
Representing and Characterizing Handwritten Mathematical Symbols

through Succinct Functional Approximation

Bruce W. Char

Department of Computer Science

Drexel University, Philadelphia, PA 19104 USA

charbw@drexel.edu

Stephen M. Watt

Department of Computer Science

University of Western Ontario

London, Ontario N6A 5B7 Canada

watt@orcca.on.ca

Abstract

We model on-line ink traces for a set of 219 symbols to

“best fit” low-degree polynomial series. Using a collec-

tion of mathematical writing samples, we find that in many

cases this provides a succinct way to model the stylus move-

ments of actual test users. Furthermore, even without fur-

ther similarity-processing, the polynomial coefficients from

the writing samples form clusters which often contain the

same character as written by different users. We find this

style of characterization to be an attractive tool due to the

suitability of the representation to computation and mathe-

matical analysis.

1 Introduction

On-line handwriting recognition deals with ink traces,

typically given as sequences of (x, y) coordinates at various

time values, as collected from some electromagnetic or opti-

cal digitizing device. For example, the emerging InkML[3]

standard presents stylus input as a series of strokes,

each stroke containing (possibly with other values) a se-

quence of tuples (x0, y0, t0), (x1, y1, t1) . . . (xn, yn, tn),
where xi, yi, ti ∈ R, 0 ≤ i ≤ n, and t0 < t1 < · · · < tn.

The first two elements of each tuple usually represent the

two dimensional position of the pen tip at a particular mo-

ment in time. The time value may be given as a value in the

tuple or implicitly, implied by a sampling rate. In general,

we cannot assume that the time values ti are equally spaced.

On-line recognition software usually processes input ink

strokes, for example to scale them, smooth them or re-

sample them (replacing actual points by a desired number

of interpolating points). The representation of the digital

ink remains essentially the same, however, as a sequence of

data points along ink traces.

In processing stylus input as handwriting, one could dis-

regard the time sequence information and proceed with an

optical character recognition (OCR) processing of the (x, y)

information as a set of positions with no particular order-

ing. However, handwriting recognition software can bene-

fit from the time sequencing data, as with elastic matching

of the input sequence of points to the sequences of model

characters (see e.g. [13]), or feature extraction such as the

calculation of angles[14], finding loops and curves[2], etc.

We are motivated by the problem of writer-independent

recognition of mathematical handwriting, where the usual

approaches to character recognition are not as successful as

in ordinary text. In this context, we have been led to exam-

ine some old questions afresh and, in particular, to exam-

ine recognition methods based on alternative ink represen-

tations.

Recognition for handwritten mathematical expressions is

more complicated than for ordinary handwriting because of

the two-dimensional nature of the input, because there are

more symbols involved, and because the greater difficulty of

using contextual information (e.g. harder to provide a dic-

tionary of words or phrases against which the input is prob-

ably coming from). Since past techniques have not provided

a complete solution, the door is still open for additional low-

cost techniques that will help.

We explore the idea of modeling the sequence of posi-

tions taken by a stylus while writing a mathematical symbol

to “best fit” Chebyshev polynomials. Using a collection of

writing samples of mathematical symbols, we find that in

many cases it provides a succinct way to model the stylus

movements of actual test users. The principal contributions

of this paper are:

• We find that modeling x(t) and y(t) as Chebyshev se-

ries accurately captures the shape of handwritten math-

ematical characters using few parameters.

• Even without further similarity-processing, we find

the polynomial coefficients from the writing samples

form clusters which often contain the same character

as written by different test users.

The paper is organized as follows: Section 2 describes

how to model traces by expressing x(t) and y(t) as a series

1



in an arbitrary functional basis, and then specifically as a

a Chebyshev series. Section 3 describes our collection of

handwritten mathematical symbols. Section 4 describes the

quality of the models produced. Section 5 presents some

preliminary results on character classes obtained by cluster-

ing models based on their series coefficients. Section 6 re-

lates our approach to previous work, presents conclusions,

and directions for further investigation.

2 Modeling data by approximation with a

functional basis

A well-known technique is to analyze an arbitrary func-

tion f : R → R by writing f as a linear combination of

elements of set of basis functions B = {bi : R → R, i =
0, 1, . . .}:

f(t) =

∞
∑

i=0

cibi(t), ci ∈ R, bi ∈ B (1)

Often the family of functions in B are designed so as to

be orthonormal: 〈bi, bj〉 =
∫

I
bi(t)bj(t)w(t)dt = δij , in-

tegrating with weight w(t) over a suitably defined interval

I = [R1, R2] so that the series (1) is unique. For such a

basis, when w(t) = 1 then ci = 〈f, bi〉.
One can gain insight into f from knowledge of the family

of functions in B and the values of coefficients ci. If the

series defined by (1) closely approximates f in a few terms,

then behavior of f can largely be understood knowing ci

and bi of these terms.

For our analysis, we assume that handwriting traces are

provided as sequences of (xi, yi, ti) tuples that have been

normalized so t0 = 0 and tn = 1. For basis functions

we use Chebyshev polynomials of the first kind, defined

by Tn(t) ≡ cos(n arccos t) and orthogonal for the inner

product 〈f, g〉=
∫ 1

−1
f(t)g(t)/

√
1 − t2dt. We have also ex-

plored the use of Bernstein polynomials as basis functions,

but have not found them as satisfactory for succinct model-

ing of our handwriting samples.

We treat our empirical data traces as functions on [0, 1]
by linear interpolation of the x and y coordinates: X(t) =
xi + xi+1−xi

ti+1−ti

(t − ti), for ti ≤ t < ti+1, 0 ≤ i < n, and

similarly for Y (t). We then develop the Chebyshev series

for X and Y

X(t) =

∞
∑

i=0

αiTi(t), Y (t) =

∞
∑

i=0

βiTi(t). (2)

Well-known techniques exist for computing the coefficients

of a Chebyshev series for a function [4] and are imple-

mented in commonly available mathematical software li-

braries, e.g. [5, 9].

Figure 1. The x, y and combined traces of ǫ:
Data, Degree 3, 6, 10 Chebyshev fits, Superim-

posed.

3 The ORCCA collection of mathematical

handwriting samples

Our samples were drawn from a collection of mathemat-

ical handwriting assembled at the Ontario Research Cen-

tre for Computer Algebra (ORCCA). The collection was

taken from U = 9 test users, who were asked to provide

handwritten samples of M = 239 different mathematical

expressions. Most of these expressions corresponded to a

particular Unicode symbol drawn with one or more strokes.

All test users provided samples to most of the symbols, but

none provided samples for all characters. (It was consid-

ered undesirable to have users write symbols unfamiliar to

them.) There were N1 = 1878 different samples overall.

Of these, there were N2 = 908 samples that consisted of

one stroke for the entire character. To simplify processing,

samples were normalized in the following ways:

1. Data set positions equally spaced in time.

2. 0 ≤ xi, yi, ti ≤ 1 in every sample, by dividing the

raw data values by the appropriate trace minimum and

maximum. This had the effect of having the normal-

ized trace have domain and range within [0, 1], with

every character having either its x or y values extend

to the full range of [0, 1].

2



Figure 2. The (x, y) trace of G: Data, Degree 3,

6, 10 Chebyshev fits, Superimposed.

4 Quality of series approximation

Initially, we computed series approximations to all 908

writing samples where the entire character was written with

one stroke. Figure 1 shows fits of x(t) and y(t) for a typical

sample with Chebyshev approximations of degrees 3, 6 and

10. As can be seen from Figures 1 and 2, the polynomials

do a reasonable job of approximating smoothly drawn char-

acters, even in some cases where there are cusps or loops.

They reproduce less faithfully writing samples with sharper

changes, although even in that case the result is quite sug-

gestive of the character being written.

To explore the feasibility and desirability of Chebyshev

fitting, we computed approximations for the N2 samples

which consisted of one stroke. For each sample fitted, we

computed the root mean square of the deviation between the

sample and the corresponding Chebyshev value:

RMS(φ) =

√

√

√

√

n
∑

i=0

‖φ(ti) − (xi, yi)‖2
2

n + 1
(3)

for a result function φ : t → R2 for a particular sample.Due

to normalization, the range of φ and xi and yi are in [0, 1],
so the range of the RMS function is [0,

√
2]. Table 1 and

Figure 3 show the distribution of RMS for the samples.

Degree < 90% < 95% < 99%
3 .230 .256 .302

4 .188 .211 .254

6 .103 .131 .184

8 .045 .060 .102

10 .021 .029 .059

Table 1. RMS cutoffs by Chebyshev degree

Figure 3. RMS error Chebyshev fits by degree

5 Clustering and Chebyshev coefficients

The Chebyshev polynomials were computed for the N2

one stroke handwriting samples, which covered C = 219
distinct characters. We explored the clustering that occurred

for various numbers of clusters using an efficient implemen-

tation of the k-means algorithm [7, 8, 10], using the Eu-

clidean metric, δ(p, q) =
√

∑d

i=0
(pi − qi)2 as the distance

measure. The average distances for the various degrees is

shown in Table 2, indicating again the conclusion that there

is little difference between results for polynomials beyond

degree 6. We show in Figures 4–6 elements of a few clusters

when 260 clusters are specified for the k-means algorithm.

Out of the N = 906 samples, 870 were in clusters of size

≥ 2 and 740 were in clusters of size ≥ 3.

We have begun experimentation with clustering based on

polynomials coefficients based on simple variations on sam-

ple normalization. One can observe in the results of Figure

4 that “integral”, “slash” and “comma” were being classi-

fied together. We determined that this was due to our deci-

sion to normalize all characters to the same scale regardless

of the size that they were originally written, as described

in step 2 of section 3. An alternative would be to nor-

malize all samples from a user according to the maximum

span over all samples of that user. Since the fit coefficients

are sensitive to scale, scaling in this alternative way causes

similar-shaped samples of a character to fall into different

clusters due to differences in character size. We have found

Degree Mean dist. between polys

3 0.689607

4 0.718386

6 0.745591

8 0.753625

10 0.755495

Table 2. Degree vs average distance between fit

polynomials

3



Figure 4. Elements of Cluster 69 for k-means

run specifying 260 clusters. The cluster has 9

elements: four different test users’ versions of

‘/’ (slash), two each of ‘,’ (comma) and ‘
∫

’ and

one of ‘’’ (prime). The maximum distance to the

cluster center is .197.

Figure 5. Elements of Cluster 5 for k-means run

specifying 260 clusters. The cluster has 8 ele-

ments: three versions of ‘η’, and one each of 5‘.’,

‘1’, ‘9’, ‘ρ’ and ‘e’. The maximum distance to the

cluster center is .063

Figure 6. Elements Cluster 12 for k-means run

specifying 260 clusters. The cluster has 7 ele-

ments: 4 versions of ‘g’, and one each of ‘z’, ‘y’

and ‘q’. The maximum distance to the cluster

center is .048.

that clustering using the concatenation of coefficients from

the uniformly- and user-normalized scalings leads to bet-

ter results in some cases. For example, k-means clustering

using 260 clusters with the concatenated coefficients leads

to a cluster with 6 occurrences of “integral” (the two from

“Cluster 69”, plus four more), and only one other charac-

ter, a “slash” from the previous clustering. A cluster with

the same six samples of “integral”, and another cluster with

the same 4 samples of “comma” occurred using both ap-

proaches. While this approach seems to do a better job

of discriminating and clustering some kinds of characters,

there continue to be clusters with a confluence of different

characters as written by different subjects.

6 Comparison with prior work, Conclusions

and Future directions

Some prior work has looked at representation of data

through other functions, notably through Fourier and

wavelet analysis. For example, Sandaresan et. al. used

Fourier series and wavelets to model handwritten Tamil

using Fourier transform coefficients and wavelets func-

tions [11]. They claimed that wavelets were better than

Fourier series for capturing the localized differences that

help differentiate between some pairs of Tamil characters.

Wavelet functional signatures have been explored in an

OCR context for handwritten Chinese characters [6] and for

printed alphanumeric characters [12, 15]. In [12], a differ-

ent coordinate system was used to make the functional sig-

natures invariant under rotation of the data.

In [1], Hermite polynomial transforms were applied

to extended handwriting samples to develop a handwrit-

ing“textures” classification that could be used to identify a

sample as being from a particular person. Zhang, Bui and

Suen [16] used functional classification (based on wavelets)

as one part of a hybrid recognizer for handwritten numer-

als. The architecture they propose would also also be an

appropriate way of combining the strengths of Chebyshev

characterization with other techniques for recognition.

Initially, our choice of Chebyshev polynomials as the ba-

sis functions was based on computational convenience on

computing series. However, our analysis suggests that “low

frequency changes” which can be approximated by low-

degree Chebyshev series is a fundamental feature of many

handwritten samples of mathematical symbols. This sug-

gests that it or a similar low-cost mathematical representa-

tion of the data can be useful in handwriting recognition in

this domain.

One clear conclusion of this work is that representation

of ink traces using functional bases is an interesting and

useful direction. We find that clusters of an appropriate ra-

dius often include a number of samples of the same char-

acter as given by different test users. However, they can

4



also include similar but different characters. With minimal

effort we have been able to automatically place characters

in clusters of similar shape. This may be used for quick

pre-classification, used in a multi-classifier setting. As our

experiment with the concatenated coefficients in section 5

suggests, different normalization or additional filters easily

computed from the original data could lead to more power-

ful classification results, so is worthy of further investiga-

tion.

The more tantalizing aspect of functional representation

in general, and polynomial representation in particular, is

the conceptual economy it brings to the analysis of the curve

traces. Since low degree implicit polynomial representation

gives high quality approximation to traces, a spectrum of

mathematical tools may be brought to bear on the polyno-

mial functions. For example, the identification of inflec-

tion points and cusps is easy in this representation, while in

the data point representation involves arbitrary parameters

in inspecting neighboring point sets. A secondary property

of this representation is its compactness, reducing the num-

ber of parameters to describe a trace by up to an order of

magnitude. All of the analysis that would be done on the

point representation, and more, can be done on the func-

tional representation.

Given the evident utility of this representation, there are

several questions that merit further investigation. These in-

clude: parameterization by arc-length rather than time, in-

clusion of time and force as coordinates for fitting, choice

of coordinate system (polar vs Cartesian vs custom coor-

dinates to preserve conformal invariance), choice of basis

functions and scaling strategies. In addition, generalization

to multi-stroke characters should be investigated as should

be treatment of multi-character symbols (e.g. sin, log,

etc.)

7 Acknowledgments

This work was conducted with the support of Microsoft

Canada, the National Science Foundation grants REC-

0325872 and CCF-0325685, the NSERC Discovery Grants

Program, Drexel University and the University of West-

ern Ontario. We also wish to acknowledge the assis-

tance of Elena Smirnova, Laurentiu Dragan, and Jeliazko

Polihronov of ORCCA (University of Western Ontario),

and Trip Denton of the Applied Algorithmics Laboratory

(Drexel).

References

[1] Stephane Bres, Veronique Eglin, and C. Volpihac-

Auger. Evaluation of Handwriting Similarities Using

Hermite Transform. In Proc. 10th Intl. Workshop on

Frontiers in Handwriting Recognition, October 2006.

http://hal.inria.fr/view by stamp.php?

label=IWFHR10&langue=en&action todo=

view&id=inria-00108345&version=1.

[2] K.F. Chan and D.Y. Yeung. Elastic structural matching

for online handwritten alphanumeric character recognition.

Technical report, Department of Computer Science, Hong

Kong University of Science and Technology, March 1998.

[3] Y-M. Chee, M. Froumentin, and S.M. Watt (eds). Ink

Markup Language (InkML). http://www.w3.org/TR/

InkML/, October 2006.

[4] C.W. Clenshaw. Chebyshev series for mathematical func-

tions. Nat. Phys. Lab. Math. Tables, 5, 1962.

[5] Brian Gough, Jim Davies, James Theiler, Mark Galassi, Ger-

ard Jungman, Michael Booth, and Fabrice Rossi, editors.

GNU Scientific Library Reference Manual. Bristol, 2nd edi-

tion, 2006.

[6] Lei Huang and Xiao Huang. Multiresolution recognition of

offline handwritten Chinese characters with wavelet trans-

form. In ICDAR ’01: Proc. 4th Intl. Conf. Doc. Analysis and

Recog., page 0631. IEEE Computer Society, 2001.

[7] T. Kanungo, D.M. Mount, N. Netanyahu, C. Paitko, R. Sil-

verman, and A.Y. Wu. A local search approximation algo-

rithm for k-means clustering. In Proc. 18th ACM Symposium

on Comp. Geometry, pages 10–18, 2002.

[8] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu,

Chyristine D. Piatko, Ruther Silverman, and Angela Y.

Wu. Kmlocal. http://www.cs.umd.edu/∼mount/

Projects/KMeans/, October 2005. Version 1.7.1.

[9] Maplesoft. Maple User Manual. Maplesoft, 2005.

[10] David M. Mount. http://www.cs.umd.edu/
∼mount/Projects/KMeans/kmlocal-doc.pdf,

August 2005.

[11] C. S. Sundaresan and S. S. Keerthi. A study of representa-

tions for pen based handwriting recognition of tamil charac-

ters. In ICDAR ’99: Proc. 5th Intl. Conf. on Doc. Analysis

and Recog., page 422, Washington, DC, USA, 1999. IEEE

Computer Soc.

[12] Yuan Y. Tang, Bing F. Li, Hong Ma, Jiming Liu, C.H. Le-

ung, and Ching Y. Suen. A novel approach to optical charac-

ter recognition based on ring-projection-wavelet-fractal sig-

natures. In Proc. 13th Intl. Conf. on Pattern Recognition,

volume 2, pages 325–329, 1996.

[13] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the

art in online handwriting recognition. IEEE Trans. Pattern

Anal. Mach. Intell., 12(8):787–808, 1990.

[14] H.-J. Winkler. HMM-based Handwritten Symbol Recogni-

tion using On-line and Off-line Features. In ICASSP 96,

pages 3438–3441, 1996.

[15] Patrick Wunsch and Andrew F. Laine. Wavelet descrip-

tors for multiresolution recognition of handprinted charac-

ters. Pattern Recognition, 28(8):1237–1249, August 1995.

[16] P. Zhang, T.D. Bui, and C.Y. Suen. Hybrid feature extraction

and feature selection for improving recognition accuracy of

handwritten numerals. In ICDAR ’05: Proc. 8th Intl. Conf.

Doc. Analysis and Recog., volume 1, pages 136–140, 2005.

5



Errata

22 May 2008 Section 2, page 2, corrected

“orthonormal for the inner product 〈f, g〉 =
∫ 1

−1
f(t)g(t)dt”

with

“orthogonal for the inner product 〈f, g〉 =
∫ 1

−1
f(t)g(t)/

√
1 − t2dt”.

6


