who employed an analogy with the

mean uniform flow case and proposes an expression for Teq,

which would apply in two-dimensional domains of different

geometries:

Teq ¼ exp
1

W

Z

V

Y xð Þ
r2

dV

0
@

1
A; W ¼ 2p ln C

re

rw
; ð136Þ

where C is a shape factor which is equal to 1.0000, 0.9560,

and 0.7938 for circular, square, and rectangular (aspect ratio

2:1) field geometries, respectively, and re =
ffiffiffiffiffiffiffiffiffi
A=p

p
, A being

the domain area. In his paper, Desbarats [1992] found

equation (136) to work very well for multivariate log-

Gaussian square T fields in which the transmissivity at the

well is not very different from the expected value of T. This

was somehow confirmed by Gómez-Hernández et al. [1995]

by means of numerical simulations performed in a

synthetically generated heterogeneous aquifer.

[174] Moreover, an upscaled parameter provided by the

weighted average of the local Y values proportional to 1/r2

was found by Beckie and Harvey [2002] to provide quite

good results in the context of the interpretation of slug tests

in heterogeneous media.

[175] Desbarats [1994] then extended the work to three

dimensions. In such a case, and again on the basis of

empirical arguments, he proposed the following equation

for Keq:

Kp
eq ¼

1

W

Z

V

K xð Þp
r2

dV: ð137Þ

Notice that (137) converges to (136) for p = 0. From (137) it

is possible to compute mean and variance of Keq

[Desbarats, 1993]

hKeqi ¼ exp hYi þ p

2
s2
Y � s


 �
þ s

2

� �
ð138Þ

Var Keq


 �
¼ hKeqi2 exp sð Þ � 1ð Þ; ð139Þ

where s is the weighted average of the covariance function

of Y, given by

s ¼ 1

W2

Z

V

Z

V

CY x; x0ð Þ
r2r0 2

dVdV0: ð140Þ

[176] Skin effects are then incorporated in this empirical

methodology by Durlofsky [2000]. He considers that the

bulk of the domain is well characterized by a certain Keq,

which would be that corresponding to uniform in the mean

flow (e.g., the geometric mean in an infinite two-dimen-

sional domain). The effects of the heterogeneity on the near-

well flow are captured through an effective skin K value,

obtained through (136) using a domain that is the one

affected by skin effects.

[177] An approximated, perturbation-based, analytical so-

lution to the problem of upscaling transmissivity under

convergent flow conditions was performed by Sanchez-Vila

et al. [1999a]. The authors found that expansion of (136) to

zero and first order provided the correct solution. Instead,

the expansion to second order turns out not to be correct.

The complete expression of Sanchez-Vila et al. [1999a]

reads

Teq ¼Tw 1þ 1

W

Z

V

Y0 xð Þ
r2

dV� 1

2W

Z

V

Y0 2 xð Þ
r2

dV

8
<
:

þ 1

W2

Z

V

Y0 xð Þ
r2

dV

2
4

3
5
2

þ 1

W

X1

n¼1

Z

V

Z

V

Y0 xð Þ
r2

Y0 x0ð Þ
r0 2

Hn x; x0ð ÞdVdV0
)
; ð141Þ

where in this formula Y0 = Y � Yw, Yw = ln Tw, and Tw is

transmissivity at the well. Hn is provided by Sanchez-Vila et

al. [1999a, equation (31)].

4.3. Interpreted Parameters

[178] A traditional way to obtain hydraulic conductivity

values in field applications is by means of hydraulic testing.
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When a pump test is performed in a real aquifer, some

drawdown curve is obtained. Then a method of interpreta-

tion is used to obtain a value of hydraulic conductivity

(actually in most methods the value obtained is a transmis-

sivity). The resulting parameter is somehow an integrated

value of the conductivities around the pumping and obser-

vation wells (which could coincide or not). In some sense it

is an equivalent value, but we chose to term it ‘‘interpreted

hydraulic conductivity’’ (short for parameters estimated

from test interpretations), as the value would not only

depend on the hydraulic conductivity spatial distribution

plus the boundary conditions but also on the interpretation

method used. A recent review of the procedures adopted to

evaluate pumping test or pressure-response curves in het-

erogeneous porous media was offered by Raghavan [2004].

Here we are mainly concerned with the review of results

about the application of different types of hydraulic tests

that are conducive to direct evaluation of aquifer effective

(or pseudoeffective) parameters.

[179] Early works are those of Vandenberg [1977] and

Barker and Herbert [1982], which were concerned with the

interpretation of pumping tests performed within randomly

heterogeneous aquifers. The single, mildly heterogeneous

realization analyzed by Vandenberg [1977] did not allow

discerning clearly the impact of heterogeneity. The work of

Barker and Herbert [1982] was concerned with a high-

conductivity inclusion embedded in a regional aquifer, and

the main conclusion was that the effect of the inclusion was

negligible in determining the regional transmissivity, pro-

vided that there was sufficient time for the cone of depres-

sion to expand beyond the inclusion itself.

[180] Most of the analytical work has been focused on

units composed of two bounded regions of different (fixed

and deterministic) T values, separated by some sharp

discontinuity (inclusions). Butler [1988] analyzed the case

of a fully penetrating well (in two dimensions) at the center

of a circular disk, embedded in an infinite matrix of

different transmissivity. In his work the interpreted trans-

missivity, Tint, is obtained through the method of Cooper

and Jacob [1946]. The method consists of plotting the

drawdowns, s, versus time, t, in a semilogarithmic plot. If

the curve displays a straight line with slope m, a value for

Tint is obtained from

Tint ¼ 0:183
Q

m
: ð142Þ

[181] Butler found that the contribution of the inner disk

is negligible when analyzing the slope of the curve for very

large times. Later, Butler and Liu [1993] obtained the same

result for a disk arbitrarily located with respect to the

pumping well. Heterogeneities at the local scale, close to

the well, appear as variations in the slope of the semilog-

arithmic s versus t plot for very short times. This effect was

discussed in detail by Schad and Teutsch [1994]. Tiedeman

et al. [1995] extended the work of Butler and Liu [1993] to

elliptical (rather than circular) inclusions. Their work is

steady state; therefore they actually used Thiem’s formula

instead of Cooper-Jacob’s formula. By taking the shape of

the ellipse to the limit, Tiedeman et al. [1995] analyzed the

case of a vertical fracture of finite extension.

[182] A different method of obtaining interpreted trans-

missivity is based on Theis’ curve-matching procedure

[Theis, 1935]. Butler [1990] was the first to prove numer-

ically that while Cooper-Jacob’s method provides informa-

tion about some average hydraulic conductivity at a global

(large) scale, Theis’ method preferably averaged the local

values around the extraction point. This result was also

pointed out by Serrano [1997].

[183] Some attempts have been made to derive analytical

solutions for interpreted transmissivities in heterogeneous

media. The first one was that of Oliver [1990], who noticed

how the slope in the s versus t semilog plot changed with

time and analyzed the relative contribution of the individual

T(x) values to the apparent transmissivity for any given

time. He found Tint to be a weighted average of the

transmissivity within a region that is a moving annular

domain.

[184] Interpretation of long-time pump tests in heteroge-

neous media has been the subject of intensive work since

the late 1990s. Meier et al. [1998] recalled a number of real

cases where the interpretation of long-time pump tests led to

similar values of interpreted transmissivities, while render-

ing very different values of interpreted storativity. Their

suite of numerical simulations has led to the following key

results: (1) For a given test the interpreted transmissivities

derived from several observation points coincide; (2) this

value was found to be equal to the equivalent parameter

(independently evaluated) for all the cases analyzed; and (3)

the interpreted storativity value provided a general idea

about how well connected the pumping and the observation

points were.

[185] The first and third conclusions have been corrobo-

rated by Sanchez-Vila et al. [1999b], who provided a

perturbation-based analytical random solution for the con-

vergent flow taking place within a single realization of a

heterogeneous two-dimensional aquifer. Their analyses lead

to the following second-order (in Y0) expression for Tint:

Tint ¼ TG exp
1

4p
lim
r!1

1

pr2

Z 1

0

Z 2p

0

Z 2p

0

Y0 rð ÞY0 r0ð Þ
�

� r2 þ r0 2ð Þ cos f� f0ð Þ � 2rr0

r2 þ r0 2 þ 2rr0 cos f� f0ð Þ½ �2
r3 dfdf0dr0

!
: ð143Þ

One of the key points in (143) is that Tint is independent of

the location, and thus the same value would eventually

develop at all observation points. The interpreted storativity,

Sint, which is obtained from the intercept of the line

developed in the Cooper-Jacob plot is provided by the

following first-order (in Y0) expression:

ln Sint ¼ ln Sþ 1

p

Z

V

Y0 r;fð Þ r� r cos q� fð Þ
r2 þ r2 � 2rr cos q� fð Þ

1

r
dV;

ð144Þ
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which is location-dependent. In (144), S is the actual

storativity value, which is assumed to be constant through-

out the domain. This is a self-evident case where the values

of interpreted parameters are basically driven by the

interpretation method selected.

[186] Copty and Findikakis [2004] challenged the second

conclusion of Meier et al. [1998]. They stated that for a

multi-Gaussian field the expected value of the interpreted

transmissivity is not the geometric mean of T (as would be

concluded from Meier et al.’s work) but is rather a smaller

value depending on the amount of variability. Copty and

Findikakis as well as Neuman et al. [2004] developed a

method to obtain information about different statistical

parameters characterizing the heterogeneity of the domain

from individual tests. In particular, the work of Neuman et

al. [2004] is conducive to the determination of the actual

values of the integral distance, IY, the variance of Y, and TG,

thus allowing obtaining (pseudo)effective parameters by

means of the different equations presented in section 4.2.

[187] Interpreted transmissivity values can also be

obtained from other types of hydraulic tests. One of them

is the recovery test, where residual drawdown is recorded

after ceasing pumping. The classical interpretation method

is to plot residual drawdown versus equivalent time in a

semilog plot. Equivalent time is defined as 1 plus the ratio

between the duration of pumping and elapsed time since

pumping has ended (assuming pumping rate was constant).

From the slope of this plot and by means of (142) a value of

interpreted transmissivity is obtained. Willmann et al. (On

the meaning of the transmissivity values obtained from

recovery tests, submitted to Hydrogeology Journal, 2006)

found that in most cases two different slopes can be drawn

from the plot, with a transition between them. From the

slope developed for early times, we can obtain information

about the local values around the well. The late time slope

provides information about some regional value which

resembles the equivalent value for mean uniform flow

conditions.

[188] The last hydraulic test we will address is that of

specific capacity, which consists of fixing a pumping time

and computing the drawdown at the end of the period.

Specific capacity is defined as the ratio between the pump-

ing rate, Q (assumed constant), and the drawdown at the

well at the end of the period, sw. Interpreted transmissivity is

obtained by a very simple expression,

Tint ¼ A
Q

sw
; ð145Þ

where A is a constant value which depends on the radius of

the well.

[189] Interesting results were presented by Meier et al.

[1999] in the context of a numerical study on interpreted

transmissivity values derived in heterogeneous synthetic

aquifers from specific capacities plotted versus (1) trans-

missivity values calculated from a Cooper-Jacob approach

(using (142)) and (2) T values at the well. Their main

conclusion is that the values obtained from (145) are highly

dominated by the value of transmissivity at the well value.

The plots relating transmissivity to specific capacity data

compiled by the authors by using (142) and (145) display a

convex deviation from linearity. This can be explained on

the grounds that tests performed in high-conductivity areas

quickly attain their large time behavior, thus tending to

rapid stabilization. The opposite holds for tests carried out

in low-conductivity areas. The main conclusion that can be

extracted from this work is that using the geometric mean of

the Tint values obtained from short pump tests would lead to

an underestimation of the effective T value.

4.4. Scale Effects

[190] When discussing the problem of scales in section 1,

we mentioned that changing scales requires answering a few

questions: First, is the formal structure of the flow equation

maintained after a change in the scale? Second, what are the

conditions for the existence of and, in case they do exist, the

values of the parameters to be used at each scale? Third,

how can one relate these values at different scales? The first

question has not been completely analyzed in the stochastic

framework. This does not mean that it is not relevant or that

there is not room for it. We conjecture that the large-scale

flow equation may display delayed yield effects even if

water storage is released instantaneously upon a head

change. The fact that this question has not been addressed

so far reflects that research has concentrated on hydraulic

conductivity upscaling rather than the relevance of this

issue.

[191] Therefore, when speaking of scale effects in flow

processes, practitioners mean the apparent increase in rep-

resentative hydraulic conductivity in response to an increase

in the scale of observation. This increase has been observed

in all kinds of geologic media [Neuman, 1994] but most

markedly in fractured media [Brace, 1984; Bradbury and

Muldoon, 1990; Clauser, 1992; Schulze-Makuch et al.,

1999; Tidwell and Wilson, 2000;Meier et al., 1998; Carrera

et al., 1990;Martinez-Landa and Carrera, 2005]. It must be

clear that these observations stem from model interpreta-

tions or hydraulic tests. Therefore they always refer to

interpreted hydraulic conductivities or transmissivities.

[192] Because of its empirical nature the cause and even

the existence of scale effects in hydraulic conductivity are

controversial. Many alternative explanations have been

provided in an attempt to justify the field observations.

Some authors attribute scale effects to factors such as a skin

effect around the borehole or incomplete well development

[Butler and Healey, 1998; Rovey, 1998; Rovey and

Niemann, 2001] or turbulence [Lee and Lee, 1999]. These

would lead to low interpreted local transmissivity values,

consistently smaller than the average properties. However,

well losses only affect the estimate of hydraulic conductiv-

ity in short-range tests (such as pulse and injection tests),

where transmissivity is derived from total drawdown. Long-

range tests, which are interpreted using the rate of draw-

down change, are not sensitive to well losses because these

are filtered out during interpretation. As a result they would

tend to yield transmissivity values larger than short-range
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tests. Other authors attribute the scale effect to the method

applied for interpreting the tests [Zlotnik and Zurbuchen,

2003]. Meier et al. [1999] attributed scale effects to the fact

that interpreted transmissivities derived from pumping tests

reach their equivalent value faster in high-transmissive

zones than in low-transmissive zones. As a result, for a

given test duration, more transmissivity estimates will be

below than above the average. Guimerà et al [1995], on the

other hand, attributed scale effects to the fact that long-term

hydraulic tests tend to be performed in high-permeability

zones. Biased sampling may be even more acute in loose

material, where unaltered core samples are hard to obtain

from the most permeable gravel zones.

[193] Despite the above reservations the evidence for

scale effects is overwhelming. It has been observed on data

collected at a variety of sites and under diverse fluid flow

regimes [Carrera et al., 1990; Schad and Teutsch, 1994;

Samper-Calvete and Garcı́a-Vera, 1998; Rovey and

Cherkauer, 1995]. Illman and Neuman [2001, 2003] and

Illman [2004] interpreted single-hole and cross-hole tests

performed in tuff by means of type curves and concluded

that the conductivity scale effect is real. The same conclu-

sion was obtained by Vesselinov et al. [2001], who inter-

preted the same tests using three-dimensional numerical

inversion, while treating the medium as a stochastic,

randomly heterogeneous continuum. Carrera et al. [1990]

found the transmissivity of a fracture in gneiss to be 20

times larger than the geometric average of point estimates of

transmissivity obtained in the fracture. Bredehoeft et al.

[1983] found the effective hydraulic conductivity of the

Pierre Shale, derived from regional mass balance, to be

1000 times larger than that derived from core tests.

Martinez-Landa and Carrera [2005] found the interpreted

hydraulic conductivity of a granite block to increase by

almost 2 orders of magnitude from local values (10 cm

scale) derived by pulse tests to large-scale values (about

100 m) derived by model calibration of cross-hole tests.

Despite of all these site-specific evidences the most com-

pelling argument is probably that of Clauser [1992]. He

collected data from different sites and arranged them by

scale. The resulting data increased by several orders of

magnitude from the laboratory to the regional scales.

[194] The fact that scale effects are found under such a

wide set of testing conditions and flow regimes suggests

that the effect is real and cannot be solely attributed to

conditions around the well. The practitioner’s view is that

increasing the scale leads to increasing the chances of

encountering highly permeable regions. This type of argu-

ment is behind much of the work of Neuman and Di

Federico and coworkers [Neuman and Di Federico, 2003,

and references therein]. They argued that increasing the

scale causes an increase of the log conductivity variance, so

that the effective (actually pseudoeffective) hydraulic con-

ductivity also increases.

[195] Another line of thought consists of attributing scale

effects to the high connectivity of conductive zones.

Sanchez-Vila et al. [1996] found that the large-scale

equivalent value of transmissivity can be much larger

than the geometric average, whenever points with a high-

transmissivity value are better connected than points with

low-transmissivity value. These findings are entirely consis-

tent with the philosophy and results of Di Federico and

Neuman [1998], Illman [2004], and Martinez-Landa and

Carrera [2005]. In all these cases the full variability was

sampled by the small-scale tests. High large-scale hydraulic

conductivity was a result of the way the high-conductivity

zones were arranged. In fact, Martinez-Landa and Carrera

[2005] were able to reproduce the large-scale behavior using

local values but assigning the high local conductivity values

to fractures. Under this view a large-scale conductivity

emerges from the medium structure. Since only a few

high-conductivity zones carry most of the water, only a

few local tests sample them. Yet they control the large-scale

behavior of the system. Since connectivity appears to control

large-scale conductivity, it is natural to try and define it,

which was attempted by Knudby and Carrera [2005]. These

views of scale effects bear important implications for the

way the medium ought to be treated, a subject we will revisit

in the concluding section of this paper.

5. OTHER NONUNIFORM FLOW CONDITIONS

[196] When the (average) flow pattern is not simple, the

relevant question is, ‘‘Is it possible to describe a complex

flow configuration by means of a single, effective, equiv-

alent parameter’’? Even though from sections 2–4 it should

be clear by now that this is generally not possible, we note

that the problem has attracted some attention in the litera-

ture, starting from the late 1970s.

[197] Smith and Freeze [1979] evaluated, by means of

numerical Monte Carlo simulations, the effective conduc-

tivity for a nonuniform two-dimensional flow within a

rectangular domain. For their particular flow configuration

they calculated an effective conductivity that was about 10

to 20 percent larger than the geometric mean. An attempt to

explain this finding was proposed by Gelhar [1993], who

argued that this situation of nonuniform hydraulic gradient

was analogous to a scenario with a trend in the mean

hydraulic conductivity, but did not provide further insight.

[198] A mild form of flow nonuniformity, consisting in a

two-dimensional isotropic aquifer in the presence of a

uniformly distributed recharge was then considered by

Dagan [1981] in the framework of the self-consistent

approach. The author concluded that the effective conduc-

tivity could properly be rendered by the geometric mean of

the local conductivity values without providing a quantita-

tive indication of the limitations of this result.

[199] A relatively complex unconfined aquifer was ana-

lyzed by Gómez-Hernández and Gorelick [1989], who

simulated by means of Monte Carlo analysis the effects of

the spatial variability of a variety of parameters, including

hydraulic conductivity, riverbed leakance, and recharge, on

the mean behavior of the system. Their key findings are that

(1) the use of the geometric mean as an effective conduc-

tivity appears to be appropriate to represent mean flow far

away from pumping wells and (2) contrariwise, it was not
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satisfactory near the well locations, where the equivalent

conductivity was found to lie between the geometric and the

harmonic mean. While we note that the first observation is

consistent with findings reported in the previous sections, it

is worthwhile mentioning that in the cases investigated the

extent of the area around a pumping well where (ensemble)

mean heads deviate from those predicted by using the

geometric mean of the conductivity as a representative

parameter is practically insensitive to the correlation scale.

These results, as acknowledged by the authors, might have

been influenced by the local flow patterns established

around the modeled pumping wells.

[200] The flow regime which develops between an injec-

tion and a pumping well has been addressed by Desbarats

[1993] using an empirical approach based on numerical

simulations. He analyzes the concept of interwell equivalent

(note that Desbarats refers to it as an effective parameter)

transmissivity, defined as the transmissivity of a fictitious

homogeneous medium in which one observes the same

hydraulic head difference between the two wells in the

doublet as in the heterogeneous aquifer. By combining the

power-averaging model of Desbarats [1992] and a geo-

statistical model describing the local heterogeneity of trans-

missivity he proposes conditional and unconditional

expressions for the moments of interwell transmissivity. In

the unconditional case, he found that the expected value of

the interwell equivalent transmissivity is bounded by the

geometric and the arithmetic mean and that the lower bound

is attained for interwell distances larger than ten times the

correlation scale of the transmissivity. The same flow

configuration was later addressed by Durlofsky [2000] with

a similar approach.

[201] Another type of nonuniform flow which is relevant

for practical applications is that produced by a minipermea-

meter. Tidwell and Wilson [1999a, 1999b] reported perme-

ability upscaling experiments on blocks of volcanic tuff and

Berea Sandstone. They compare their measurements with

existing theoretical models of conductivity upscaling and

found that, even though the general behavior of their data is

consistent with volume averaging techniques, the nonuni-

form flow induced by the minipermeameter induces a

nonlinear behavior of the volume averaging process, which

is not predicted by available theories. It is our feeling that

the development of either volume or stochastic averaging

techniques including this flow configuration should be a

main concern to further explore issues associated with the

interpretation of minipermeameter measures.

[202] We close this section by recalling that one of the

most important categories of generally nonuniform in the

mean flows is that arising from conditioning of predictions

(and measures of associated uncertainty) on information.

Moment equations–based methods have been used to

numerically analyze the nature of pseudoeffective properties

in randomly heterogeneous aquifers, in the presence of

hydraulic conductivity and/or hydraulic head data. In par-

ticular, Neuman and Guadagnini [2000] investigated the

conceptual meaning of the parameters which are obtained

by the standard practice of calibrating a deterministic flow

model against (otherwise randomly) varying data. Starting

from a localized version of the nonlocal moment equation of

steady state flow of Guadagnini and Neuman [1999a] the

mean (conditional) flow predictor can be expressed in the

familiar looking Darcian form

hq xð Þic � �Kc xð Þrhh xð Þic Kc xð Þ ¼ hK xð ÞicIþ kc xð Þ:
ð146Þ

Here the subscript c indicates conditioning on hydraulic

conductivity and/or head data, kc(x) is the conditional

counterpart of (34), and Kc(x) is the spatially varying

conditional pseudoeffective hydraulic conductivity tensor.

The most intriguing contribution given by Neuman and

Guadagnini is that Kc(x) constitutes a biased estimate of

the actual hydraulic conductivity, K(x). While the latter is

represented more faithfully by its unbiased conditional

mean value, hK(x)ic, it is Kc(x) rather than hK(x)ic that

renders (more or less) unbiased predictions of head and

flux, provided that the assumptions of local uniformity of

mean gradient and residual flux are approximately satisfied.

The key conclusions that can be extracted from the work of

Neuman and Guadagnini are that (1) whereas the hydraulic

conductivity in traditional deterministic flow models was

considered to be a unique material property, in reality it is a

nonunique, data-dependent, spatially varying pseudoeffec-

tive quantity; and (2) calibrating a traditional deterministic

flow model against measured values of head and flux is

tantamount to conditioning it on such measurements. Thus

pseudoeffective conductivity can be in some sense

embedded in an inverse model along the lines of Rubin

and Dagan [1987a, 1987b] or Hernandez et al. [2003].

6. SYNTHESIS, CONCLUSIONS, AND ADDED VIEW

[203] Heterogeneity is the singular most salient feature in

hydrogeology. Addressing heterogeneity has been the focus

of much of the most exciting and intense research of the last

30 years. The work has been so extensive that it can hardly

be summarized, despite our somewhat lengthy review.

Therefore this concluding section is devoted to revisiting

the motivation, nomenclature, relevance, and main findings,

ending with some considerations about the future.

[204] The ultimate motivation of all the work discussed

here is to find representative values of hydraulic conduc-

tivity and transmissivity. The problem is posed, in ideal

terms, as that of finding the value of hydraulic conductivity

that ought to be used given that one knows the statistical

properties of the point values of conductivity/transmissivity.

This statement is ambiguous in several senses but most

particularly in what is meant by ‘‘representative.’’

6.1. On the Concepts of Effective, Equivalent,
and Interpreted Hydraulic Conductivity

[205] A number of definitions have been used to select the

appropriate representative value. In an attempt to harmonize

the different existing notation, we have classified them as

effective, equivalent, and interpreted values. Effective hy-

draulic conductivity is the one that relates the expected
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value of flux and head gradient. Here expectation is meant

as averaging in the probability space. The resulting effective

value can be either a global property (i.e., constant) or a

local one (i.e., varying in space). In the latter case we

adopted the term pseudoeffective to account for spatial

variability of the representative parameter. Equivalent hy-

draulic conductivity is the one that relates the spatial

averages of flux and head gradient. That is, the concept of

equivalent parameter refers to a single specific aquifer.

Finally, interpreted parameters are those derived from

interpretation of field data, typically hydraulic tests.

[206] All three definitions are relevant. The effective

conductivity is, mathematically speaking, the easiest to find,

and thus a large number of analytical results are available on

this topic (see sections 2 and 4). The equivalent conductiv-

ity is the one that represents a specific (portion of the)

aquifer and is therefore the one we would be interested in

finding (see sections 3 and 4). This last statement might lead

to the wrong conclusion that effective parameters lack

practical interest. However, on the grounds of ergodic

behavior of the system (ensemble averages equal to spatial

averages) one hopes both definitions to be identical (for

very large blocks). Finally, interpreted parameters are the

ones that are obtained in field applications by direct

measurements. Therefore it is important to find how these

three representative quantities are interrelated.

[207] Our review poses several distressing questions

regarding effective parameters. First, they do not always

exist. When they do, a number of literature results are based

on the multi-Gaussianity assumption, which has never been

proven. In fact, scale effects and geological observations

suggest that in actual aquifers high-conductivity zones tend

to display an enhanced connection with respect to average

or low-conductivity zones. Variability in connectedness is

inconsistent with the multi-Gaussianity assumption. More-

over, location-independent effective parameters only exist

under relatively strict conditions (infinite domain, uniform

in the mean flow, etc.). Despite of these limitations,

effective parameters remain the reference values for repre-

sentative hydraulic conductivity and transmissivity.

[208] Equivalent parameters are not much better off.

Results are often presented in terms of perturbation

expansions, including truncation, without any explicit

statement about the spatial distribution of the individual

local conductivity values. However, actual evaluations

rely on the assumption that one aquifer is an individual

realization of a spatial random function, which is as-

sumed to be fully known. Unfortunately, statistical char-

acterization is extremely difficult. For one thing, point

values of hydraulic conductivity are rarely, if ever,

available. Cores are expensive and often provide biased

results. Even if exact measurements of hydraulic conduc-

tivity were available, the multivariate distribution is

impossible to characterize.

[209] The previous paragraphs are not as negative as they

sound. They simply imply that the purported objective of

effective and equivalent parameters cannot be met in

practice. That is, existing approaches are not appropriate

to find ‘‘representative’’ values of hydraulic conductivity in

real aquifers. Instead, they must be considered as a frame-

work for analyzing flow through heterogeneous media and

for properly interpreting field data. It is from this perspec-

tive that the work of the last 30 years plus must be viewed.

6.2. Results Related to Effective Parameters

[210] 1. Regarding methods, perturbation techniques of-

ten combined with Green’s function approaches remain the

most widely used approach.

[211] 2. From this perspective most methods are identical

up to second order in sY. That is, if sY is small (say,

significantly smaller than 1), any averaging will do.

[212] 3. The reference values of effective conductivity up

to second order remain those of Gutjahr et al. [1978]: Keff =

KG[1 + (1
2
� 1

n
)sY

2 ], which are strictly valid only for mean

uniform flow in infinite aquifers.

[213] 4. Results are available for mean uniform flow in

the mean flow up to sixth order in sY. The resulting

expression is approximately consistent with Keff = KG

exp[(1
2
� 1

n
)sY

2 ] in isotropic media.

[214] 5. Anisotropy in Keff emerges as a natural conse-

quence of anisotropic spatial correlation even when K is

locally isotropic. The ratio of anisotropy in directional Keff

values is a function of the variance of (log) conductivity and

the correlation scales anisotropy ratio.

[215] 6. Results are also available for nonstationary log

conductivity fields or bounded domains. However, in these

cases an effective K does not exist. Instead, pseudoeffective

(i.e., spatially variable) K must be defined. Pseudoeffective

parameters must also be sought when the flow field is

nonuniform. This can be the case when the expected value

of K is variable in space or when flow is conditioned to

local conductivity values.

[216] 7. Convergent flow is the most interesting case of

nonuniform flow because it is the one created by a pumping

well. Here the pseudoeffective K depends on radial distance

from the well and on the boundary conditions. If flow is

prescribed at the well, the Keff at the well is the harmonic

mean of the hydraulic conductivity distribution, KH, and

grows to the value corresponding to mean uniform flow

conditions (e.g., the geometric mean, KG, in two dimen-

sions) at large distances.

[217] 8. A particularly appealing approach is the residual

flux method of Neuman and coworkers. The relevance of

the method comes from the fact that, first, pseudoeffective

parameters can be derived under general flow conditions

and, second, it yields not only (pseudo)effective conduc-

tivities but also an effective equation for the moments of

the dependent variables. Unfortunately, the resulting equa-

tion is difficult to work with in analytical terms. Still, in

simple cases it yields the same results as other methods,

and in difficult cases (bounded domains and conditioned log

conductivity fields) it is amenable to numerical solution.

6.3. Results Related to Equivalent Parameters

[218] 1. Whenever ergodicity is valid or reasonable to

invoke (e.g., uniform in the mean flow and large domain),
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equivalent K is identical to effective K. In fact, the two

terms can be used interchangeably.

[219] 2. However, the concept of equivalent parameters

is better suited for solving the problem of upscaling.

That is, given the distribution of conductivity over a fine

grid, find the value that should be used over larger

blocks.

[220] 3. A number of formulae are available for upscaling

provided that one solves the flow equation over the fine

grid. Since this is precisely what upscaling tries to avoid, the

practical use of these equations is limited. However, they

make it apparent that the equivalent K value of a block is

not solely a function of the values of conductivity within

such block. That is, equivalent K is nonlocal.

[221] 4. Nonlocality means that equivalent K must be

expressed as a spatial convolution spanning both point

values of conductivity within the block and surrounding

the block.

[222] 5. Nonlocality reflects that equivalent K depends on

the actual boundary conditions applied to the block, which,

in turn, depend on the hydraulic conductivity values sur-

rounding the block. Still, quite good values can be obtained

using simplified boundary conditions, notably using peri-

odic boundary conditions.

[223] 6. The formal similarity between nonlocal equiva-

lent K values and residual flux theory suggests that a strong

link exists between these two concepts. However, this link

remains to be explored.

[224] 7. Equivalent hydraulic conductivity can be viewed

as a spatial random function. Its mean value and covariance

function can be characterized, so that it can be conditioned

to local measurements.

[225] 8. Equivalent K, when existing, can have tensorial

properties, not only because the covariance of the point

conductivity values is anisotropic or because point values

are tensorial but also because of the geometry of the block.

In this case, equivalent K will tend to be smallest in the

direction along which the block is largest. Equations are

available for obtaining the equivalent hydraulic conductiv-

ity tensor using simplified methods such as power averaging

or renormalization techniques. This result highlights the

need to treat block equivalent K as a spatial random

function. For example, working with a stack of elongated

blocks with (mean) anisotropic equivalent K would be

wrong if one is not willing to acknowledge in the model

the ensemble of (variable) values of K in each block. This

can be very complex.

[226] 9. The above may lead one to question the actual

need for upscaling. One reason is related to the increasing

power of available computational resources. This dramati-

cally reduces the need for coarse-grid parameters obtained

from direct numerical upscaling methods. At a more fun-

damental level it is recognized that stochastic averages are

valid at the same scale as the original equations being

averaged. This is naturally embedded in approaches based

on nonlocal conditional stochastic moment equations,

which provide equivalent K values that vary smoothly in

space. This reduces dramatically the need for upscaling and

space averaging.

6.4. Results Related to Interpreted K and Scale Effects

[227] 1. Most results related to interpreted K are restricted

to two-dimensional scenarios because most hydraulic

tests are interpreted assuming two-dimensional flow. That

is, it is usual to work with transmissivity rather than

hydraulic conductivity. Still, significant work has been

performed recognizing that, most often, flow is indeed

three-dimensional.

[228] 2. Hydraulic test interpretations that are based on

total drawdown (such as variations of the Thiem equation,

pulse tests, early time Theis curves, or specific capacity)

yield interpreted T values which characterize the distribu-

tion of the transmissivity values around the well.

[229] 3. Hydraulic test interpretations that are based on

the rate of growth of drawdown (such as Cooper-Jacob or

recovery test interpretations) yield large-scale equivalent T

values. The size of the region characterized by the test

depends on the duration of pumping.

[230] 4. These findings might appear to close the circle by

showing that these latter interpretations indeed lead to the

kind of equivalent parameters that are needed for building

models. However, it is emerging that these parameters are

often larger than what existing formulae for effective and

equivalent parameters imply. That is, transmissivity values

derived form long-time pumping tests are larger, often much

larger, than the geometric average of point transmissivity

values predicted by theory.

[231] 5. An important point is the existing relationship

between the ensemble values of interpreted parameters in

order to allow direct comparison with the actual statistics of

the spatial random function (assumed known). Thus much

information could be derived from geostatistical interpreta-

tions of hydraulic tests. This topic is still in a very

preliminary stage.

[232] 6. The topic of scale effects in conductivity and

transmissivity is not settled. In fact, some authors attribute

these effects to the flow geometry around the well. Yet we

feel that the body of evidence is large enough to consider

these effects real and frequent. We attribute them to high

connectivity of high conductivity (or transmissivity) values.

6.5. In Conclusion

[233] The number of results related to representative

hydraulic conductivities is impressive. The last 30 years

have indeed been fruitful. Still, a number of challenges

remain. These include the following: (1) the need for

further insights on when and under what conditions

pseudoeffective, equivalent, and interpreted parameters

are interchangeable; (2) an analysis of the relationship

between representative parameters and connectivity; and

(3) the need for increased attention to generating realistic

conductivity fields, conditioned by geological information.

Generation of geologically based conductivity fields has

been a fertile field. However, it has grown relatively

independent of the stochastically based literature, except
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for some preliminary results offered by the composite

media approach. The time is probably ripe for the two

fields to march together.

NOTATION

B domain thickness [L].
Ca covariance function of SRF a.
e anisotropy ratio (e = l3/l1 or l2/l1).

erf, erfc error function and complementary error
function.

E(x) energy dissipation function.
E1 (L) Exponential integral function.

f(x) source term.
G(x, x0) deterministic Green’s function.
Gr(x, x

0) random Green’s function.
h hydraulic head [L].
eh hydraulic heads computed at the coarse-scale

problem.
H Hurst coefficient.
IY integral scale of log hydraulic conductivity [L].
Ii directional integral scale of log hydraulic

conductivity [L].
I identity tensor.
J mean hydraulic gradient [ ].
k wave vector (k1, k2, k3) in spectral space.

K, K hydraulic conductivity (either scalar or tensor)
[L T�1].

KA arithmetic mean of the hydraulic conductivity
values [L T�1].

KG geometric mean of the hydraulic conductivity
values [L T�1].

KH harmonic mean of the hydraulic conductivity
values [L T�1].

Kb tensor of block-scale (or upscaled) hydraulic
conductivity [L T�1].

Keff tensor of effective (or pseudoeffective) hydraulic
conductivity [L T�1].

Keff,i effective (or pseudoeffective) hydraulic con-
ductivity along direction i (i = 1, 2, 3) [L T�1].

Keff,ss effective (or pseudoeffective) hydraulic con-
ductivity under steady state [L T�1].

Keq equivalent hydraulic conductivity [L T�1].
Kint interpreted hydraulic conductivity [L T�1].
Kw hydraulic conductivity at the well location [L

T�1].
Kc(x) spatially varying conditional pseudoeffective

hydraulic conductivity tensor [L T�1].
~KG,ii upscaled hydraulic conductivity geometric

mean [L T�1].
L finite size of domain [L].
m =hYi.
n problem dimensionality.

p( ) probability density function (pdf).
q vector of Darcy’s velocity [L T�1].
Q pumping rate [L3 T�1].
r residual flux vector (r = �hK0rh0i).
r radial distance.

rw well radius [L].
S storativity [L�1].

Sint interpreted storativity [L�1].
t time [T].
t* dimensionless time.

T transmissivity [L2 T�1].
TA arithmetic mean of the transmissivity values [L2

T�1].
TG geometric mean of the transmissivity values [L2

T�1].
TH harmonic mean of the transmissivity values [L2

T�1].
Teff effective (or pseudoeffective) transmissivity [L2

T�1].
Teq, Tb equivalent transmissivity [L2 T�1].

Tint interpreted transmissivity [L2 T�1].
Tw transmissivity at the well location [L2 T�1].
V averaging volume [L3].

x, xi vector location [L].
Z(x, w) spatial random function.

Y natural logarithm of hydraulic conductivity or
transmissivity.

g(s) semivariogram (function of separation
distance, s).

d( ) Dirac’s delta function.
q angle.
l isotropic correlation scale of Y [L].
li correlation scale along horizontal direction xi

[L].
lH harmonic average of correlation scales [L].
r dimensionless flow domain size (measured in

the flow direction); alternatively, normalized
radial distance (r = r/l).

brY Fourier transform of the correlation function of
Y.

sb
2 variance of random variable b.
s weighted average of the covariance function of

Y.
x dimensionless distance.
w coordinate in probability space.
r gradient operator.
a spatial average of a.
a0 random fluctuation (perturbation) of stochastic

variable a.
a(i) ith-order term in asymptotic expansion of a.
c subscript, indicating conditioning on measure-

ments.
T superscript, transpose operator.

A large number of auxiliary variables and functions are used
throughout the text. In such cases, definitions follow the
first appearance. Angle brackets indicate expected value.
Vertical bar indicates conditioning in probability space.
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Gómez-Hernández, J. J. (1991), A stochastic approach to the si-
mulation of conductivity fields conditioned upon data measured
at a smaller scale, Ph.D. dissertation, Dep. Appl. Sci., Stanford
Univ., Stanford, Calif.

Gómez-Hernández, J. J., and S. M. Gorelick (1989), Effective
groundwater model parameter values: Influence of spatial varia-
bility of hydraulic conductivity, leakance, and recharge, Water
Resour. Res., 25(3), 405–419.
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des methods variationelles, Ph.D. thesis, Paris Sch. of Mines,
Paris.

Li, S.-G., and D. McLaughlin (1995), Using the nonstationary
spectral method to analyze flow through heterogeneous trending
media, Water Resour. Res., 31(3), 541–552.

Loaiciga, H. A., R. B. Leipnik, M. A. Mariño, and P. F. Hudak
(1993), Stochastic groundwater flow analysis in the presence of
trends in heterogeneous hydraulic conductivity fields, Math.
Geol., 25(2), 161–176.

Loaiciga, H. A., R. B. Leipnik, P. F. Hudak, and M. A. Mariño
(1994), Effective hydraulic conductivity of nonstationary aqui-
fers, Stochastic Hydrol. Hydraul., 8(1), 1–17.

Loaiciga, H. A., R. B. Leipnik, P. F. Hudak, and M. A. Mariño
(1996), 1-, 2-, and 3-dimensional effective conductivity of aqui-
fers, Math. Geol., 28(5), 563–584.

Lough, M. F., S. H. Lee, and J. Kamath (1997), A new method to
calculate effective permeability of gridblocks used in the simula-
tion of naturally fractured reservoirs, SPE Reservoir Eng., 12(3),
219–224.

Lu, Z., and D. Zhang (2002), On stochastic modeling of flow in
multimodal heterogeneous formations, Water Resour. Res.,
38(10), 1190, doi:10.1029/2001WR001026.

Madden, T. R. (1976), Random networks and mixing laws, Geo-
physics, 41(6A), 1104–1125.

Mandelbrot, B. B., and J. W. Van Ness (1968), Fractional Brow-
nian motions, fractional noises and applications, SIAM Rev., 10,
422–437.

Mantoglou, A., and J. L. Wilson (1982), The turning bands method
for simulation of random fields using line generation by a spec-
tral method, Water Resour. Res., 18(5), 1379–1394.

Martinez-Landa, L., and J. Carrera (2005), An analysis of hydrau-
lic conductivity scale effects in granite (Full-scale Engineered
Barrier Experiment (FEBEX), Grimsel, Switzerland), Water Re-
sour. Res., 41(3), W03006, doi:10.1029/2004WR003458.

Matheron, G. (1965), Les variables régionalisées et leur estima-
tion, Masson, Paris.
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