
Representing Actions- I :
(Laws, Observations and Hypotheses)

Chitta Baral1, Michael Gel fondI and Alessandro Provetti2
(1) (2)
Department of Computer Science C.I.R.F.I.D.
University of Texas at E1 Paso Universit£ di Bologna
E1 Paso, Texas 79968 U.S.A. 1-40121 Bologna ITALY
{ chitta, mge¥ond} @cs.utep.edu provetti@cirfid.unibo.it
915-747-6952/5030 (voice/fax)

Abstract

We propose extensions £0 and £1 of the action
description language .4 that can express both ac-
tual and hypothetical situations, observations of
the truth values of fluents in these situations (as
opposed to hypothetical values of fluents express-
ible in A), and observations of actual occurrences
of actions. The corresponding entailment rela-
tion formalizes various types of common-sense
reasoning about actions and their effects not
modeled by the previous approaches. We then
formalize the notion of planning from the current
situation using £1.

Introduction
To perform nontrivial reasoning an intelligent agent
situated in a changing domain needs the knowledge of
causal laws that describe effects of actions changing
the domain, the ability to observe and record occur-
rences of these actions and the truth values of fluents1

at particular moments of time. Discovery of methods
of representing this kind of information in a form al-
lowing various types of reasoning about the dynamic
world and at the same time tolerant to future updates
is one of the central problems of knowledge represen-
tation.

Recently, there has been several efforts towards sys-
tematic development of provably correct methods
(Gelfond & Lifschitz 1992; Sandewall 1992; Lesperance
et al. 1994) to reason about actions. Our approach
is an extension of (Gelfond & Lifschitz 1992) where
the authors introduced the high-level action descrip-
tion language .4 capable of expressing causal laws de-
scribing effects of actions as well as statements about
values of fluents in possible states of the world.

In the last two years the syntax and semantics of
,4 were expanded to allow descriptions of the effects
of concurrent and non-deterministic actions as well
as descriptions of global constraints expressing time

1By fluents in this paper we mean propositions whose
truth values depend on time.

independent relations between fluents (Baral & Gel-
fond 1993; Kartha & Lifschitz 1994; Bornscheuer &
Thielscher 1994). We also have by now a collection of
sound and often complete translations from domain
descriptions in these languages into disjunctive, ab-
ductive and equational logic programs (Dung 1993;
Denecker ~: De Schreye 1993; Holldobler &: Thielscher
1993; Turner 1994). This work helped to better under-
stand the underlying ontological principles of reason-
ing about actions as well as advantages and limitations
of general-purpose non-monotonic formalisms. It also
allowed to establish equivalence of some of the pre-
viously known theories of actions seemingly based on
different intuitions, languages and logics (Kartha 1993)
and stimulated work on the theory and implementation
of logic programming languages (Apt ~z Bezem 1991;
Turner 1993; Lifschitz & Turner 1994).

The goal of this paper2 is to further expand the ex-
pressive power of ,4 and its dialects. In particular, we
propose an extension of ,4 that can express actual sit-
uations, observations of the truth values of fluents in
these situations (as opposed to hypothetical values of
fluents expressible in ¢4), and observations of actual
occurrences of actions. The corresponding entailment
relation formalizes various types of common-sense rea-
soning about actions and their effects not modeled by
the previous approaches.

We use this extension of A to formalize planning in
a changing environment. The following example (a
simpler version of the London-Glasgow problem (Mc-
Carthy)) further explains our goal.

John has the knowledge that if he has a car then by
doing the action drive-to-the:airport he will be at-the-
airport. Similarly, if the action hit-car occurs then he
will not have-a-car, if the action rent-a-car occurs then
he will have-a-car, and if the action pack occurs he
will have his suitcase packed. He knows that he has
a car and his suitcase is unpacked and his goal is to
bring his packed suitcase to the airport. His plan of

2Supported by the grants NSF-IRI-92-11-662, NSF-IRI-
91-03-112, and NSF-CDA 90-15-006.

17

From: AAAI Technical Report SS-95-07. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

packing the suitcase and driving to the airport is ade-
quate to achieve his goal. He then follows his plan and
starts packing his suitcase. But after finishing pack-
ing he observes his car being hit. Following the rest
of his original plan will no longer achieve his goal. In-
stead the plan of first performing rent-a-car and then
performing drive-to-the-airport would be adequate.

Our language should allow elegant representation of
the above story and should have a powerful mechanism
to reason about the above plans. In the next sections
we discuss the syntax and semantics of such a language.

Syntax of £o
We will start with the description of a language £0
capable of expressing actual observations. We will then
extend £0 to express hypotheses.

The alphabet of £0 consists of three disjoint nonempty
sets of symbols ~, .4 and $, called fluents, actions, and
actual situations. Elements of A and $ will be denoted
by (possibly indexed) letters a and s respectively.
will also assume that S contains two special situations
so and sN called initial and current situations. The
’N’ in SN corresponds to the word ’Now’.

A fluent literal is a fluent possibly preceded by -~. Flu-
ent literals will be denoted by (possibly indexed) letters
f and p (possibly preceded by -~). -~-~f will be equated
with f.

There are two kinds of propositions in £0 called causal
laws and facts.

An effect law is an expression of the form

a causes f if pl,...,p,~ (1)

where a is an action, and f, pl,...,pn (n >_ 0) are
fluent literals, pl,...,P,, are called preconditions of
(1). We will read this law as "f is guaranteed to be true
after the execution of an action a in any state of the
world in which Pl ...P,~ are true". If n = 0, we write
the effect law as a causes f (la)

An atomic fluent fact is an expression of the form

/ at s (2)
where f is a fluent literal and s is a situation. (Unless
otherwise stated by situations we will mean actual sit-
uations.) The intuitive reading of (2) is "f is observed
to be true in situation s".

An atomic occurrence fact is an expression of the form

a occurs__at s (3)

where (~ is a sequence of actions, and s is a situation. It
states that "the sequence ~ of actions was observed to
have occurred in situation s". (We assume that actions
in the sequence follow the next action in the sequence
immediately).

An atomic precedence fact is an expression of the form

sl precedes s~ (4)

where sl and s2 are situations. It states that situation
s2 occurred after situation sl.

Propositions of the type (1) express general knowledge
about effects of actions and hence are referred to as
laws. Propositions (2), (3) and (4) are called atomic
facts or observations. A fact is a propositional combi-
nation of atomic facts.

A collection of laws and facts is called a domain de-
scription of £0. The sets of laws and facts of a do-
main description D will be denoted by Dz and Dl re-
spectively. We will only consider domain descriptions
whose propositions do not contain the situation con-
stant SN.

To see how the domain descriptions of £0 can be used
to represent knowledge about actions let us consider
the following example:

Example 1 Suppose that we are given a series of ob-
servations about "Fred":

(a) when the water pistol was squirted Fred was seen
to be alive and dry,

(b) in a later moment a shot was fired at Fred.

Suppose also that it is generally known that

(c) squirting makes Fred wet, and

(d) shooting makes Fred dead

The above information can be represented by a domain
description D1 consisting of the following propositions:

(pl) alive at so (p2) dry at so
(p3) squirt occurs_at so (p4) so precedes
(p5) shoot occurs_at sl (p6) squirt causes -~dry
(p7) shoot causes "~alive

To complete the description of D1 we need to define
its language. For simplicity we assume that this lan-
guage contains only the fluents and actions explicitly
mentioned in the propositions of D1. Unless stated
otherwise the same assumption will be made in other
examples throughout this paper.

Domain descriptions in £0 are used in conjunction with
the following informal assumptions which clarify the
description’s meaning:

(a) Changes in the values offiuents can only be caused
by execution of actions.

(b) There are no actions except those from the lan-
guage of the domain description.

(c) There are no effects of actions except causal laws.

(d) No actions occur except those needed to explain
the facts in the domain description.

18

(e) Actions do not overlap or happen simultaneously?

These assumptions give a intuitive understanding of
domain descriptions of £0.

Consider for instance domain description D1 from Ex-
ample 1. It is easy to see that D1 together with as-
sumption (d) implies that squirt is the only action
which occur between so and sl and that shoot is the
only action which occur between sl and sg. Using D1
with the assumptions (a) - (e) we can conclude
at the moment sl Fred is wet but alive while at the
moment sN (i.e. at the end of the story) he is wet and
dead. Our goal in this paper is to build a mathemati-
cal model which will help us to better understand and
eventually mechanize these types of arguments. As the
first step we suggest a semantics of domain descriptions
of/:0 which precisely specify the sets of acceptable con-
clusions which can be reached from such descriptions
and assumptions (a)-(e).

Semantics of £0
In this section we introduce a semantics of a domain
description in £0. We start with defining causal models
of D and proceed by explaining when facts are true in
these models.

A state is a set of fluent names. A causal interpretation
is a partial function 9 from sequences of actions to
states such that:

(1) Empty sequence [] belongs to the domain of 9 and
(2) 9 is prefix-closed4.

9([]) is called the initial state of 9. The partial func-
tion 9 serves as interpretations of the laws of D. If a
belongs to the domain of 9 we say that a is possible
in the initial state of 9.

Given a fluent f and a state ~r, we say that f holds in
(f is true in tr) if f E ~; -~f holds in tr (f is false

in tr) if f ~ ~r. The truth of a propositional formula C
with respect to ~r is defined as usual.

To better understand the role 9 plays in interpreting
domain descriptions let us first use it to define models
of descriptions consisting entirely of effect laws. To
this goal we will attempt to carefully define effects of
actions as determined by such a description D and our
informal assumptions (a)-(e).

A fluent f is an (immediate) effect of (executing)
tr if there is an effect law
"a causes f if Pl, ¯ ¯ ¯, Pn" in D whose preconditions
hold in or. Let

3In the extended version of the paper we will allow si-
multaneous actions. We exclude it here for simplicity.

4 By prefix closed we mean that for any sequence of ac-
tions a and action a, if t~ o a is in the domain of ¯ then so
is c~. (Recall that o denotes concatenation, and c~oa means
the sequence of actions where a follows a).

E+(tr) = {f : f is an effect of a in tr},
E~’(cr) = (f: ~f is an effect of a in ~r}

Res(a, tr) = ~r U E+ (c~) \).

The following definition captures the meaning of effect
laws of D.

Definition 1 A causal interpretation 9 satisfies ef-
fect laws of D if for any sequence c~ o a from the lan-
guage of D

9(a o a) = Res(a, 9(a)) if E+(9(c0) M E//(9(o0)

and undefined otherwise.
We say that 9 is a causal model of D if it satisfies
all the effect laws of D []

Let D be an arbitrary domain description and let a
causal interpretation 9 be a causal model of D. To
interpret the observations of D we first need to define
the meaning of situation constants so, sl, s~, ... from
S. To do that we consider a mapping E from S to
sequences of actions from the language of D. This
mapping will be called a situation assignment of S if
it satisfies the following properties:

1. E(s0) = [], and
2. for every si E S, E(si) is a prefix of E(sg).

Definition 2 An interpretation M of £~0 is a pair
(9, E), where 9 is a causal model of D, 22 is a sit-
uation assignment of S and E(sg) the domain of9.
[]

E(sg) will be called the actual path of M.

Now we can define truth of facts of D w.r.t, an inter-
pretation M. Facts which are not true in M will be
called false in M.

Definition 3 For any interpretation M = (9, E).

(1) (fat s) is true inM (or satisfied by M) if
true in 9(22(s)).

(2) (c~ occurs_at s)is true in M ifE(s)oc~ is a
of the actual path of M.

(3) (sl precedes s2) is true in M ifE(sl) is a
prefix of E(s2)

(4) Truth of non-atomic facts in M is defined as usual.

A set of facts is true in interpretation M if all its mem-
bers are true in M.

To complete the definition of the model we need only to
formalize the assumption (d). This is done by imposing
a minimality condition on the situation assignments of
S which leads to the following

Definition 4 An interpretation M = (9, E) will
called a model of a domain description D in £0 if the
following conditions are satisfied:

19

(1) ffl is a causal model of
(2) facts of D are true in M, and
(3) there is no other interpretation g = (ff~, ~/)
that N satisfies the conditions (1) and (2) H’(SN)
is a subsequence~ of ~](8N).

The following proposition shows that for a model
(~, E) of a domain description in £:o, ~ is completely
determined by its initial state.

Proposition l Let M1 = (~1,E1) and M2
(~2, H2) be two models of a domain description D
language Z0. If ~1([]) = ff/2([]) then ~1 = ffJ2.

Corollary 1 Let D be a domain description in lan-
guage £0. If for all models of D, ~([]) is uniquely
defined then ff~ is also uniquely defined. []

A domain description D is said to be consistent if it
has a model.

Definition 5 A domain description D entails a fact p
(written as D ~ p) iff p is true in all models of D. []

Definition 6 A domain description D is said to de-
fine a unique actual path if for any two situations
sl and s2 that are explicitly mentioned in D, D
sl precedes s2 or D ~ s2 precedes sl. []

Lamina 1 Let D be a domain description that de-
fines a unique actual path, and the only atomic fluent
facts which occur in propositions of D are of the form
f at so. Then situation assignments of all models of
D coincide on SN and on all the situations explicitly
mentioned in D. []

Examples
In this section we illustrate by way of examples how
domain descriptions are used to represent information
and how the above notion of entailment captures in-
formal arguments based on the information from these
descriptions and the informal assumptions (a) - (e).
We start with Example 1 from Section .

Proposition 2 Consider the domain description D1
from Example 1. We have

01 ~ ((-,dry A -~alive) at sg), and
01 ~ ((-~dry A alive) at sl) []
Example 2 (Reasoning by cases) Let us consider
a modification of Example 1 where there is a precon-
dition of being loaded for the shoot action to be deadly
and where there are two guns at least one of which is
initially loaded.

(ql) alive at so
(q2) loadedl at so V loaded2 at so
(q3) [shootl,shoot2] occurs_at so D2
(q4) shoot1 causes -~alive if loaded1
(q5) shoot2 causes -~alive if loaded2

SGiven a sequence X = Xl,...,Xm, another sequence
Z = zl,..., zn is a subsequence of X if there exists a strictly
increasing sequence il,..., in of indices of X such that for
all j : 1,2...,n, we have xij = zj.

Proposition 3 D2 ~ -,alive at SN.

Example 3 [Explaining observations] Let us now con-
sider a modification of Example 1 where instead of (b)
"In a later moment a shot was fired at Fred", we have

(br) In a later moment Fred was observed to be dead

and where we assume that our domain contains unit
actions al,..., an different from squirt and shoot.

The resultant story can be represented by a domain
description/93 consisting of the propositions (pl)- (p4)
and (p6) - (p7) of D1 and the following proposition.

(p5I) ~alive at sl []

Proposition 4 D3 ~ [squirt, shoot] occurs__at so.

Domain descriptions language and

hypothetical reasoning
Even though domain descriptions of £:0 can express
types of knowledge and reasoning not easily expressible
in other variants of.A, they lack the ability of the latter
to do hypothetical reasoning. Even the simple original
version of ,4 allows propositions of the form

f after at,..., am (5)

read as "Assuming that the sequence of actions
[al,..., a~] occurs starting at the initial situation, flu-
ent f would be true in the resulting situation", which
are used to query domain descriptions about possi-
ble outcomes of actions. In this section we introduce
propositions of the form

f after [al,...,an]at s (6)

called hypotheses which slightly generalizes (5). Hy-
potheses are read as "Assuming that the sequence of
actions [al,...,an] occur starting at the situation s
fluent f would be true in the resulting situation".

If s in (6) is sg then we simply write
f after [al,...,an] (7)

If n in (7) is 0, then we simply write
currently f (8)

The language £;0 when augmented with propositions
of the form (6) is referred to as ~t. Even though L:l
extends ~:0 by allowing propositions of the form (6),
domain descriptions in L:l are in the language of £:0.
i.e., hypotheses are not part of a domain descriptions in
£1. Only laws and facts are part of a domain descrip-
tion. But, hypotheses can be entailed from a domain
description in ~1. We now define this entailment.

Let D be a domain description and M = (~,H)
an interpretation of D. We say that a hypothesis (6)
is true in interpretation M if f is true in ff~(H(s)
[al,...,
A set H of hypotheses is true in M if every hypothesis
from H is true in M.

20

Definition 7 Let D be a domain description and H
be a hypothesis in/:1. We say D ~ H iff H is true in
all models of D. []

Let H1 and H2 be two sets of hypotheses. We say
that the premise H1 entails conclusion H2 in D if H2
is true in every model of D in which H1 is true. We
will denote this by H1 ~D H2.

Proposition 5 @ ~D H iff D ~ H []

A set of hypotheses H is is inconsistent w.r.t, a domain
description D if no model of D satisfies H.

It is important to notice that the entailment relation
(~D) defined by a domain description D is monotonic
- addition of new hypothesis to the set of hypotheses
H1 can only decrease the set of models of D satisfying
it and hence can only increase the set of conclusions.
Non-monotonicity occurs only when new information
about the real world (i.e. new laws or new facts) are
added to a reasoner’s knowledge.

Example 4 Consider the following domain descrip-
tion D4 consisting of (pl) and (p2):

(pl) shoot causes ",alive if loaded
(p2) load causes loaded

Suppose that, given the domain description D4, a rea-
soner would like to know if Fred would be dead after
shooting under the assumption that initially the gun is
loaded. Notice that both statements are hypothetical
and therefore are naturally represented as follows:

H1 = {loaded after [] at s0)
H2 = -,alive after [shoot] at so

The question can be formulated as H1 ~D4 H2? The
answer is obviously yes.

Planning in a dynamic environment
Example 5 Consider the story about John from the
introduction. It has actions pack, drive, rent, and hit
and fluents home, at_airport, has_car, and packed. The
effects of the actions together with some initial condi-
tions are described by the domain description

(fl)home at so (f2)-~at_airport at so]
(f3)has_car at so (ll)rent causes has_car

]
(12)hit causes -~has_car
(13)drive causes at_airport if has_car D5

(14)drive causes -,home if has_car
(15)pack causes packed if home

Suppose now that the agent John, whose initial knowl-
edge is described by D5 needs to bring a packed suit-
case to the airport. To find a plan of actions John
searches for a sequence s such that D5 ~ (packed
at_airport) after s. It is easy to check that sy = so
and

D5 ~ (packed A at_airport) after s0, 6
where So = Lack, drivel. Theoretically, such an s0
can be found by generating sequences of actions and
testing them using the entailment relation of D. More
sophisticated methods of course are needed for practi-
cal planning but we will not discuss them in this paper.

Satisfied with the plan John packs his suitcase. Exe-
cution of this action is reported by expanding Ds by

(f4) pack occurs_at sl (f5) so precedes

We denote the resulting description by D6. All he
needs to do now is to execute sl = [drive]. Suppose
however, that John observes that his car being hit by a
truck, i.e. D7 is obtained from D6 by adding the state-
ments, (f6) hit occurs_at s2 and (f7) sl precedes

It is easy to see that D7 ~ currently-~has_car
and hence the plan sl is invalidated by this new infor-
mation. To revise it, John poses the query
? D7 ~ (packed A at_airport) after s
It is again easy to check that D7 ~ (packed
at_airport) after s2
where s2 = [rent, drive].
John goes on to execute s2 (this time without unpleas-
ant interruptions). []

As evident from the above example, the ability to ex-
press the current situation, record facts and do hy-
pothetical reasoning makes £:1 appropriate for use in
designing intelligent agents capable of planning in the
changing environment. More formally,

Definition 8 Let D be a domain description in £1
and G be a set of fluent literals. A sequence s of
actions is a plan for achieving a goal G from the current
situation if D ~ f after s for every fluent literal
f EG. []

Proposition 6 Let D be a domain description with
the unique actual path and let sk be a situation in D
such that there does not exist a situation s in D such
that D ~ sk precedes s. Then for any sequence
s = ao/~ of actions and any fluent f, D ~ (f after s)
iff D t_J {(a occurs_at sk)} ~ (f after /~) []

Conclusions
We proposed the extensions £0 and /:1 of the ac-
tion description language .4 able to express actual
situations, observations of the truth values of fluents
in these situations, and observations of actual occur-
rences of actions. Entailment relation in this lan-
guage allows modeling of various types of hypothet-
ical reasoning. This feature, together with the abil-
ity to denote current actual situation, allows to rea-
son about the design and correctness of plans in the
changing environment. In the full paper (accessible
via http://cs.utep.edu/chitta/chitta.html) we present

6a A b after c is a shorthand notation for { a after c,
b after c }

21

provenly correct implementation of limited forms of
reasoning in /~x based on translation of domain de-
scriptions of £:1 into logic programs.

The work in this paper can be extended in several di-
rections. In particular, Z:l can be easily generalized to
deal with partially defined actions, to allow concurrent
and non-deterministic actions (Baral & Gelfond 1993),
and global constraints (Kartha & Lifschitz 1994). An-
other promising direction of research is to construct
planners based on/21 (see full paper for more on this.),
particularly using extensions of logic programming and
situation calculus.

Our work is obviously a continuation of the approach
of formalizing actions suggested in (Gelfond & Lifs-
chitz 1992) which is deeply rooted in situation calculus
(McCarthy & Hayes 1969; Gelfond, Lifschitz, & Rabi-
nov 1991). Our formalization, especially in its logic
programming form, can be viewed as a combination
of situation calculus with another prominent approach
to formalizing actions - event calculus of (Kowalski
Sergot 1986). To the best of our knowledge the first
paper combining the two in one formalism is (Pinto
Reiter 1993)7. Ideologically, their approach is similar
to ours. In (Pinto & Reiter 1993) the situation calcu-
lus presented as a theory of classical logic (with some
second order features) which plays the role of our ac-
tion description language. Our approach seem to allow
more forms of incompleteness in the representation of
the domain but the investigation of the precise rela-
tionship is the subject for future work.

References

Apt, K., and Bezem, M. 1991. Acyclic programs.
New Generation Computing 9(3,4):335-365.

Baral, C., and Gelfond, M. 1993. Representing con-
current actions in extended logic programming. In
Proc. of 13th International Joint Conference on Ar-
tificial Intelligence, Chambery, France, 866-871.

Bornscheuer, S., and Thielscher, M. 1994. Repre-
senting concurrent actions and solving conflicts. In
Proc. of German Conference on AL
Deneeker, M., and De Sehreye, D. 1993. Represent-
ing incomplete knowledge in abductive logic program-
ming. In Proceedings of ILPS 93, Vancouver, 147-164.

Dung, P. 1993. Representing actions in logic pro-
gramming and its application in database updates.
In Warren, D. S., ed., Proc. of ICLP-93, 222-238.
Gelfond, M., and Lifschitz, V. 1992. Representing
actions in extended logic programs. In Joint Interna-
tional Conference and Symposium on Logic Program-
ming., 559-573.

7See the October 94 issue of Journal of Logic and Com-
putation for some very recent related works, particularly
the one by Miller and Shanahan.

Gelfond, M.; Lifschitz, V.; and Rabinov, A. 1991.
What are the limitations of the situation calculus?
In Boyer, R., ed., Automated Reasoning: Essays in
Honor of Woody Bledsoe. Dordrecht: Kluwer Aca-
demic.

Holldobler, S., and Thielscher, M. 1993. Actions and
specificity. In Miller, D., ed., Proc. of ICLP-93, 164-
180.

Kartha, G., and Lifschitz, V. 1994. Actions with
indirect effects (preliminary report). In KR 94, 341-
350.
Kartha, G. 1993. Soundness and completeness theo-
rems for three formalizations of action. In IJCAI 93,
724-729.
Kowalski, R., and Sergot, M. 1986. A logic-based
calculus of events. New Generation Computing 4:67-
95.

Lesperance, Y.; Levesque, H.; Lin, F.; Marcu, D.;
Reiter, R.; and Scherl, R. 1994. A logical approach to
high level robot programming- a progress report. In
Working notes of the 1994 AAAI fall symposium on
Control of the Physical World by Intelligent Systems
(to appear), New Orleans, LA.
Lifschitz, V., and Turner, H. 1994. Splitting a logic
program. In Van Hentenryck, P., ed., Proc. of the
Eleventh Int’l Conf. on Logic Programming, 23-38.

McCarthy, J. 1992. Overcoming an unexpected ob-
stacle, manuscript.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence.
In Meltzer, B., and Michie, D., eds., Machine Intel-
ligence, volume 4. Edinburgh: Edinburgh University
Press. 463-502.
Pinto, J., and Reiter, R. 1993. Temporal reasoning
in logic programming: A case for the situation calcu-
lus. In Proceedings of lOlh International Conference
in Logic Programming, Hungary, 203-221.
Sandewall, E. 1992. Features and fluents: A sys-
temetic approach to the representation of knowledge
about dynamical systems. Technical report, Institu-
tionen for datavetenskap, Universitetet och Tekniska
hogskolan i Linkoping, Sweeden.

Turner, H. 1993. A monotonicity theorem for ex-
tended logic programs. In Warren, D. S., ed., Proc. of
lOth International Conference on Logic Programming,
567-585.

Turner, H. 1994. Signed logic programs, manuscript.

22

