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Abstract

A general game player is a system that can play previously unknown games just by
being given their rules. For this purpose, the Game Description Language (GDL) has been
developed as a high-level knowledge representation formalism to communicate game rules to
players. In this paper, we address a fundamental limitation of state-of-the-art methods and
systems for General Game Playing, namely, their being confined to deterministic games with
complete information about the game state. We develop a simple yet expressive extension
of standard GDL that allows for formalising the rules of arbitrary finite, n-player games
with randomness and incomplete state knowledge. In the second part of the paper, we
address the intricate reasoning challenge for general game-playing systems that comes with
the new description language. We develop a full embedding of extended GDL into the
Situation Calculus augmented by Scherl and Levesque’s knowledge fluent . We formally
prove that this provides a sound and complete reasoning method for players’ knowledge
about game states as well as about the knowledge of the other players.

1. Introduction

General Game Playing (GGP) is concerned with the development of systems that under-
stand the rules of previously unknown games and learn to play these games well without
human intervention. The annual AAAI GGP Competition, which has been established in
2005 to foster research in this area, has led to a number of successful approaches and sys-
tems (Kuhlmann, Dresner, & Stone, 2006; Clune, 2007; Schiffel & Thielscher, 2007; Kaiser,
2008; Finnsson & Björnsson, 2008; Kissmann & Edelkamp, 2011; Méhat & Cazenave, 2011;
Kirci, Sturtevant, & Schaeffer, 2011). General game-playing programs are a quintessential
example of systems that end users can customise for their own specific tasks. This makes
GGP an interesting and challenging problem for AI, involving many fundamental issues such
as reasoning, learning, planning and decision making (Pell, 1993). Consequently, General
Game Playing has broader significance to a variety of AI disciplines beyond conventional
computer game playing (Genesereth, Love, & Pell, 2005).
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1.1 Representing the Rules of General Games

The first AAAI Competition saw the introduction of the general Game Description Lan-
guage (GDL) as the foundation for general game-playing systems (Genesereth et al., 2005).
Other machine-processable languages for the specification of games existed before, most no-
tably Gala (for: “Game Language”). But the latter was never used for any purpose other
than as the front-end to a system for computing optimal strategies from game trees (Koller
& Pfeffer, 1997). Presumably its tight coupling with a programming language (Prolog) and
its operational—rather than declarative—semantics prevented Gala from being adopted
by others as a system-independent game specification language.

GDL allows for the description of any game with finitely many players and finitely
many legal moves in each state, where all moves are deterministic and fully observable, and
where the complete game rules are known to each player. Simultaneous moves are possible,
which provides for a restricted form of imperfect information. However, players are always
immediately informed about each other’s moves and hence always have perfect information
about the game state after every round.

With GDL the organisers of the AAAI GGP Competition sought a high-level game
specification language that admits a purely declarative reading. Thus, it enables general
game-playing systems to reason about the rules of a previously unknown game, for ex-
ample, in order to extract game-specific knowledge or to automatically design evaluation
functions. This proved to be successful as these problems have been studied extensively in
the recent past (Kuhlmann et al., 2006; Kaiser, 2007; Clune, 2007; Schiffel & Thielscher,
2007; Edelkamp & Kissmann, 2008; Schiffel & Thielscher, 2009; Ruan, van der Hoek, &
Wooldridge, 2009; Schiffel, 2010; Thielscher & Voigt, 2010). GDL is a purely declarative
language in the tradition of AI Planning languages and in fact can be seen as a multi-agent
extension thereof since existing planning languages always describe a problem from the per-
spective of a single agent—even in case of adversarial planning (Jensen & Veloso, 2000).
The presence of other agents that have their own actions and goals is crucial since reasoning
about their intentions is the basis for Opponent Modelling, a central aspect in which GGP
goes beyond AI Planning (Genesereth et al., 2005). What GDL inherits from existing plan-
ning languages is the compactness of specifications, which contrasts it with other encoding
techniques, for instance the use of propositionalised graphs (La Mura, 2000).

Despite steady progress, the current state of the art in General Game Playing is limited
to deterministic games with complete information about the game state, owing to the re-
stricted expressiveness of original GDL. This covers a variety of classic games such as Chess,
Go, Chinese Checkers etc. but excludes games with elements of chance like Backgammon;
games with information asymmetry such as Bridge or Poker; and games that involve pri-
vate communication among cooperating players like in Bughouse Chess, or negotiations
like in Diplomacy. Moreover, envisaged applications for General Game Playing systems,
such as automated trading agents (Thielscher & Zhang, 2010), are usually characterised by
imperfect information.

In this paper, we lay the foundations for truly general game-playing systems by develop-
ing and analysing an extension of the existing description language to GDL-II (for “Game
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Description Language with Imperfect/Incomplete Information”).1 GDL-II will allow for
the description of any extensive-form game with finitely many players and finitely many
legal moves in each state but where moves can be nondeterministic and players can have
imperfect and asymmetric information. Although GDL-II will be based on the assump-
tion that the game rules themselves are fully known to each player, incomplete-information
games—in the game-theoretic sense (Rasmusen, 2007), that is, where players do not know
exactly their own goal or what type the opponents are—can be modelled in our extended
language via the standard Harsanyi (1967) transformation of adding an unobserved move
by nature at the beginning.

1.2 Reasoning With the Rules of General Games

Game descriptions in GDL-II will include a precise specification of the information that
players get throughout a game. But the rules of a game do not imply anything about
how players use this information, that is, which conclusions they draw from it, how they
combine it with what they already know, or whether they memorise it. These are separate
questions that concern the reasoning that game-playing agents perform on the basis of the
rules of a game. The clear separation of these two issues means that, for example, “perfect
recall” (Rasmusen, 2007) is a property of individual players and depends on the reasoning
mechanism implemented on them, rather than being a property of a game itself.

In basic GDL, where players are always informed about each other’s moves, reasoning
with the rules of a game is rather straightforward: a simple, Prolog-like inference engine
suffices to compute one’s own and everyone else’s legal moves and to maintain a complete
state description throughout the match (Genesereth et al., 2005). In contrast, playing
arbitrary games with incomplete state knowledge poses an intricate reasoning challenge for
general game-playing systems: Imperfect information and information asymmetry require a
player to draw conclusions about his own percepts and what they entail about the current
position, about his and everybody else’s possible moves, as well as about what the other
players may know.

Action formalisms like the classic Situation Calculus (McCarthy, 1963) have been devel-
oped for precisely this purpose. They are readily available, but to deploy them in General
Game Playing presupposes a proper translation from GDL-II into an existing, suitably ex-
pressive action language. Therefore, in the second part of this paper we address the problem
of reasoning about GDL-II by presenting a full embedding of our extended general game
description language into a suitably extended variant of the Situation Calculus.

1.3 Overview of Results

Our specific contributions in this paper to the foundations for General Game Playing can
be summarised as follows:

1. We show that the addition of just two more keywords to GDL suffices to obtain the
desired generality of the game description language: The first, called sees, is used

1. In an unfortunate clash of terminology, an agent who does not know the full state of the environment
is said to have incomplete information in AI, whereas in Game Theory, if players do not know the full
state when it is their turn, then the game is said to be of imperfect information.
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to control the information that each player gets. The second, called random, denotes
a special player who chooses moves randomly.

2. We develop a new execution model for GDL-II and demonstrate how—despite the
conceptual simplicity of the representation language—the operational semantics gives
rise to an intricate epistemic model, which provides players with sufficient information
to enable them to reason about their own knowledge and the knowledge of their
opponents, to predict how their knowledge will evolve, and to reason about what
players know about other players’ knowledge.

3. We develop a new communication protocol for GDL-II to address practical issues that
arise in General Game Playing with imperfect information.

4. We investigate the expressive power of our high-level knowledge representation lan-
guage by relating it to the mathematical concept of extensive-form games (Rasmusen,
2007).

5. We extend the Situation Calculus that includes Scherl and Levesque’s knowledge flu-
ent (Scherl & Levesque, 2003) with multi-agent knowledge, simultaneous moves, and
the new concept of derived action predicates.

6. We present a mapping by which GDL-II is fully embedded into this extended Situation
Calculus, and we formally prove that this provides for a correct axiomatic account of
the semantics of GDL-II, which enables players to draw conclusions about their own
and the other players’ knowledge in past, present, and future game states.

The paper proceeds as follows. In the next section, we introduce GDL-II as an exten-
sion of GDL with randomness and imperfect information, and we use various examples to
demonstrate the range of phenomena and games that can be described in this new language.
We also develop a modified execution model for GDL-II. In Section 3, we show that the
language is sufficiently expressive to give rise to an intricate multi-agent epistemic model,
and we relate our language to that of extensive-form games. In Section 4, we present a
formal embedding of this language into the Situation Calculus and prove the correctness of
this translation. We discuss related work in Section 5 and conclude in Section 6.

2. Describing General Imperfect-Information Games With Randomness

General Game Playing requires a formal language for describing the rules of arbitrary games.
Any complete game description needs to provide

• the names of the players,

• the initial position,

• the legal moves and how they affect the position, and

• the terminating and winning criteria.
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role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) R can do move M in the current position
does(R,M) player R does move M
next(F) F holds in the next position
terminal the current position is terminal
goal(R,V) R scores V points in the current position

sees(R,P) R perceives P in the next position
random the random player

Table 1: GDL-II keywords. Standard GDL comprises the top eight. The keywords are
accompanied by the auxiliary, pre-defined predicate distinct(X,Y), meaning
the syntactic inequality of the two arguments (Love et al., 2006).

The description language GDL has been developed for this purpose (Genesereth et al.,
2005; Love, Hinrichs, Haley, Schkufza, & Genesereth, 2006). The emphasis is on high-level,
declarative game rules that are easy to understand and maintain. At the same time, GDL
has a precise semantics and is fully machine-processable. Moreover, background knowledge
is not required—a set of rules is all a player needs to know in order to be able to play a
previously unknown game.

GDL is based on the standard syntax and semantics of Logic Programming. A few
special keywords are used for the different elements of a game description mentioned above.
The original game description language GDL uses the first eight keywords shown in Table 1.
This version of GDL is suitable for describing any finite, synchronous, and deterministic
n-player game (Genesereth et al., 2005).2 The execution model entails complete state
information: The initial position is fully specified and the players are immediately informed
about each other’s moves, with all (joint) moves being deterministic.

Although GDL was developed for complete-information games only, a surprisingly simple
extension to its syntax suffices to generalise it to arbitrary (discrete and finite) games with
information asymmetry and random moves.

1. The new keyword random is introduced as a special role.

It is assumed that this “player” always makes a purely random choice among its legal
moves in a position. This allows the game designer to describe elements of chance,
such as rolling dice or shuffling cards.

2. The second new keyword sees(R,P) is introduced for specifying the conditions
under which player R receives information (i.e., “perceives”) P.

To ensure greatest flexibility, arbitrary terms may serve as percepts P. Not only does
this allow a game designer to have players observe specific state features or actions,
but games may also feature rules according to which players are informed about logical

2. Synchronous means that all players move simultaneously. In this setting, turn-taking games are modelled
by allowing players only one legal move, without effect, if it is not their turn.
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combinations of conditions or receive partial information about a state feature or a
move by another player.

The language extension will be accompanied by a modified execution model, in which
players are no longer informed about each other’s moves by default; rather, they only
get to see what the game rules entail about their percepts.

We again refer to Table 1 with a list of all the keywords of the new language GDL-II.

2.1 Examples

Prior to giving the precise definition of syntax and semantics we illustrate the expressiveness
of this extended Game Description Language with several examples; the first and third will
recur later in the paper.

2.1.1 Example 1 (Krieg-Tictactoe)

The rules in Figure 1 describe standard Tic-Tac-Toe but with the twist that the players
cannot see their opponent’s moves, just like in the chess variant Kriegspiel (Pritchard, 1994),
hence the name.3

The two roles and the initial position are given in lines 1–2 and lines 4–7, respectively.
The moves are specified by the rules with head legal (lines 9–14): The player whose turn
it is can attempt to mark any cell that he does not already own or has tried earlier in the
game. The other player can only do noop , a move without effect.

The position update is specified by the rules with head next (lines 18–29): If the
submitted move mark (M,N) by player R is not valid (where “valid” means that the
targeted cell is still blank; cf. line 16) then every feature of the current position continues
to hold, and the only change in the overall state is that tried(R,M,N) becomes true.4

Otherwise the cell with coordinates (M,N) will be marked while none of the other cells
change. Moreover, control goes to the opponent.

The clauses with head sees (lines 31–33) say that the player whose turn it is will always
be informed about this. This suffices because when a player does not perceive yourmove ,
then it follows that it must be his opponent’s turn. !

2.1.2 Example 2 (Coloured Trails)

This class of games is a popular research test-bed for decision-making and negotiation in a
competitive setting (Grosz, Kraus, Talman, Stossel, & Havlin, 2004). Each specific game
comes with one or more fixed protocols defining possible interactions among the players.

3. A word on the notation: In this paper we will be largely concerned with the semantics behind GDL
game descriptions, which are interpreted as logic programs. For this reason we will use the standard
Prolog syntax for GDL, where variables are indicated by uppercase letters. This is in contrast to the
more customary KIF-notation of GDL introduced by Genesereth et al. (2005). The KIF-syntax also
allows for disjunctions in clause bodies, but these can be easily transformed into normal logic program
clauses (Lloyd, 1987). Throughout the paper, we will use “clause” and “(game) rule” interchangeably.

4. It is important to note the difference between legal and valid moves in Krieg-Tictactoe: Each attempt to
mark a cell is considered legal, but only those moves are accepted as valid that are actually possible in
the current position. Feature tried(R,M,N) is used to prevent a player from resubmitting a previously
rejected move.
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1 role(xplayer).
2 role(oplayer).
3

4 init(control(xplayer)).
5 init(cell(1,1,b)). init(cell(1,2,b)). init(cell(1,3,b)).
6 init(cell(2,1,b)). init(cell(2,2,b)). init(cell(2,3,b)).
7 init(cell(3,1,b)). init(cell(3,2,b)). init(cell(3,3,b)).
8

9 legal(xplayer,mark(M,N)) :- true(control(xplayer)), true(cell(M,N,Z)),
10 distinct(Z,x), not true(tried(xplayer,M,N)).
11 legal(oplayer,mark(M,N)) :- true(control(oplayer)), true(cell(M,N,Z)),
12 distinct(Z,o), not true(tried(oplayer,M,N)).
13 legal(xplayer,noop) :- true(control(oplayer)).
14 legal(oplayer,noop) :- true(control(xplayer)).
15

16 validmove :- does(R,mark(M,N)), true(cell(M,N,b)).
17

18 next(F) :- not validmove, true(F).
19 next(tried(R,M,N)) :- not validmove, does(R,mark(M,N)).
20

21 next(cell(M,N,x)) :- validmove, does(xplayer,mark(M,N)).
22 next(cell(M,N,o)) :- validmove, does(oplayer,mark(M,N)).
23 next(cell(M,N,Z)) :- validmove, true(cell(M,N,Z)),
24 does(R,mark(I,J)), distinct(M,I).
25 next(cell(M,N,Z)) :- validmove, true(cell(M,N,Z)),
26 does(R,mark(I,J)), distinct(N,J).
27 next(control(oplayer)) :- validmove, true(control(xplayer)).
28 next(control(xplayer)) :- validmove, true(control(oplayer)).
29 next(tried(R,M,N)) :- validmove, true(tried(R,M,N)).
30

31 sees(R, yourmove) :- not validmove, true(control(R)).
32 sees(xplayer,yourmove) :- validmove, true(control(oplayer)).
33 sees(oplayer,yourmove) :- validmove, true(control(xplayer)).

Figure 1: A GDL-II description of “Krieg-Tictactoe.” The game positions are encoded
using the three features control (R), cell(M,N,Z), and tried(R,M,N), where
R ∈ {xplayer , oplayer}; M,N ∈ {1, 2, 3}; and Z ∈ {x, o, b}, with b meaning
“blank.” For the sake of simplicity, we have omitted the (straightforward) speci-
fication of both the terminating conditions and the goal values.

For example, a simple negotiation may consist of player R offering player S to exchange
two of their chips, C and D. This can be formalised by these GDL-II clauses:

legal(R,propose(S,tradeChips(C,D))) :-
true(hasChip(R,C)), true(hasChip(S,D)), distinct(R,S).

sees(S,offer(R,C,D)) :- does(R,propose(S,tradeChips(C,D))).

Under these rules the communication is private: only the addressee gets to see the offer. !
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2.1.3 Example 3 (Monty Hall)

As our second running example, the rules in Figure 2 describe a simple but famous game
where a car prize is hidden behind one of three doors and where a candidate is given two
chances to pick a door. The host is modelled by the new pre-defined role random.5

Lines 1–7 introduce the players’ names and the state features that hold initially. The
possible moves are specified in lines 9–17: First, the random player decides where to place
the car and, simultaneously, the candidate chooses a door. Next, the host (i.e., random)
opens a door that is not the one with the car behind it nor the one that the candidate has
chosen. Finally, the candidate can either stick to her earlier choice (noop) or switch to the
other door that is still closed.

The candidate’s only percept throughout the game, viz. the door that gets opened, is
defined by the rule with head sees (line 19). The remaining clauses specify the posi-
tion update (lines 21–31), the fact that the game ends after the candidate’s final decision
(line 33), and the payoff for the candidate depending on whether she got the door right in
the end (lines 35–36). !

2.1.4 Example 4 (Poker)

Together the two new keywords can be used to describe all kinds of card games, which are
typically characterised by both randomness (shuffling) and information asymmetry (indi-
vidual hands). A single card dealt face down to a player, say, can be axiomatised thus:

legal(random,deal(P,C)) :- role(P), in_deck(C),
distinct(P,random).

next(in_hand(P,C)) :- does(random,deal(P,C)).
sees(P,your_card(C)) :- does(random,deal(P,C)).

Here, only the player who is dealt the card can see it. Multiple cards can be handed out
in a single move which takes each card as a separate argument and of which players only
get to see the argument positions that correspond to their cards. In contrast, a card dealt
face-up, as in Texas Hold’em, would be axiomatised as follows.

legal(random,deal_river(C)) :- in_deck(C).

next(river(C)) :- does(random,deal_river(C)).
sees(P,river(C)) :- does(random,deal_river(C)), role(P).

Here, all players are informed about the river card. !
The example game descriptions illustrate the two new features in GDL-II: The special

role random is used to model nature, who always moves randomly. The keyword sees
controls the information that players have about the game state. Although all players have
full knowledge of the game rules including the initial state, both imperfect and asymmetric
knowledge about later states are a natural consequence of players’ individual and limited
percepts.

5. Although random is a pre-defined constant, it needs to be declared as a role (line 2) with his own goal
(line 37). In this way GDL-II supports upward compatibility with the original GDL.
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1 role(candidate).
2 role(random).
3

4 init(closed(1)).
5 init(closed(2)).
6 init(closed(3)).
7 init(step(1)).
8

9 legal(random,hide_car(D)) :- true(step(1)), true(closed(D)).
10 legal(random,open_door(D)) :- true(step(2)), true(closed(D)),
11 not true(car(D)), not true(chosen(D)).
12 legal(random,noop) :- true(step(3)).
13

14 legal(candidate,choose(D)) :- true(step(1)), true(closed(D)).
15 legal(candidate,noop) :- true(step(2)).
16 legal(candidate,noop) :- true(step(3)).
17 legal(candidate,switch) :- true(step(3)).
18

19 sees(candidate,D) :- does(random,open_door(D)).
20

21 next(car(D)) :- does(random,hide_car(D)).
22 next(car(D)) :- true(car(D)).
23 next(closed(D)) :- true(closed(D)), not does(random,open_door(D)).
24 next(chosen(D)) :- does(candidate,choose(D)).
25 next(chosen(D)) :- true(chosen(D)), not does(candidate,switch).
26 next(chosen(D)) :- does(candidate,switch),
27 true(closed(D)), not true(chosen(D)).
28

29 next(step(2)) :- true(step(1)).
30 next(step(3)) :- true(step(2)).
31 next(step(4)) :- true(step(3)).
32

33 terminal :- true(step(4)).
34

35 goal(candidate,100) :- true(chosen(D)), true(car(D)).
36 goal(candidate, 0) :- true(chosen(D)), not true(car(D)).
37 goal(random, 0).

Figure 2: A GDL-II description of the Monty Hall game (Rosenhouse, 2009).

2.2 Formal Syntax

GDL-II is based on the standard syntax of logic programs, including negation.

Definition 1
Consider a signature with function symbols (including constants) and variables.

• A term is either a variable, or a function symbol with terms as arguments.

• An atom is a predicate symbol with terms as arguments.

• A literal is an atom or its negation.
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• A clause is of the form h :- b1, . . . , bn., where h (the head) is an atom and
b1, . . . , bn (the body) are literals (n ≥ 0), with the meaning that b1, . . . , bn together
imply h.

GDL-II imposes the following restrictions on the use of the pre-defined keywords in Table 1.

Definition 2
The dependency graph for a set G of clauses is a directed, labeled graph whose nodes
are the predicate symbols that occur in G and where there is a positive edge p +→ q if G
contains a clause p(s⃗) :- . . . , q(⃗t ), . . . ., and a negative edge p −→ q if G contains a clause
p(s⃗) :- . . . ,¬q(⃗t ), . . . . We say that p depends on q in G if there is a path from p to q
in the dependency graph of G.

A GDL-II game description is a finite set of clauses where

• role only appears in facts (i.e., clauses with empty body) or in the body of clauses;

• init only appears in the head of clauses and does not depend on any of true,
legal, does, next, terminal, or goal;

• true only appears in the body of clauses;

• does only appears in the body of clauses, and none of legal, terminal, or goal
depends on does;

• next and sees only appear in the head of clauses;

• distinct only appears in the body of clauses.6

2.3 Valid Game Descriptions

In order to admit an unambiguous interpretation as a game, GDL-II descriptions must obey
further general syntactic restrictions, all of which are inherited from its predecessor GDL.

Definition 3
To constitute a valid GDL-II description, a set of clauses G must satisfy the following.

1. G is stratified, that is, there are no cycles involving a negative edge in the dependency
graph for G (Apt, Blair, & Walker, 1987; Gelder, 1989).

2. G is allowed, that is, each variable in a clause occurs in at least one positive atom in
the body (Lloyd & Topor, 1986).

3. If p and q occur in a cycle in the dependency graph and G contains a clause

p(s⃗) :- q1(⃗t1), . . . , q(v1, . . . , vk), . . . , qn(⃗tn).

then for every vi ∈ {v1, . . . , vk},

• vi is ground, or

6. The formal meaning of this predicate is given by tacitly assuming the unary clause distinct(s, t)., for
every pair s, t of syntactically different, ground (i.e., variable-free) terms.
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• vi is an element of s⃗, or

• vi is an element of some t⃗j (1 ≤ j ≤ n) such that qj does not appear in a cycle
with p.

The last condition imposes a restriction on the combination of function symbols and recur-
sion to ensure finiteness and decidability of all relevant derivations (Love et al., 2006).

The reader is invited to verify that our example game descriptions in Figure 1 and 2 satisfy
all requirements of a valid GDL-II description. The syntactic restrictions ensure that a set
of game rules can be effectively and unambiguously interpreted by a state transition system
as a formal game model, which we will describe next.

2.4 Semantics

A unique game model is obtained from a valid GDL-II game description using the concept
of a stable model of a logic program with negation (Gelfond & Lifschitz, 1988).

Definition 4
For a set of clauses G and a set of ground atoms M, let GM be the set of negation-free
implications h ⊂ b1 ∧ . . . ∧ bk obtained by taking all ground instances of clauses in G and

• deleting all clauses with a negative body literal ¬bi such that bi ∈ M,

• deleting all negative body literals from the remaining clauses.

Then M is a stable model for G if and only if M is the least model for GM.

A useful property of stable models is to provide a unique model whenever the underlying
set of clauses is stratified (Gelfond & Lifschitz, 1988), which is a requirement of valid GDL-II
specifications according to Definition 3. Moreover, the syntactic restrictions in GDL-II
ensure that this model is finite for all logic programs we consider—a property inherited
from original GDL (Love et al., 2006). Hence, for the following game model for GDL-II we
can assume a finite set of players, finite states, and finitely many legal moves in each state.
We shall denote by SM [G] the unique stable model for stratified set of clauses G.

Specifically, then, the derivable instances of keyword role(R) from a given game
description define the players. The initial state is composed of the derivable instances of
init(F). In order to determine the legal moves in any given state, this state has to be
encoded first, using the keyword true. Let, to this end, σ = {f1, . . . , fn} be a state (i.e.,
a finite set of ground terms, a.k.a. fluents), then the game description G is augmented by
the n facts

σtrue
def
= {true(f1). . . . true(fn).}

Those instances of legal(R,M) that are derivable from G ∪ σtrue define all legal
moves M for player R in position σ. In the same way, the clauses for terminal and
goal(R,V) define termination and goal values relative to the encoding of a given
position.

Example 2 (continued)
The rules in Figure 1 entail that Krieg-Tictactoe features the two roles xplayer and oplayer .
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The initial position is σ0 = {control (xplayer ), cell(1, 1, b), . . . , cell(3, 3, b)}. With σ0true

added to the rules we can infer legal(xplayer ,mark (M,N)) for each combination of
coordinates M,N ∈ {1, 2, 3}, while oplayer only has the one move noop . !

Determining a position update and the percepts of the players requires the encoding of
both the current position and a move by each player. Suppose joint move µ is such that
players r1, . . . , rk take moves m1, . . . ,mk , then let

µdoes
def
= {does(r1,m1). . . . does(rk,mk). }

Taken together, all instances of next(F) that are derivable from G∪µdoes∪σtrue compose
the updated position. Similarly, the derivable instances of keyword sees(R,P) describe
what a player perceives when joint move µ is played in position σ.

Example 4 (continued)
According to the rules in Figure 2, the initial position in the Monty Hall game is given
by σ0 = {closed (1), closed (2), closed (3), step(1)}. There are three legal moves for each
player in this state, viz. hide car (D) for random and choose(D) for candidate , where
D ∈ {1, 2, 3}. Consider, say, µ1 = {random (→ hide car(1), candidate (→ choose(3)}, then
with σ0true and µdoes1 added to the game rules, the clauses for keyword next determine
the updated state σ1 = {car (1), chosen(3), closed (1), closed (2), closed (3), step(2)}. Accord-
ing to the only clause for keyword sees the candidate perceives nothing at this stage and
hence cannot know that the car is hidden behind door 1. !

All of the above is summarised in the following definition.

Definition 5
Let G be a valid GDL-II description. The game semantics of G is the state transition
system (R,σ0, T, l, u,I, g) given by

• roles R = {r : role(r) ∈ SM[G]};

• initial position σ0 = {f : init(f) ∈ SM[G]};

• terminal positions T = {σ : terminal ∈ SM[G ∪ σtrue]};

• legal moves l = {(r,m,σ) : legal(r,m) ∈ SM[G ∪ σtrue]};

• state update function u(µ,σ) = {f : next(f) ∈ SM[G ∪ σtrue ∪ µdoes]}, for all joint
moves µ and states σ;

• information relation I = {(r, µ,σ, p) : sees(r, p) ∈ SM[G ∪ σtrue ∪ µdoes]};

• goal relation g = {(r, v,σ) : goal(r, v) ∈ SM[G ∪ σtrue]}.
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2.5 A New Execution Model

The additional elements in GDL-II and the modified semantics require a new execution
model for games with incomplete state information and randomness: Starting in the initial
position, in each state σ each player chooses a legal move. The special random role is
assumed to choose randomly with uniform probability among its legal moves.7 Given a
joint move µ the game state changes to u(µ,σ). In contrast to the execution model for
GDL (Genesereth et al., 2005; Love et al., 2006; Schiffel & Thielscher, 2010), the players
are not informed about the joint move; rather each role r ∈ R \ {random} gets to see any
p that satisfies I(r, µ,σ, p). The game ends as soon as a terminal state is reached, and
then the goal relation determines the result for the players. This modified execution model
is spelled out in Figure 3. It is straightforwardly implemented on a Game Master, which
runs a game by collecting all moves, which allows it to maintain the actual game state and
thus to compute all percepts and also to determine the end of a match and the resulting
goal values for the players.

1. Send each r ∈ R \ {random} the GDL-II description and inform them about
their individual roles r (e.g., xplayer or oplayer ). Set σ := σ0.

2. After the appropriate time, collect a move mr from each player r ∈ R\{random}
and, in case random ∈ R, choose with uniform probability an element mrandom

from the set {m : (random,m,σ) ∈ l}. Set µ := {r1 (→ mr1 , . . . , rk (→ mrk}.

3. Send each r ∈ R \ {random} the set of percepts {p : (r, µ,σ, p) ∈ I}. Set σ :=
u(µ,σ).

4. Repeat 2. and 3. until σ ∈ T . Determine the result v for r ∈ R by (r, v,σ) ∈ g.

Figure 3: Game play in GDL-II given a game (R,σ0, T, l, u,I, g).

2.6 A New Communication Protocol

The changes in the execution model from GDL to GDL-II require some modifications to the
communication protocol between the Game Master program and the general game players.
First of all, the Game Master has to inform the players about their individual percepts
instead of the joint move from the previous step. For practical purposes, the Game Master
should also confirm back each individual move as well as the current step in the game.
This information is useful for players to become aware of communication problems (such as
dropped messages or timeouts) and to be able to recover from those problems at least in
some cases. In order to make the transition from GDL to GDL-II easier, we keep most of
the communication protocol as defined by Love et al. (2006) and only apply the necessary
changes.

7. Note that this does not necessarily mean that all resulting states have equal probability. For example,
tossing an unfair coin that shows head just with probability 1

3 may be axiomatised in GDL-II by three
legal moves for random, two of which have the same effect (the coin showing tails). We stress that basic
GDL-II could easily be extended by syntactic means for specifying non-uniform transition probabilities.
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The communication between the Game Master and the players happens through HTTP
messages, where the players take the role of HTTP servers that “serve” moves to the
Game Master. The body of the HTTP messages are commands that are encoded using the
Knowledge Interchange Format (KIF) (Genesereth, 1991). We use the messages START,
PLAY and STOP as follows.

(START <MATCHID> <ROLE> <DESCRIPTION> <STARTCLOCK> <PLAYCLOCK>)
This is the first message sent to each player. It contains a unique identifier for the
match (<MATCHID>) and informs the player about his role in the game (<ROLE>), the
game rules (<DESCRIPTION>) as well as the time constraints for the start-up phase
(<STARTCLOCK>) and for submitting moves (<PLAYCLOCK>). Players are supposed
to reply to this message with the string READY within <STARTCLOCK> seconds.

This message is identical to the start message in the original GDL communication
protocol.

(PLAY <MATCHID> <TURN> <LASTMOVE> <PERCEPTS>)
This message is sent to a player at each step of the match. It informs the player about
the number of moves so far in the game (<TURN>), his last move (<LASTMOVE>), and
his percepts (<PERCEPTS>) according to the information relation I .

<TURN> is 0 for the first play message and increased by one for every subsequent step
of the game. For the first play message, when there is no previous move, <LASTMOVE>
is NIL.

Players are supposed to reply within <PLAYCLOCK> seconds with their next move.
If they do not submit a legal move on time, the Game Master will make a random
selection on their behalf. In this case the <LASTMOVE> argument of the next message,
which informs the player about that move, is vital knowledge to be able to continue.

(STOP <MATCHID> <TURN> <LASTMOVE> <PERCEPTS>)
This message is sent to each player for the last step of the match, that is, when a
terminal state has been reached. It has the same structure as the play message above.
Players should reply to this message with the string DONE.

Note that the parameter <LASTMOVE> in the play and stop messages is necessary if we
want to guarantee that players always know their own move in case of dropped messages
or timeouts. It is worth stressing that this information cannot be provided through a game
rule like sees(R,lastmove(M)) :- does(R,M). This clause is redundant in the light of the
execution model for GDL-II in Figure 3, which implies that players always choose, and
hence know, their own moves anyway.

3. The Expressive Power of GDL-II

Percepts in GDL-II can be arbitrary terms and are triggered by arbitrary conditions on the
current state and joint move. This provides greater flexibility than the standard definition
of a sensing action in planning domain description languages, by which an agent learns
about the truth values of one or more fluents (Golden & Weld, 1996; Petrick & Bacchus,
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2004). Observations in GDL-II need not be related to one’s own move, which is especially
appropriate in a multi-agent setting, where often players see something as a side-effect of
someone else’s actions. A point in case are the rules 32 and 33 in Figure 1. This follows
the spirit behind general effect axioms in GDL, that is, rules for next, which also may be
independent of a specific move. A simple example are the rules 29–31 in Figure 2.

GDL-II descriptions are solely concerned with providing the players with an objective
description of the rules of a game. This puts it in contrast also to standard axiomatisations
in action formalisms (Lakemeyer & Levesque, 1998; Thielscher, 2000; Scherl & Levesque,
2003; Forth & Shanahan, 2004), where observations are described in terms of how they
affect the knowledge of an agent. Our game description language is simpler in this regard
because it is agnostic about how players use a percept to draw inferences, combine it with
what they already know, and whether they remember it.

The conceptual simplicity of describing observations in GDL-II notwithstanding, our
language extension gives rise to an intricate epistemic model about what a player can,
in principle, know of a position and of the other players’ knowledge. For example, the
GDL-II rules for Krieg-Tictactoe shown in Figure 1 imply that one cell will carry xplayer ’s
mark after the first round but oplayer will be unable to determine which one. Moreover,
provided that they have perfect recall (Rasmusen, 2007) and are capable of drawing the right
conclusions, both players should know about each other’s knowledge and lack of knowledge,
respectively. In the following, we will analyse formally what the semantics of a GDL-II
description and the execution model of Figure 3 entail about the knowledge that a player
with perfect reasoning capabilities can have at any point during game play.

3.1 Legal Play Sequences

We begin by defining the set of all possible ways in which a game can develop.

Definition 6
Consider a game (R,σ0, T, l, u,I, g). A legal play sequence is

σ0
µ1→ σ1

µ2→ . . . σn−1
µn→ σn

where n ≥ 0 and for all i ∈ {1, . . . , n},

• µi is a joint move, i.e., a mapping from players r to their individual move, µi(r);

• (r, µi(r),σi−1) ∈ l for all r ∈ R (that is, players make legal moves); and

• σi = u(µi,σi−1) (position update).

Furthermore, {σ0, . . . ,σn−1} ∩ T = ∅, that is, only the last state may be terminal.

The following definition characterises precisely what a player with perfect reasoning
capabilities can in principle know at a specific stage in the course of a game.

Definition 7

Let δ = σ0
µ1→ σ1

µ2→ . . . σn−1
µn→ σn and δ′ = σ0

µ′
1→ σ′

1

µ′
2→ . . . σ′

n−1
µ′
n→ σ′

n be two legal play
sequences in a game with roles R, initial state σ0, and information relation I . A player
r ∈ R \ {random} cannot distinguish δ from δ′ if, and only if, the following holds for all
i ∈ {1, . . . , n}.
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1. {p : (r, µi,σi−1, p) ∈ I} = {p′ : (r, µ′
i,σ

′
i−1, p

′) ∈ I} and

2. µi(r) = µ′
i(r).

Example 2 (continued)
Let σ1 be the initial state in Krieg-Tictactoe, where all cells are empty, and consider these
two legal play sequences:

δ = σ0
{xplayer $→mark(1,3),oplayer $→noop}→ σ1

{xplayer $→noop,oplayer $→mark(2,2)}→ σ2 (1)

δ′ = σ0
{xplayer $→mark(2,2),oplayer $→noop}→ σ′

1
{xplayer $→noop,oplayer $→mark(2,2)}→ σ′

2 (2)

Role xplayer can distinguish δ from δ′ already after the first round because of his different
moves. In contrast, oplayer finds the two sequences indistinguishable at this step since he
took the same move, noop , and got the same percept {yourmove} by rule 30 in Figure 1.
Ultimately, however, oplayer also is able to distinguish (1) from (2) because, according to
the game rules, after his second move he perceives { } in δ but {yourmove} in δ′ (where
he attempted to mark a non-blank cell). !

(In-)distinguishable play sequences can be used also to ensure that game descriptions
obey desirable properties such as the following two, which are a straightforward consequence
of Definition 7.

1. A game description with roles R and legality relation l entails that all players can
always know their legal moves iff for all r ∈ R \ {random} there are no two legal
play sequences δ, δ′ leading to states σn,σ′

n such that

{m : (r,m,σn) ∈ l} ̸= {m′ : (r,m′,σ′
n) ∈ l}

and δ, δ′ are indistinguishable for r.

2. A game description with roles R, terminal states T , and goal relation g entails
that all players can know both the end of a game and their own result iff for all
r ∈ R \ {random} there are no two legal play sequences δ, δ′ leading to states σn,σ′

n

such that

σn ∈ T, σ′
n ̸∈ T or {σn,σ′

n} ⊆ T, {v : (r, v,σn) ∈ g} ̸= {v′ : (r, v′,σ′
n) ∈ g}

and δ, δ′ are indistinguishable for r.

While a “fair” game should always satisfy both of these properties, proving them for a new
game may be difficult in practice since in general this requires checking all possible legal
play sequences. There is an easy way around this, namely, by adding sees-rules that
always inform players explicitly about their legal moves, termination, and goal values. On
the other hand, some games may be especially designed to test the ability of players to
logically infer their legal moves under highly incomplete knowledge.
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Example 4 (continued)
The candidate in our axiomatisation of the Monty Hall game (cf. Figure 2) can always
derive her legal moves and when the game ends. This is easily seen from the fact that she
can determine the value of the step fluent at all times. On the other hand, the candidate
never receives enough information to be able to know her result. For example, she cannot
distinguish these two legal play sequences:

δ = σ0
{candidate $→choose door (1),random $→hide car(1)}→ σ1

{candidate $→noop,random $→open door (3)}→ σ2

δ′ = σ0
{candidate $→choose door (1),random $→hide car(2)}→ σ′

1
{candidate $→noop,random $→open door (3)}→ σ′

2

But no matter which action the candidate chooses in the end, δ will result in a different
goal value for her than δ′ . !

Knowledge at the object level, as we have considered thus far, can be lifted to higher
levels so as to determine what the players can know about each other’s knowledge. This is
possible because the GDL-II description of a game provides the complete rules to all players,
so that each of them is able to derive which information the other roles get to see under
any (hypothetical) legal play sequence. Formalising this requires constructing a suitable
epistemic structure based on possible play sequences. Consider, to this end, for every δ the
function Kδ that maps every pair (r, i) onto the set of legal play sequences that player r
at state i cannot distinguish from δ. Meta-level knowledge is then obtained as follows.

Definition 8
If the game develops according to δ, then as far as player r knows, all functions Kδ′ are
possible where δ′ is indistinguishable from δ for r.

Put in words, meta-level knowledge is characterised by a set of possible sets of legal play
sequences. It follows that a player knows what holds in all K-sets he considers possible.
If, say, a Krieg-Tictactoe match unfolds according to the example sequence δ′ from above
(cf. (2)) then xplayer knows that oplayer knows that cell (2, 2) is marked.

This process can be iterated inductively to determine arbitrary levels of meta-knowledge,
which shows that common knowledge of the game rules does not necessarily mean common
knowledge of other players. For example, it is possible to obtain a situation in a 3-player
game where player A knows about a property f and where player B knows that A knows
about f , while player C considers it possible that A knows nothing about f : Just let
A make a move by which he learns about f in a game where B (but not C) is always
informed about A’s moves.

We conclude our analysis of (in-)distinguishable play sequences by proving that GDL-II
provides a true extension of GDL since any game in which agents can derive the complete
state after every round can be easily specified in GDL-II.

Proposition 1 Consider a game with roles R such that random ̸∈ R and where the
only clause for keyword sees is

sees(R1,moves(R,M)) :- role(R1), does(R,M).

Then there are no two legal play sequences δ, δ′ of any length n ≥ 0 such that δ and δ′

are indistinguishable for any r ∈ R.
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Proof: By induction on n. For n = 0 there is only one legal play sequence, viz. the
initial game state σ0, which establishes the claim. For the induction step, suppose there
are two legal play sequences δ, δ′ leading to states σn+1 ̸= σ′

n+1 such that δ and δ′ are
indistinguishable for some role r ∈ R. From Definition 7 it follows that δ, δ′ shortened
by one step are indistinguishable for this player. By the induction hypothesis, this is only
possible if δ and δ′ are identical up to step n. Hence, the two legal play sequences are of
the form

δ = σ0
µ1→ . . .

µn→ σn
µn+1→ σn+1

δ′ = σ0
µ1→ . . .

µn→ σn
µ′
n+1→ σ′

n+1

From Definition 5 it follows that state update is deterministic, hence σn+1 ̸= σ′
n+1 implies

µn+1 ̸= µ′
n+1. The latter in conjunction with the above clause for sees implies that the

percepts for all roles differ when in state σn joint move µ′
n+1 is taken instead of µn+1.

This contradicts the assumption that δ and δ′ are indistinguishable for role r, which
establishes the claim. !

3.2 GDL-II vs. Extensive Form

By virtue of its state-transition semantics and the concept of indistinguishable play se-
quences, every terminating GDL-II game can be understood as a so-called extensive-form
game. For the following, we assume the reader to be familiar with the basic notion of
a mathematical game tree with imperfect information (Rasmusen, 2007; Leyton-Brown &
Shoham, 2008), which is based on the very general concept of information sets as a model
of partial observability and information asymmetry. The sees(R,P) predicate in GDL-II
can be used equally generally. The main reason is that percepts are not confined to specific
observables (e.g., state features or opponents’ moves) but can be arbitrary symbols used as
identifiers for any desired information partition.

3.2.1 From GDL-II to Extensive-Form Games

For a given GDL-II game, a corresponding extensive-form game can be obtained in two
steps.

1. Using an arbitrary but fixed order of the roles, joint moves in GDL-II are serialised
in such a way that no player is aware of the simultaneous moves by the other play-
ers (Rasmusen, 2007).

2. The information sets for a player r are identified with the set of legal play sequences
that this player cannot distinguish.

As an example, Figure 4 depicts the extensive-form game thus obtained from the Monty
Hall game description in Figure 2.

It is important to realise that percepts in GDL-II may sometimes provide information
that is not contained in a state but that nonetheless needs to be taken into account when
partitioning nodes into information sets. The following example illustrates that the ability
to solve a game may depend on such information.
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Figure 4: The Monty Hall game of Figure 2 mapped onto extensive form (with some nodes
and branches omitted). The numbers to the very right indicate which player owns
the nodes of that height (0 = random, 1 = candidate ). Dotted lines connect
nodes in the same information set for the candidate.

3.2.2 Example 5 (Spy & Spy)

The GDL-II in Figure 5 describes a game in which one spy sees which of three coloured
wires is used to arm a bomb. He can signal the name of a colour to a second spy, who
then tries to disarm the bomb. Both win if the second player cuts the right wire and lose
otherwise. Hence, the first spy has every incentive to help the second spy, and to do so
there seems to be one obvious rational move, namely, to signal the colour of the wire.

The crux, however, is that in the game rules, the colour being signalled is logically
independent of the colour of the wire used to arm the bomb. This is illustrated in the
game tree in Figure 6: If the second player were to distinguish only the possible states
themselves after round 2, that is, {armed (red), step(3)} , {armed (blue), step(3)} , and
{armed (green), step(3)}, then they all would belong to the same information set, no matter
which colour has been signalled. This would leave both players with no better a choice than
moving randomly. !

3.2.3 From Extensive-Form Games to GDL-II

To describe faithfully in GDL-II (that is, move-by-move) a game given in extensive form,
two issues need to be addressed.

1. The given information sets need to be encoded by appropriate sees-rules for the
individual players. This can be achieved by indexing these sets and always letting
their owner see the index but nothing else.

2. Non-uniform probabilities for moves by nature need to be mapped onto uniform prob-
ability distributions for random’s moves. This can be achieved by introducing a
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1 role(spy1).
2 role(spy2).
3 role(random).
4

5 colour(red).
6 colour(blue).
7 colour(green).
8

9 init(step(1)).
10

11 legal(random,arm_bomb(C)) :- colour(C), true(step(1)).
12 legal(spy1,signal(C)) :- colour(C), true(step(2)).
13 legal(spy2,cut_wire(C)) :- colour(C), true(step(3)).
14

15 legal(random,noop) :- not true(step(1))
16 legal(spy1,noop) :- not true(step(2))
17 legal(spy2,noop) :- not true(step(3))
18

19 sees(spy1,C) :- does(random,arm_bomb(C)).
20 sees(spy2,C) :- does(spy1,signal(C)).
21

22 next(armed(C)) :- does(random,arm_bomb(C)).
23 next(armed(C)) :- true(armed(C)).
24 next(explosion) :- does(spy2,cut_wire(C)), not true(armed(C)).
25 next(step(2)) :- true(step(1)).
26 next(step(3)) :- true(step(2)).
27 next(step(4)) :- true(step(3)).
28

29 terminal :- true(step(4)).
30

31 goal(spy1,100) :- not true(explosion).
32 goal(spy2,100) :- not true(explosion).
33 goal(spy1, 0) :- true(explosion).
34 goal(spy2, 0) :- true(explosion).
35 goal(random,0).

Figure 5: GDL-II description of a cooperative Spy & Spy game.

proportional number of moves that have different names but lead to the same succes-
sor state.

A finite extensive-form game can then be described in GDL-II by using a single fluent
to indicate which node the game is at and by specifying each arc in the tree as a state
transition. Using the methods of Schulte and Delgrande (2004), it can be shown that the
resulting GDL-II description is correct for any finite n-player game in extensive form with
perfect recall. The size of a description resulting from this transformation is obviously of the
same order as the original game tree since moves are not parallelised and states are encoded
as individual objects rather than being factored into atomic features. Hence, unlike the
Monty Hall rules in Figure 2, say, this direct construction does not exploit the conciseness
of descriptions made possible by having a high-level knowledge representation language.
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Figure 6: The game of Figure 5 mapped onto extensive form (with some nodes and branches
omitted). Dotted lines connect nodes that spy2 cannot distinguish. If the nodes
at depth 3 with identical states were collapsed onto a single node, then they all
would be in the same information set of this player.

4. A Logic for Reasoning About GDL-II Games

Building a basic general game player, e.g. one that only knows how to move legally, is a
relatively simple task under the restriction to perfect-information games. In the general
case, however, even basic game play is a much more intricate problem. Recall, for example,
the description of the Krieg-Tictactoe game in Figure 1. The rules in lines 31–33 specify
the players’ percepts, indicating that the player who has control next will be informed
about this fact. This suffices since both players should be able to always derive whether
or not it is their turn. But to do so they must be capable of inferring that when they
do not perceive yourmove , then it must be their opponent’s turn. Another example of a
(strategically useful) inference would be to conclude that a cell must carry your opponent’s
marker if you just tried to mark it yourself and you perceive yourmove again, implying
that your attempt must have been unsuccessful.

Drawing conclusions of this sort is the domain of action theories, and the Situation Cal-
culus is the oldest technique for formalising and automating reasoning about actions (Mc-
Carthy, 1963). In this second part of the paper, we will lay the foundations for building
general game-playing systems that are capable of reasoning with imperfect information. Us-
ing existing techniques like the Situation Calculus for this purpose requires a full embedding
of the game description language GDL-II into these formalisms.

In the following, we will develop such a mapping based on the Situation Calculus variant
that uses a special fluent to represent the knowledge of agents (Scherl & Levesque, 2003).
We will have to slightly modify and further extend this formalism for our purposes. Gen-
erally speaking, the Situation Calculus is a predicate logic with a few pre-defined language
elements:

• constant s0, which denotes the initial situation, along with constructor Do(A,S) to
denote the situation resulting from doing action A in situation S ;

• predicate Holds(F, S), which denotes that fluent F (i.e., an atomic state feature)
is true in situation S ;
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• predicate Poss(A,S), which denotes that action A is possible in situation S .

4.1 Compound Actions

In games with two or more players, positions are updated as a consequence of all players
moving simultaneously. For an adequate formalisation in the Situation Calculus we therefore
need to identify the concept of an action with a vector ⟨m1, . . . ,mk⟩ containing one move for
each player. In a given GDL-II description, the domain of moves is implicitly determined
by the (second) arguments of the keywords legal and does; e.g. mark (M,N) and
noop in Krieg-Tictactoe. Assuming an arbitrary but fixed order of the players, say as in
(xplayer , oplayer ), we define a simple axiom that identifies the individual move of a player r
in an action vector:

Act(ri, ⟨M1, . . . ,Mi, . . . ,Mk⟩) = Mi . (3)

For instance, Act(xplayer , ⟨mark (1, 3),noop⟩) = mark(1, 3).

4.2 Derived Action Predicates

Given a GDL-II game description G, we identify as primitive fluents those terms that occur
in the scope of either of the keywords init(F), true(F), or next(F); in Figure 1 these
are control (R), cell(M,N,Z), and tried(R,M,N). As derived fluents we take all domain-
specific predicates that depend on true but not on does in G. Derived fluents (Davis,
1990) do not require their own successor state axioms because their truth-values are fully
determined by the game rules once the values of all primitive fluents are fixed in a (successor)
situation. The keywords terminal and goal(R,V) are treated as derived fluents too.

In addition, a mapping of GDL-II into the Situation Calculus requires the introduction
of the new concept of a derived action predicate. These are the domain-specific predicates
that depend on both true and does in G. An example is validmove in our description
of Krieg-Tictactoe (cf. line 16 in Figure 1). Similar to derived fluents, the truth-value of a
derived action predicate is fully determined by the game rules once we have fixed both the
values of all primitive fluents in a situation and the (compound) action that is being taken
in that situation.

4.3 The Mapping

We now show how any GDL-II description G can be mapped—in a modular way—into a
Situation Calculus theory. First, some atoms that occur in G are rewritten as follows.

1. All derived fluents f(X⃗) are replaced by f(X⃗, S) and all derived action predicates
p(X⃗) by p(X⃗,A, S), indicating the dependence on a situation S and an action A,
respectively.8

2. Each init(F ) is replaced by Holds(F, s0).

3. Each true(F ) is replaced by Holds(F, S).

4. Each next(F ) is replaced by Holds(F,Do(A,S)).

8. This mapping also applies to the derived fluents legal(R,M) , goal(R,V ) , and terminal.
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5. Each does(R,M) is replaced by Act(R,A) = M .

As an example, the clause in line 16 of Figure 1 becomes

validmove(A,S) ⊂ Act(R,A) = mark(M,N) ∧ Holds(cell(M,N, b), S) .

GDL-II game descriptions are based on the negation-as-failure principle, that is, every
proposition that cannot be derived from the game rules is supposed to be false. To reflect
this in the Situation Calculus theory, we use the completion (Clark, 1978) of all clauses in
the following way: For every predicate p(X⃗), replace the clauses inG with p in the head
by

p(X⃗) ≡
∨

p(⃗t ):-body ∈G

(∃)X⃗ = t⃗ ∧ body . (4)

In this context we use (∃) as abbreviation for ∃Y⃗ , where Y⃗ are all variables that occur
in either t⃗ or body but not in X⃗ .

4.3.1 Initial Situation

The transformation defined above yields the following axiomatisation of the initial situation:

Holds(F, s0) ≡
∨

init(t):-body ∈G

(∃)F = t ∧ body .

4.3.2 Preconditions

Based on the completion of legal according to (4), i.e.,

Legal(R,M,S) ≡
∨

legal(r,m):-body ∈G

(∃)R = r ∧M = m ∧ body ,

we define the precondition axiom for compound actions A in situations S thus:

Poss(A,S) ≡ ∀R.Legal(R,Act(R,A), S) . (5)

4.3.3 Effects

As a result of the transformation above, we obtain a general successor state axiom (Reiter,
1991) as follows:

Holds(F,Do(A,S)) ≡
∨

next(t):-body ∈G

(∃)F = t ∧ body . (6)

4.3.4 Knowledge

Scherl and Levesque (2003) use the special fluent K(S′, S)—to be read as: situation S′ is
accessible from situation S—in order to axiomatise knowledge states (of an agent) in the
Situation Calculus. We use a straightforward generalisation for the multi-agent case, where
K(R,S′, S) expresses that player R considers S′ a possible situation in S . This allows
us to formalise subjective knowledge similar to Scherl and Levesque thus:

Knows(R,Φ, S)
def
= ∀S′.K(R,S′, S)⊃Φ[S′] . (7)
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Here, Φ is a reified formula where the situation argument in all fluents is suppressed; and
Φ[S′] means that all situation arguments are reinstated to S′ . For example,

Knows(xplayer ,∀X,Y. cell(X,Y, b), s0)

stands for ∀S′.K(xplayer , S′, s0)⊃∀X,Y.Holds(cell(X,Y, b), S′). To express the knowledge
of a player about another player’s knowledge, macro definition (7) can be easily extended
to form nested expressions, as in

Knows(xplayer ,Knows(oplayer , control (oplayer )),Do(⟨mark (1, 1),noop⟩, s0)) .

It is also possible to define common knowledge of a group of players as any property that
is shared by all situations belonging to the reflexive and transitive closure of the combined
accessibility relations.

In GDL-II all players have complete knowledge of the initial situation. In terms of the
Situation Calculus,

K(R,S, s0) ≡ S = s0 . (8)

The effects of actions and percepts on the knowledge states of the players are defined by the
successor state axiom for the special fluent K, for which we adapt Scherl and Levesque’s
definition as follows:

K(R,S′′,Do(A,S)) ≡ ∃A′, S′. S′′ = Do(A′, S′) ∧K(R,S′, S)∧
Poss(A′, S′)∧Act(R,A) = Act(R,A′)∧
∀P. Sees(R,P,A, S)≡Sees(R,P,A′, S′) .

(9)

Put in words, a player considers S′′ a possible situation after joint move A in S if, and
only if, S′′ is obtained by doing some A′ in a situation S′ that was conceivable in S ; A′

was executable in S′ ; the player did the same move in A′ as in A; and the player’s sensing
result for A′, S′ is identical to his sensing result for the actual A,S (so that he cannot
distinguish the two).

It should be noted that axioms (8) and (9) postulate both perfect recall and common
knowledge of the game rules among all players: From any actual situation Do(. . . , S0)
only situations that are consistent with all of a player’s previous information are accessible.
Moreover, all these accessible situations are of the form Do(. . . , S0) too, which implies that
every situation belonging to the reflexive and transitive closure of the combined players’
accessibility relations are governed by the same precondition and effect rules described by
axioms (5)–(6).

4.4 Completion Semantics and Stable Models

The axiomatisation above applies Clark’s completion to a given set of GDL-II game rules. In
general, however, the first-order semantics of the completion of a (stratified) logic program
is too weak to fully characterise its (unique) stable model in the presence of redundant
rules like validmove :- validmove. The stable model remains the same when such
“superfluous” clauses are added, but Clark’s completion is weakened by them. For example,
for the mentioned rule (assuming no further clauses) the only stable model is the empty
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set, while the first-order semantics of the completion admits to two models—one in which
validmode holds and one where it is false.

This issue can be resolved by a second-order axiom (Ferraris, Lee, & Lifschitz, 2011).
Denoted by SM [F ], the axiom provides a stable model operator for arbitrary first-order
formulas F . The operator SM [F ] is defined in the following way:

Definition 9
Let P⃗ = (P1, . . . , Pn) be a list of predicates and U⃗ = (U1, . . . , Un) be a list of distinct
predicate variables of the same length as P⃗ . Furthermore, let U⃗ = P⃗ denote the conjunction
of the formulas ∀X⃗.Ui(X⃗) ≡ Pi(X⃗) for all i = 1, . . . , n . By U⃗ ≤ P⃗ we denote the
conjunction of the formulas ∀X⃗.Ui(X⃗)⊃Pi(X⃗) for all i = 1, . . . , n , and U⃗ < P⃗ stands for
(U⃗ ≤ P⃗ ) ∧ ¬(U⃗ = P⃗ ) .

The expression SM[F ; P⃗ ] stands for the second-order sentence

F ∧ ¬∃U⃗ .(U⃗ < P⃗ ) ∧ F ∗(U⃗ ) ,

where F ∗(U⃗ ) is defined recursively:

• Pi(⃗t )∗ = Ui(⃗t ) for any list t⃗ of terms;

• F ∗ = F for any atomic formula F that does not contain members of P⃗ ;

• (F ∧G)∗ = F ∗ ∧G∗ ;

• (F ∨G)∗ = F ∗ ∨G∗ ;

• (F⊃G)∗ = (F ∗ ⊃ G∗) ∧ (F ⊃ G) ;

• (¬F )∗ = (F⊃⊥)∗ ;

• (F ≡ G)∗ = (F ⊃ G)∗ ∧ (G ⊃ F )∗ ;

• (∀X⃗.F )∗ = ∀X⃗.F ∗ ;

• (∃X⃗.F )∗ = ∃X⃗.F ∗ .

Expression SM[F ] is shorthand for SM[F ; P⃗ ] where P⃗ is the list of all predicates in F .

The models of SM [F ] are the stable models of F . Specifically, if F is the completion of
a stratified logic program, SM [F ] has a unique Herbrand model that corresponds to the
unique stable model of the logic program.

As the last step of our translation we therefore add the axiom SM [F ] , where F is the
conjunction of all rules in the transformed game description.

It should be noted that the Situation Calculus typically uses a second-order induction
axiom to limit the set of situations to the smallest set containing s0 that is closed under
the Do operator. However, different from SM [F ], the induction axiom is not sufficient to
enforce a unique model in the presence of redundant rules.

195



Schiffel & Thielscher

4.5 Soundness and Completeness

The theory obtained by the transformation developed in the previous section is indeed a
Situation Calculus theory, as we will show now.

Proposition 2 Let G be a valid GDL-II game description and D be the axiomatisation
obtained from it by the transformation defined above. Then D is a syntactically correct
Situation Calculus theory.

Proof: As a Situation Calculus theory, D must include a precondition axiom for each
action a(X⃗) of the form

Poss(a(X⃗), S) ≡ π(X⃗, S) .

The formula π(X⃗, S) must not refer to any situation other than S . In our general precon-
dition axiom (5), the variable A can be instantiated with every compound action to obtain
an axiom of the form above. The right-hand side of (5) has the only free variables A and
S and contains no reference to any other situation besides S .

Furthermore, D must contain successor state axioms for each primitive fluent f(X⃗) of
the following form:

Holds(f(X⃗),Do(A,S)) ≡ γ(X⃗,A, S) .

Again, the formula γ(X⃗,A, S) must not refer to any situation other than S . In our general
successor state axiom (6) the variable F can be instantiated with every primitive fluent
to obtain an axiom of the form above. The right-hand side of (6) refers to the bodies of
rules with head next(F ′). According to the syntactic restrictions of GDL-II these bodies
may not depend on init or next and therefore do indeed never refer to any situation
besides S . !

We will now show that the transformation from the previous section is sound and com-
plete, that is, a GDL-II game description and the resulting Situation Calculus theory are
equivalent in terms of the knowledge that can be inferred from them. For this, we first
recall from Definition 6 the notion of a legal play sequence:

σ0
µ1→ σ1

µ2→ . . . σn−1
µn→ σn .

Intuitively, any such sequence can be interpreted as the situation

Do(An, . . . ,Do(A2,Do(A1, s0)) . . .)

in the Situation Calculus, where each joint move µi = {(r1,m1), . . . , (rk,mk)} corresponds
to a compound action Ai = ⟨m1, . . . ,mk⟩. The following theorem states that for a given
state and joint move, the GDL-II game rules and the Situation Calculus theory entail the
same propositions.

Theorem 3 Let G be a valid GDL-II game description and D be the Situation Calculus
theory that is obtained from G with the translation defined above. Furthermore, let
δ = σ0

µ1→ . . .
µn→ σn be a legal play sequence of the game with corresponding situation

S = Do(An, . . . ,Do(A1, s0) . . .); µ be a joint move legal in σn; and A be the compound
action corresponding to µ.

For every predicate p(X⃗) in the GDL-II description, let its translation to the Situation
Calculus be denoted by pt(X⃗,A, S), as in the examples given below.
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• truet(F,A, S) = Holds(F, S),

• pt(X⃗,A, S) = p(X⃗, S) for derived fluents,

• pt(X⃗,A, S) = p(X⃗,A, S) for derived action predicates.

Then for every predicate p(X⃗) of the GDL-II description, p(X⃗) ∈ SM [G ∪ σtruen ∪ µdoes]
iff D |= pt(X⃗,A, S).

Proof: The theorem follows from the construction of the Situation Calculus theory in
Section 4.3 and a result by Ferraris et al. (2011) according to which the unique stable model
of a stratified logic program is equivalent to the Herbrand model of SM [F ] if F is the
conjunction of the completion of the program. !

Our main proposition states that indistinguishable legal play sequences for some player
correspond to situations that the player considers mutually possible, and vice versa. This
implies that players can use the Situation Calculus theory to reason about their knowledge
about past, present, and future positions as well as about the knowledge of other players.

Proposition 4 Let G be a valid GDL-II description with semantics (R,σ0, T, l, u,I, g)
and D be the Situation Calculus theory obtained from G with the translation defined
above. Let there be two legal play sequences

δ = σ0
µ1→ . . .

µn→ σn, and

δ′ = σ0
µ′
1→ . . .

µ′
n→ σ′

n

of the game with the corresponding situations S = Do(An, . . . ,Do(A1, s0) . . .) and S′ =
Do(A′

n, . . . ,Do(A′
1, s0) . . .). A role r ∈ R cannot distinguish δ and δ′ iff D |= K(r, S′, S).

Proof: We prove the proposition by induction on the length n of sequence δ.
For the base case n = 0 there is only one legal play sequence—the initial state σ0 with

the corresponding initial situation s0. Accordingly, by (8), D |= K(r, S, s0) iff S = s0,
which proves the base case.

For the induction step, consider the two legal play sequences

δ+ = δ
µn+1→ σn+1 and δ′+ = δ′

µ′
n+1→ σ′

n+1

with the corresponding situations Do(An+1, S) and Do(A′
n+1, S

′), respectively.
We have to show that δ+, δ′+ are indistinguishable for r if, and only if,

D |= K(r,Do(A′
n+1, S

′),Do(An+1, S)) .

From the successor state axiom for the special fluent K (cf. axiom (9)), we know that
K(r,Do(A′

n+1, S
′),Do(An+1, S)) if, and only if, all of the following hold.

(a) K(r, S′, S);

(b) Poss(A′
n+1, S

′);

(c) Act(r,An+1) = Act(r,A′
n+1); and
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(d) ∀P.Sees(r, P,An+1, S)≡Sees(r, P,A′
n+1, S

′).

We now show that each one of these holds.
By the induction hypotheses, (a) holds.
From the definition of a legal play sequence (Definition 6) it follows that each player’s

move in µ′
n+1 is legal in the state σ′

n, that is, for all players r,

legal(r, µ′
n+1(r)) ∈ SM [G ∪ σ′true

n ] .

By Theorem 3 we conclude that this holds exactly if D |= Legal(r, µ′
n+1(r), S

′) for all
players r. Because of µ′

n+1(r) = Act(r,A′
n+1), this is equivalent to the right hand side of

our precondition axiom (5) and hence equivalent to Poss(A′
n+1, S

′). Thus (b) follows.
According to Definition 7, provided that δ and δ′ are indistinguishable for role r, δ+

and δ′+ are indistinguishable for r if, and only if,

{p : (r, µn+1,σn, p) ∈ I} = {p′ : (r, µ′
n+1,σ

′
n, p

′) ∈ I} (10)

and µn+1(r) = µ′
n+1(r) (11)

By the definition of Act(r,A) (cf. (3)), Act(r,An+1) = µn+1(r) and Act(r,A′
n+1) =

µ′
n+1(r) . Thus, equation (11) holds if and only if (c).
By Definition 5, I = {(r, µ,σ, p) : sees(r, p) ∈ SM [G ∪ σtrue ∪ µdoes]}. Thus,

(r, µ′
n+1,σn, p) ∈ I if, and only if, sees(r, p) ∈ SM [G ∪ σtruen ∪ µdoesn+1 ] . By Theorem 3,

this is equivalent to D |= Sees(r, p,An+1, S) . The same reasoning holds for the right hand
side of (10). Thus, (10) holds just in case (d) holds.

This proves that (a) to (d) are consequences of the induction hypothesis. Hence,
K(r,Do(A′

n+1, S
′),Do(An+1, S)) holds if, and only if, r cannot distinguish δ+ and δ′+ ,

which concludes the induction step and the proof. !

4.6 Practical Considerations

Our completeness result requires the second-order axiom SM [F ] in the translated game
description. In practice, this can be avoided if we can confine ourselves to finitely many
situations. The syntactic restrictions in GDL-II imply that every ground atom only depends
on finitely many other ground atoms; this is a consequence of the restricted recursion
according to Definition 3. Our mapping extends the GDL rules by situation arguments, but
also for these only finitely many ground instances are considered in Theorem 3 because the
legal play sequences are fixed and hence the situations are depth-restricted. In this case
it suffices to consider a finite subset R(P,F ) of the grounding of a program P to decide
whether a ground atom F is entailed by P (Bonatti, 2001). Thus, we can consider a finite
ground program and replace the second-order axiom by propositional loop formulas (Lin &
Zhao, 2004) to reconcile the semantics of GDL-II with the Situation Calculus theory. This
solution applies whenever we can confine ourselves to finitely many ground situations for
the reasoning problem at hand.9

9. We also remark that this issue is actually of little relevance to the practice of General Game Playing;
e.g. none of the numerous games played at the past AAAI Competitions featured logically redundant
clauses that players had to recognise.
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Although with these points in mind decidability of reasoning is not an issue, tractability
still is. It is possible to construct game rules where computing all legal moves alone is too
expensive to do any kind of planning ahead in a reasonable amount of time. A practically
viable approach is the use of sound but incomplete proof methods (Haufe & Thielscher,
2012; Thielscher, 2013).

5. Related Work

The new language GDL-II is the first extension of the existing GDL for nondeterministic
games with imperfect information. The idea behind General Game Playing itself goes
back to early work by Pitrat (1968) and, later, Pell (1993). Both define formal languages
to describe whole classes of games, but these languages are even less general than basic
GDL for perfect-information games. Earlier work also includes the definition of Gala
for describing general games with imperfect information (Koller & Pfeffer, 1997). The
main difference to GDL-II is that Gala is tightly coupled with a programming language
(Prolog) and therefore has an operational—rather than declarative—semantics. It should
be mentioned also that GDL-II draws from concepts that have been used in Action and
Planning Languages (Lobo, Mendez, & Taylor, 2001) to represent effects of actions in the
presence of incomplete knowledge. GDL-II can be seen as generalising this line of work to
multi-agent and competitive settings.

The keyword sees that we introduced into the Game Description Language allows
us to describe a player’s percepts as side-effects of moves. This is different from the tra-
ditional modelling in reasoning about actions of observations as direct effects of sensing
actions (Scherl & Levesque, 2003; Thielscher, 2000; Lobo et al., 2001) and is especially
appropriate for multi-player games where agents may see something without having acted,
e.g., when they observe other players’ moves or cards they are being dealt.

Our translation from GDL-II into the Situation Calculus is the first full embedding of
GDL-II into an action formalism; a recent mapping (Thielscher, 2011) into the Action De-
scription Language C+ (Giunchiglia, Lee, Lifschitz, McCain, & Turner, 2004) is restricted
to basic GDL and hence covers neither imperfect information games nor knowledge and
sensing. But we expect our translation to provide the basis for mappings of GDL-II into
other existing action languages, for example, the one developed by Lobo et al. (2001). This
opens up the road to the full range of applicable methods and systems that exist in reasoning
about actions and AI planning.

The Situation Calculus has previously been shown to be a viable formalism for represent-
ing and reasoning about games by Schulte and Delgrande (2004), who also use the Situation
Calculus variant with knowledge (Scherl & Levesque, 2003) to axiomatise extensive-form
games. On the one hand, their approach is more general then ours in that it can deal with
infinite games, does not assume perfect recall and is not restricted to uniform probabilities
for nature’s moves. On the other hand, it is these restrictions that make GDL-II a compact
axiomatisation language which focuses on the rules of games rather than on how to reason
about them. In addition, GDL-II has a state update semantics, which is in general preferred
over the usual regression semantics of the Situation Calculus for performance reasons.

A limitation of Schulte and Delgrande’s axiomatisation is the restriction of knowledge
fluent K(S′, S) to a single agent (namely, the player whose move it is in situation S ,
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assuming that players do not move simultaneously). This does not allow for reasoning
about the knowledge of any other player in these situations, nor about what one agent can
conclude about what another agent would know. This is remedied in a recent definition of
a multi-agent epistemic variant of the Situation Calculus for axiomatising games (Belle &
Lakemeyer, 2010). Despite notable differences to GDL-II and our variant of the Situation
Calculus, e.g. the restriction to non-simultaneous moves and the augmentation of a domain
theory with an epistemic theory about subjective knowledge, we believe that a translation
similar to the one presented in this paper can be constructed by which full GDL-II is
embedded into a suitably adapted version of Belle and Lakemeyer’s approach.

There are other formalisms beside the Situation Calculus for reasoning about knowledge
and actions in multi-agent environments, for example, the epistemic logic developed by Be-
lardinelli and Lomuscio (2009). A translation of GDL-II into this formalism seems possible
and might be interesting because model checkers for this logic are available (Lomuscio, Qu,
& Raimondi, 2009).

Several General Game Playing systems exist that are able to play games encoded in
GDL-II (Schofield, Cerexhe, & Thielscher, 2012; Edelkamp, Federholzner, & Kissmann,
2012). Although these systems have to reason about a game as well, the focus lies on
solving specific reasoning tasks (such as computing legal moves and possible continuations
of the game) under time constraints.

6. Conclusion

One of the reasons why General Game Playing has not yet found as many applications
outside the game-playing area as it could, is that the current state of the art is restricted to
deterministic games with complete state information. Aiming at overcoming this limitation,
we have defined a conceptually simple yet powerful extension of the Game Description
Language for representing the rules of general games with information asymmetry and
random moves. We have shown that GDL-II, notationally simple as it is, gives rise to an
intricate epistemic model and thus suffices to provide players with all information they need
to reason about their own knowledge as well as that of the other players up front and during
game play.

We have argued that our language extension suffices to describe any finite n-player
game in extensive form with perfect recall. This shows that for the purpose of General
Game Playing the language GDL-II can be considered complete; additional elements can
only serve to obtain more succinct descriptions (e.g., by allowing explicit specifications of
non-uniform probabilities for moves by random) or will be needed when the very concept
of General Game Playing itself is extended beyond the current setting, e.g. to open-world
games such as Scrabble (Sheppard, 2002) or systems that play real, physical games (Barbu,
Narayanaswamy, & Siskind, 2010).

In the second part of the paper, we have presented an embedding of our extended game
description language into a suitable variant of the Situation Calculus that features multi-
agent knowledge, simultaneous actions, and action-independent sensing. While a GDL-II
game description itself defines what observations players make throughout a game but not
how they use this information, the Situation Calculus axiomatisation tells players how to
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reason about their own percepts and what they entail about the current position, about the
possible moves, and about what the other players may know.

A central aspect of our work is the distinction between objective information on the
one hand and how it affects the epistemic state of an agent on the other hand. The differ-
ence manifests itself in the two key predicates of this paper: GDL-II keyword sees(R,P)
describes objective information while Knows(R,Φ, S) in the Situation Calculus axioma-
tises subjective knowledge. This distinction is also present in the two semantics given in
this paper: state transition systems to model the rules of a game environment and Situa-
tion Calculus axiomatisations to model the information processing of players. This draws
a connection of our work to the more general distinction often made in AI between the
functionality of agents and properties of their task environments (Russell & Norvig, 2010).
Seen from this perspective, GDL-II extends GDL in that it enables us to describe a larger
class of game environments in a rule-based language. Meanwhile, our Situation Calculus ax-
iomatisation can be viewed as a model for game-playing agents whose functionality includes
perfect recall and reasoning abilities. An interesting direction for future work is to develop
alternative Situation Calculus axiomatisations of reasoning about GDL-II games and to use
these to study other types of agents, e.g. which are memoryless and purely reactive, as well
as aspects of bounded rationality in game-playing programs (Russell & Wefald, 1991).

Beyond General Game Playing we therefore envision applications of GDL-II in other AI
areas in which game models arise, such as automated trading agents (Thielscher & Zhang,
2010), Multiagent Planning (Larbi, Konieczny, & Marquis, 2007), or Multiagent Systems
in general. A general description language for games of any kind is potentially useful
wherever there is a need for compact and high-level yet machine-processable specifications
of problem domains and applications in the form of games. Also there is potential for using
the available General Game Playing infrastructure and systems for developing and testing
new games or for modelling, simulating, and reasoning about dynamic environments like, for
example, economic systems. However, some additions to the language, such as arithmetic,
might be necessary to allow for concise descriptions of some of these domains. In addition,
GDL-II and the General Game Playing infrastructure have been used as tools for teaching
AI and the development of agent programs for dynamic environments in several university
courses.10
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