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Abstract
This paper reviews a variety of different graphical notations currently in active use for

modelling dynamic processes in bioinformatics and biotechnology, and crystallises from these

notations a set of properties essential to any proposal for a modelling language seeking to

provide an adequate systemic description of biological processes.

THE ROLE OF DYNAMICS
IN BIOINFORMATICS
As bioinformatics moves into the

post-genomic era it becomes more and

more important that it concerns itself

with a principled account of process.

As researchers start to investigate the

meaning of genomic data, it becomes

clear that this meaning is inextricably

entwined with the biological

processes of which it forms an integral

part.

Palfreyman1 has argued that process

lies at the heart of the concept of

information, since it is the dynamical

transformation of state that defines the

informational content of that state. If we

regard bioinformatics as the study of the

storage and processing of information in

biological systems, then the central

concern of bioinformatics becomes the

study of dynamical effects in biological

systems.

This standpoint places the dynamical

modelling of biological processes firmly

on the centre stage of bioinformatics, and

is therefore a significant point of overlap

between the endeavours of

bioinformatics and systems biology. Our

central aim in this paper is to analyse the

notations currently used in dynamical

modelling work in bioinformatics with a

view to crystallising from these notations

a set of properties essential to the

adequate description of systemic

biological process.

EVALUATING DYNAMICAL
MODELLING NOTATIONS
Criteria for evaluating
dynamical notations
In order to evaluate dynamical modelling

notations for bioinformatics, we shall

need to be aware of the criteria which

must be fulfilled by such a notation, and

these criteria are in turn defined by the

needs of the various interest groups with a

stake in the notation. The stakeholders

explicitly considered in this paper are:

biochemists, molecular and

developmental biologists, systems

biologists and biotechnological process

engineers. We can group the

requirements of a language of biological

process under the following broad

headings:

• Transformation: crucial to the study

of cellular metabolic processes are the

enzymatic reactions controlled by

gene products. Hence a bioinformatic

process notation should adequately

describe networks of catalysed

metabolic transformations.

• State-transition: the state of a

particular gene can be defined in terms

of its expression rate, and the pattern

of expression rates over the entire

genome of a cell defines the state of

that cell. Stable states define for

example the differences between the

different cell types in a typical
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eukaryote. A dynamical notation

should be able to describe both the

maintenance of such states and also the

transition from one state to the next.

• Transport: an important aspect of

bionetwork modelling concerns the

transport mechanisms of

biotechnologically relevant substances

or organisms. A process notation

should be able to describe transport

networks within cells (eg phosphate

transport to mitochondria), between

cells (eg signal transduction) and of

cells (eg within a fermenter or

developing embryo).

• Creation/destruction: of major

importance in gene-regulatory and

metabolic processes is the production

and decay of chemical signals – if

messenger substances survived

permanently in the cell interior or

environment, they could not function

as signals. An important issue is

therefore the convenient

representation of chemical sources and

sinks.

• User acceptance: all of the above

stakeholders are in some sense

biologists. Any tool or notation that is

to be used by biologists must adhere to

the cultural norms of the biologist –

graphical symbols and their meaning

must be palatable to the life scientist if

they are to find acceptance with this

user group.

• Availability: it is important that any

dynamical notation used to model

biological processes should be available

for use by researchers. This means on

the one hand that the notation should

lend itself to informal pen-and-paper

discussions, but also that the notation

should be available in the form of a

convenient software tool.

• Animation/execution efficiency:

systems biology concerns itself with

modelling entire networks of reactions

within the cell or organism, and in

particular in simulating these models in

silico.2 A biological process formalism

should therefore provide facilities for

efficiently executing a dynamical

model to investigate its time

development.

• Stochastic behaviour: there exists

an inherently stochastic component in

many biological systems such as the

lysis/lysogeny switch in º-phage. The

animation of a process model should

therefore permit the incorporation of

such a stochastic element.

The idealised lac model (ILM)
To provide a standard measuring stick

against which to evaluate dynamical

modelling notations a greatly idealised

model of the lac-operon is introduced

here.3 This model has the advantage that

it incorporates each of the criteria

presented above, containing elements of

signalling, gene regulation and

metabolism. In this idealised lac model

(ILM – see Figure 1), the three-gene

internal structure of the lac-operon is

ignored and instead the following highly

schematic account of its role in the

hydrolysis of lactose is given.

We start our description of the ILM

when extracellular lactose (Lx) is present

in the intercellular environment. In this

case lactose permeates at a certain, very

low, base rate into the cytosol to raise the

level of intracellular lactose (L). L has the

effect of switching a particular repressor

protein in the cell between two possible

conformational states: active (R) and

passive (Rp).

In the genome of the ILM is a single

promoter P which is responsible for

initiating transcription of an enzyme

complex E. The complex E performs the

dual function of raising the permeation

rate of lactose (L) into the cell and then

splitting this lactose molecule into one

molecule each of glucose (G) and

galactose (Ga). P is in turn activated by

two factors: the presence of catabolite-

Modelling the lac-
operon

The ILM contains
elements of signalling,
gene regulation and
metabolism
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activating protein (CAP) and the absence

of the active repressor protein

conformation R. Thus there exists at least

one balancing feedback loop in this

model, via which L influences its own

rate of splitting to G and Ga.

Although the ILM is a deliberately

idealised abstraction, it contains in a

realistic example all of the evaluation

criteria mentioned in the section above

on ‘Criteria for evaluating dynamical

notations’ for a dynamical notation for

bioinformatics. In the following section

we shall critically compare a variety of

dynamical formalisms available for

modelling bionetworks, using the ILM as

a common scale against which they can be

assessed.

DYNAMICAL MODELLING
NOTATIONS IN CURRENT
USE
Ordinary differential equations
model change over time
Description

Probably the oldest notation for

modelling change over time is the

language of ordinary differential equations

(ODE). ODEs have a long and

distinguished history in dynamical

modelling since their introduction by

Newton and Leibnitz in the 17th century

to describe the dynamics of physical

systems. Since then they have been used

to represent all manner of dynamical

systems in the sciences. In addition, Euler

was the first to offer in the 18th century

an efficient means of solving ODEs

numerically irrespective of their

complexity. The nature of their solutions

has been analysed particularly intensively

in the last 30 years in relation to chaos

theory (see, for example, Strogatz4).

By defining a number of representative

constants, we arrive at an ODE

formulation of the ILM presented in the

equations 1 to 8 below. This set of

equations is a straightforward translation

of the ILM into mathematics. The

variables E, G, Ga, L, Lx, R and Rp on

the left are the state variables of the model.

The change dX of the state variable X

over the time interval dt is expressed by

the expression dX/dt. The first seven

equations on the right are the initial

conditions for the model.

• P, CAP_site and R_site are (Boolean)

variables relating to the current

activation state of the promoter P;

• degrade_rate represents the

degradation rate of the enzyme

complex E;

• base_permeation is the very low

unfacilitated base permeation rate of

lactose into the cytosol; and

• the constants pToA and aToP define

the exchange rate of the repressor

protein R between its active and

passive conformations.

dE

dt
¼ P � degrade_rate:E

E(0) ¼ 0 (1)

dG

dt
¼ f (E, L, G, Ga)

G(0) ¼ 0 (2)

dGa

dt
¼ f (E, L, G, Ga)

Ga(0) ¼ 0 (3)

ODEs describe systems
in terms of functions
and their derivatives

DNA
CAP site

Polymerase Repressor
site

Enzyme complex gene Polymerase

Active repressor

Passive
repressor

EC

EC

Glucose

Galactose mRNA

LactoseEC

Cell membrane

Extracellular
lactose

Figure 1: Conventional biological representation of the ILM. CAP ¼
catabolite-activation protein; EC ¼ enzyme complex
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dL

dt
¼ (base_permeation þ E):

Lx� f (E, L, G, Ga)

L(0) ¼ 0 (4)

dLx

dt
¼� (base_permeation þ E):Lx

Lx(0) ¼ 5 (5)

dR

dt
¼ aToP:L � pToA

R(0) ¼ 1 (6)

dRp

dt
¼ pToA � aToP:L

Rp(0) ¼ 0 (7)

P ¼ 1 if (CAP_site and

not R_site), else 0;

CAP_site ¼ True;

R_site ¼ (R . 0:2);

degrade-rate ¼ 0:1;

pToA ¼ 0:1;

base_permeation ¼ 0:01;

aToP ¼ 20

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
(8)

Discussion

ODEs offer a number of advantages as a

dynamical formalism, not least of which is

simply the overwhelming ubiquity of

ODEs in the dynamical systems literature.

The formalism interfaces seamlessly with

the whole of mathematics, which enables

the description of systems of arbitrary

complexity within a unified framework.

In addition, the numerical solution

methods of Euler, Runge-Kutta and

others enable these equations to animate a

system such as the ILM in the sense of

solving the equations numerically through

time.

Yet there are also clear disadvantages to

ODEs as a notation for bionetworks, and

these relate to the representation of the

flow of matter and of information in the

notation. When we look at the set of

ODEs 1–8 we notice that a number of

essential aspects of the ILM are not made

explicit by equations. One example of

such an implicit dependence is the

conserved material flow between R and

Rp, and also between L and Lx: when

lactose disappears from the extracellular

environment, it appears within the

cytosol. This flow is at least obscured by

the mathematical notation.

Another related case is the use of

symbols to represent information

dependency in the model: equations 2–7

all refer to L, yet it is difficult for the

reader to see precisely how these all fit

together. In actual fact, three separate

relationships are being represented here –

the permeation of lactose into the cytosol,

the splitting of lactose to glucose and

galactose, and the lactose-activated

reconformation of R. Yet the equations

blur the boundaries between these distinct

dynamical aspects in a way that obscures

their physical interpretation.

While these issues may seem trivial to

the experienced mathematician, our

usability tests suggest that for the biologist

they can represent a significant obstacle to

understanding the model. The problem

becomes far more acute when we look at

a more realistic set of ODEs such as those

used by Tyson5 to model the regulation

of M-phase-promoting factor in frogs’

eggs. To discern the many flows and

dependencies from the equations in that

article is definitely a non-trivial exercise

for the uninitiated.

Petri nets model cumulative
change
Description

Petri nets (PNs) were developed by Petri

(1962) to model dynamical systems

governed by discrete state transition rules.

Petri nets have since found application in

software design, business process

management and networking protocols.

They possess unambiguous executable

semantics for animation, and can be

represented both graphically and

mathematically. Reddy et al.6 were the

first to use PNs to model metabolic

pathways; Hofestaedt and Thelen7 then

demonstrated their usefulness for

modelling regulatory bionetworks.

Hybrid functional PNs (HFPN) are

referred to by David and Alla,8 and were

Hybrid Functional Petri
Nets
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developed further by Drath9 and later by

Matsuno et al.10 to simulate bionetworks.

HFPNs extend the original PN formalism

in two respects: first, they extend the

semantics from discrete to continuous

transitions, and secondly they permit

limited dynamic reconfiguration of the

net by using functions to define the

transitions.

An HFPN is a directed graph

containing two kinds of nodes: places

P ¼ {pi} (represented by singly and

doubly drawn circles in Figure 2) and

transitions T ¼ {ti} (filled or unfilled bars).

An HFPN also contains three kinds of

arcs A ¼ {ai}: normal (solid line), inhibitory

(filled line terminating in circle) and test

arcs (dotted line). Arcs connect places with

transitions to provide flow routes through

the net, and with each arc can be

associated a weight wi. In Figure 2, the

ILM is represented within the HFPN

formalism.

Tokens represent the current dynamic

state of an HFPN at each instant,

affording the animation of the net. Each

place pi contains a number of tokens M(pi)

(the marking of pi), acting as an

accumulator of tokens until they are

passed on via transitions to downstream

places. Thus in Figure 2 the passage of a

token from the place Lx to the place L

represents the permeation of extracellular

lactose into the cell as a change of state

from ‘outside the cell’ to ‘inside the cell’.

Tokens are produced and consumed

when a transition is activated (‘fired’).

Transitions are activated on fulfilment of

some precondition pre(uppti), where

theuppti are the upstream places of the

transition t. When t fires, the marking of

the upstream and downstream places is

updated according to the post-conditions:

M timeþ1(up pti) ¼ M time(up pti) � upwtiv(P)

M timeþ1(down ptj) ¼ M time(down ptj)

þ downwtjv(Pt)

where Pt is the set of all places connected

with t; v(Pt) is a function associated with t

(the firing speed of t) of the elements of

Pt;upwi is the arc weight associated with

uppti; and downptj is the jth downstream

place from t.

For discrete transitions the firing

condition is checked in discrete time

steps, while a continuous transition is

constantly checked and, if active, is

continually fired with the associated firing

speed v(Pt). In an enzyme kinetics

application the speed v could for instance

be set to the Michaelis–Menten function

for enzymatic reaction rates. Isolated

transitions can serve as sinks and sources.

HFPNs also distinguish between

discrete and continuous places. Discrete

places can contain only an integer number

of tokens while continuous places can

hold fractional numbers of tokens.

Normal arcs represent the flow of tokens

between places and transitions. Together

with weights, these mechanisms are useful

for representing chemical reactions with

varying proportions of substrates and

products. Test arcs and inhibitory arcs

modulate transitions without consuming

tokens from the upstream places,

modelling, for example, the regulatory

effects of R_site and CAP_site on P in

Figure 2.

Discussion

The crucial contribution of Petri nets to

dynamical modelling is the description of

cumulative change. The accumulation and

depletion of tokens at a place models

dynamical change as a stepwise historical

Cumulative change in
Petri nets

Figure 2: HFPN
representation of the
ILM
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process, resulting from the accumulation

of many small changes as tokens flow

from one place to the next. This makes

HFPNs particularly suitable for the

modelling of metabolic bionetworks,

where the chemical composition of the

cell proceeds through many cumulative

reaction steps. As Figure 2 illustrates,

HFPNs can be used, and indeed are being

used, to describe catalysed biochemical

reactions, balanced reactions,

multimolecular reactions and gene

regulation. The notation also permits

encapsulation in which, for example, a

transition can represent a subnetwork

containing additional places and

transitions.

Two particularly appealing aspects of

the HFPN are the use of transitions to

represent sources and sinks, and the use of

weighted arcs. Together, these two

features are responsible for a significant

reduction in the complexity of the

diagram, since they make it possible to

create new tokens at any transition,

modelling non-conserved token flows

such as the multimolecular reaction

L! G + Ga.

However, the application to

bioinformatic modelling also shows up

certain failings of HFPNs. As Zevedei-

Oancea and Schuster11 note, a minor

but ugly feature is the use of two

transitions to model the single reversible

reaction R$ Rp. A more serious

problem is the awkward use of discrete

places containing either one or zero

tokens to represent the Boolean

regulation of the promoter P. The two

places R_site and CAP_site no longer

function here as accumulators, but rather

as Boolean switches, leading to a

confusing and inelegant representation of

regulatory pathways.

Finally, the execution semantics of

HFPNs interface clumsily with the

semantics of ODEs. The HFPN comes

close, but not quite close enough, to

functioning as a numerical integrator of

ODEs, but lacks in particular the notion

of a time interval dt over which

integration occurs.

Boolean networks model
functional change
Description

Kauffman and coworkers12,13 originally

introduced Boolean networks as an

adequate model for studying generic

properties of genetic networks. Boolean

networks are based on Boolean logic and

have been widely used to model large

gene regulatory networks (Akutsu et al.,14

Shmulevich15). Platzer16 uses Boolean

networks to construct a large executable

model of cell differentiation in the

Caenorhabditis elegans embryo.

Boolean networks are directed

monopartite graphs. Each node can be in

one of two states which are named

variously one/zero, on/off or true/false. The

totality of states of all nodes at each instant

defines the current state of the entire

system. Arcs represent the logical

influence of the upstream node on the

downstream node. An extension

introduced by Mendoza and Alvarez-

Buylla17 uses weighted arcs wi to model

different levels of influence between

nodes.

At each time-step all nodes of a

Boolean network are updated in response

to the incoming signals si from upstream

nodes. The sum of these signals is

compared with a threshold value Ł
associated with the downstream node

(indicated inside the nodes of Figure 3); if

�wisi > Ł, then the state of the

downstream node becomes 1 in the next

time-step; otherwise the state becomes 0.

It is important to recognise that this

update algorithm only makes reference to

signals from upstream nodes; it explicitly

makes no reference to the previous state of

the downstream node. Thus Boolean

networks simulate ahistorical dynamic

behaviour.

We can best understand how Boolean

networks function by considering the

gene regulatory components of the ILM

representation shown in Figure 3. Here

the nodes CAP_site and R_site are

connected to the node E via arcs with

respective weights wCAP_site ¼ +1,

wR_site ¼ –1, and E has a threshold value

Modelling large-scale
networks with Boolean
networks

Places as Boolean
switches

Ahistorical dynamic
behaviour
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Łe ¼ 1. Let us suppose that at some instant

the upstream nodes have the respective

signals SCAP_site ¼ 1 and SR_site ¼ 0. The

transition to the next state of the network

is then calculated by forming the inner

product of the signals and weights, giving

iCAP_sitewCAP_site ¼ iR_sitewR_site ¼ 1:(+1)

+ 0:(–1). Since this value is greater than

or equal to the threshold value ŁE, the

state of E at the next time-step is 1. In this

way the network models the regulation of

the enzyme E by R and CAP. If the state

of R_site were changed to 1, then our

time-step calculation would become

1:(+1) ¼ 1:(–1) ¼ 0; since this is less than

the threshold, the state of E at the next

time-step would be 0.

Discussion

The central feature of Boolean networks

is functional, as opposed to cumulative,

change. Whereas cumulative change

proceeds in a stepwise, historically

dependent fashion, functional change occurs

instantaneously in an ahistorical fashion.

Consider for example the reaction of the

expression of E to changes in the nodes

R_site and CAP_site: if these nodes are

set to the 0 and 1 states respectively, then

E is switched on regardless of its previous

state history.

Functional change is perfectly suited to

the instantaneous switching which plays

such an important part in gene-regulatory

networks. It is less appropriate for the

historically conditioned dynamics of

metabolic networks, as we see from the

rather inelegant representation of the ILM

reaction L! G + Ga catalysed by E.

Notice also how the ongoing state of the

node CAP_site must be maintained off by

means of a self-stimulatory arc in the

ILM. This is an artefact arising from the

ahistorical nature of functional change in

Boolean networks.

In summary, Boolean networks are

well suited to representing the functional

change of regulatory bionetworks, but not

to the cumulative change of metabolic

networks. In addition Huang18 has noted

that the restriction of the nodes to

Boolean functions means that they are

more appropriate for describing

fundamental, generic principles rather

than quantitative biochemical principles.

Dynamic Bayesian networks
describe stochastic behaviour
Description

Bayesian networks (BN) model causal

relationships between stochastic

variables.19 They incorporate uncertainty

into the dynamics of networks.

BNs were developed and introduced

by Pearl20 and have been applied in the

areas of text analysis, medicine,

engineering and image processing. Their

application to bionetworks has been

investigated by Friedman et al.,21 Pe’er et

al.22 and Hartemink et al.23 Hartemink,

for example, used BNs to study gene

regulation of galactose metabolism in

Saccharomyces cerevisiae. Since BNs cannot

model cyclic dependencies, the full

application of BNs to dynamical systems

with feedback only became possible with

the work of Perrin24 on dynamic Bayesian

networks (DBN), which unfold

dependencies into relationships between

the successive time-steps t and t + 1 (see

Figure 4). Friedman first used DBNs to

reverse-engineer gene-regulatory

Incorporating
uncertainty

Functional change in
Boolean networks

Cyclic dependencies
within dynamic
Bayesian networks

Figure 3: Boolean network representation of the ILM
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networks from microarray time series

data.

Bayesian networks are directed acyclic

graphs representing joint probability

distributions P(X1,X2,. . .,Xn). Nodes

represent dynamical variables, and arcs

represent postulated causal dependencies

between these variables.25 As shown in

Figure 4, by unfolding the dynamical

states at instants t and t + 1, DBNs

become capable of representing causal

feedback loops in an acyclic fashion. In a

DBN the probability Pt þ 1(Xi) at time

t + 1 is conditional on a set of prior

probabilities Pt(Xi) at time t; for example

in Figure 4 the causal dependence of R at

time t + 1 on R and Rp at time t is

formulated as P(Rt þ 1|Rt,Rpt).

Discussion

The application of BNs to gene regulation

rightly asserts the stochastic nature of

many biological systems such as the lysis/

lysogeny switch in º-phage, and even,

arguably, the inhibition of repressor

protein by lactose in the ILM. Bayesian

networks are statistical models that

integrate uncertainty into the modelling

process, and so are effective in modelling

such systems. In addition, by introducing

the possibility of circular feedback, DBNs

open the possibility of reverse-

engineering feedback networks from

expression data using standard

optimisation techniques for Bayesian

networks.

Yet there are also a number of

disadvantages to Bayesian networks. First,

they suffer from many of the same

problems as Boolean networks, since their

functioning is essentially ahistorical in

nature. This makes the modelling of

metabolic reactions at least problematical.

Second, the very trick that enables DBNs

to cope with cyclic dependencies also

plays havoc with the readability of the

formalism. If we compare Figure 3 with

Figure 4, we can see how the enzymatic

reaction L! G + Ga becomes in the

Bayesian network formalism even more

opaque, if possible, than in the Boolean

network notation.

Signal-flow diagrams link
functional change to
cumulative change
Description

A fundamental tool in control systems

engineering is the block diagram, used to

analyse the structure of complex systems

into collections of simpler relationships.

Block diagram models originate from

engineering areas such as signal processing

and feedback control theory,26 and are

widely used to simulate the behaviour of

mechanical, thermodynamic, electronic

and control systems.27

Signal-flow diagrams are a form of block

diagram that describe dynamical systems

in a very detailed way by resolving the

blocks of the block diagram into basic

mathematical functions and signals, and

mapping these onto ODEs. A block

diagram model is a multipartite graph

consisting of different blocks and directed

arcs: blocks define the dynamical

subsystems of the system under study, and

arcs define the relationships in form of

signals between these subsystems. The

Block diagrams unravel
complex structures

Figure 4: DBN
representation of the
ILM
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purpose of the nodes in a signal-flow

diagram is therefore to accept incoming

signals from upstream nodes, process

them, and pass on the result to

downstream nodes.

In a signal-flow diagram, unfilled nodes

indicate mathematical processing of

incoming signals while small filled nodes

represent signal branching. Looking at the

signal-flow formulation of the ILM in

Figure 5, we see for example that

integration of inputs is indicated by the

marking ‘
R

dt’ and multiplication of inputs

by ‘3’. The arcs of a signal-flow diagram

map the passing of signals from upstream

nodes to downstream nodes – simulation

is achieved by iterating this passing of

signal values through time.

Discussion

The signal-flow formalism is a familiar

tool in control engineering applications,

where it is commonly used to model

biotechnological and chemical industrial

processes. It represents an interesting

amalgamation of Boolean networks and

Petri nets in that it combines functional

with cumulative change in one diagram,

thus making it a potential candidate for

modelling general bionetworks. This

merging of the two forms of change is

achieved by the annotation of its nodes:

functions represent functional change,

while integrations represent cumulative

change. Thus a function node such as

those marked ‘3’ in Figure 5 generates

a functional change in its output value

(output equals product of inputs),

whereas an integration node (marked

‘
R

dt’ in Figure 5) generates a cumulative

change in its output value (output

equals integral of inputs over time).

Nodes marked ‘C’ represent

constants.

Furthermore, signal-flow diagrams

interface seamlessly with the mathematical

ODE notation earlier in the section

‘Ordinary differential equations model

change over time’ to the extent that an

experienced mathematician can read off

the equations represented by the diagram.

Yet this very ‘mathematicalness’ of signal-

flow diagrams also makes them rather

inaccessible to workers in biology. Their

extreme mathematical flexibility makes

few concessions to readability, with the

consequence that the diagram rapidly

becomes filled with many confusing

intermediate nodes (for example the

product nodes in Figure 5) which are

essential to the mathematical accuracy of

the model.

A further cosmetic deficiency of signal-

flow diagrams is that signals affect only

downstream nodes, and not upstream

nodes. This presents a problem when

modelling transport or transformation

processes such as the splitting of lactose,

which must orchestrate the accumulation

and depletion of upstream and

downstream nodes. This orchestration is

achieved only by splitting outputs into a

feedforward and a feedback component,

leading to the somewhat messy

representation of the reaction

L! G + Ga in Figure 5.

Combination of
functional change and
cumulative change in
signal-flow

Signal flow diagrams
are mathematically
detailed

Figure 5: Signal-flow representation of the ILM
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System dynamics models
cumulative change as material
flow
Description

System dynamics (SD) is a mature, well-

documented body of techniques used in

management science since its conception

by Forrester28 to analyse business and

other social systems. It embodies a wealth

of experience in such varied modelling

areas as: corporate and public

management, biological and medical

modelling, environmental policy-making

and complex non-linear dynamics. Its

user acceptance is such that it has been

selected in several American states as the

basis for integrated teaching in disciplines

as varied as physics, geography and

English literature.

A stock and flow diagram is used in SD to

model some simplified part of the world

in terms of information dependency,

material flow and accumulation. To

understand this notation, let us take our

ILM and represent it as the stock and flow

diagram in Figure 6.

This representation of the ILM is fairly

self-explanatory. The rectangles are stocks

(for example L), and the doubly drawn

arrows leading to and from the stocks are

material flows (for example from Lx to L).

This flow represents the permeation of

lactose into the cell, which accumulates in

the lactose stock. On the other hand the

stock of lactose is also drained by being

split into glucose and galactose. Thus the

two flows connected to L represent the

following ODE:

dL=dt ¼ permeation – splitting

In general, a stock is nothing other than

the accumulation, or integral, of the

material flows to and from it, and the

execution semantics of a stock and flow

diagram amount to nothing other than

the numerical integration (Euler or

Runge-Kutta) of the material flows in the

diagram.

Finally, in the stock and flow diagram a

singly drawn arrow represents a functional

dependency between different variables.

For example, in Figure 6 there exists a

dependency between the enzyme

complex E and the rate of permeation of

lactose into the cell; this dependency is

represented as a single arrow from E to

the permeation flow. Notice that

dependencies can never lead to a stock,

since a stock can never be determined

functionally, but rather only by

accumulation (integration). The circles in

a stock and flow diagram are called

converters, and represent useful constants

and functions relevant to the model.

Clouds represent sinks or sources of

material flow.

Discussion

Like signal-flow diagrams, stock and flow

diagrams combine cumulative and

functional change within a single

formalism, yet unlike signal-flow

diagrams, stock and flow diagrams tie this

dichotomy to a physical analogue: the

distinction between material flow and

information dependency. Material flows

correspond approximately to normal Petri

net arcs, and dependencies to HFPN test

arcs. SD makes explicit the idea that

Describing the flow and
accumulation of
conserved material

Figure 6: Stock and flow representation of the ILM
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stocks integrate flows, which is why it

corresponds so well to the ODE

formalism, and the incorporation of an

explicit integration time interval dt into

the SD formalism makes this

correspondence complete. On the other

hand the dual mechanisms of converters

and dependencies introduce an explicit

representation of functional change that is

eminently suited to the representation of

gene regulation logic (compare the rather

unwieldy HFPN representation of R_site

and CAP_site with the compacter

representation in Figure 6).

An additional perk of stock and flow

diagrams are double-ended material flows.

The double-ended flow between the

repressor conformations R and Rp is a

notational convenience which reduces the

visual complexity of many reversible

chemical reactions relevant to

bionetworks.

The major disadvantage of stock and

flow diagrams for bioinformatics becomes

apparent when modelling chemical

reactions. SD is concerned exclusively

with conserved flows in which material is

neither created nor destroyed outside

explicit sinks and sources. This leads to

the unwieldy ‘co-flow’ representation of

the reaction L! G + Ga in Figure 6,

involving three material flows coupled by

information flows.

SUMMARY
In this paper a variety of formalisms in

current use in dynamical modelling have

been considered. It has been shown that

the criteria presented in the section

‘Evaluating dynamical modelling

notations’ lead to a number of properties

desirable in any systemic description of

biological process. In the following, the

findings on the various notations are

organised according to their ability to

implement these properties from the

section ‘Evaluating dynamical modelling

notations’.

• Transformation: this concerns

support for balanced, multimolecular

and catalytic reactions. These can best

be modelled with a combination of

cumulative change and weighted flows,

implemented most effectively in

HFPNs.

• State transitions: by this is meant the

ability of a system, first, to establish

and maintain a homeostatic state, and

secondly to execute transitions

between such states. The

implementation of homeostasis

requires the use of feedback loops in

which flow is regulated by a feedback

dependency. The implementation of

transitions involves cumulative change,

while the regulation of transitions

requires functional change. Signal flow

diagrams and stock and flow diagrams

provide the combination of

dependency and flow required for

feedback, and Boolean and Bayesian

networks implement state transition

through functional change.

• Transport: support for the various

kinds of transport (mass, volume, heat,

etc) is provided straightforwardly by

conserved flow, which is implemented as

an integral part of the HFPN and SD

formalisms.

• Creation and destruction: sinks and

sources predicate the existence of both

cumulative change and non-conserved flow.

Only HFPN and SD provide explicit

support for representing sinks and

sources.

• User-acceptance: this encompasses

two related considerations. The

biologist requires from a formalism

that (to his or her mind) important

distinctions are describable within the

formalism, but also that irrelevant

distinctions are suppressed in the

formalism. One lay user’s reaction to

BNs was that they were ‘simpler’

simply because they contain fewer

species of nodes and arcs; the ensuing

plethora of arcs in the BN was for this

user not a consideration. On the other

hand, it has been shown that HFPNs’

Homeostasis requires
the regulation of flow by
feedback

Desirable properties in
the systemic description
of biological process
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inelegant formulation of the ILM

operator is due to their failure to make

the very essential distinction between

functional and cumulative change.

Furthermore, the confusing

representation of cumulative change

in signal-flow diagrams is traceable to

their lack of a distinction between flow

and dependency. The only formalism to

implement both of these distinctions

elegantly is the stock and flow

diagram.

• Availability: of the notations

considered here, stock and flow

diagrams, signal-flow diagrams and

Petri nets can all be of use in informal

pen-and-paper discussions, while

ODEs, Boolean networks and

Bayesian networks tend to be of more

use from a mathematical/

computational perspective. Table 1

includes a list of software tools we

have found useful in working with the

various notations.

• Animation/execution efficiency:

animation is provided by all the

reviewed formalisms. However, only

signal-flow diagrams and stock and

flow diagrams make explicit the link

between animation and the numerical

solution of ODEs. In our opinion this

tends to reduce the impedance

mismatch between the biological

system and its model, thereby

facilitating the optimisation of the

model’s implementation. Since all of

the notations reviewed here involve

time-step iteration through frequent

large numbers of operations, another

relevant aspect of efficiency is the

provision of a distinction between

functions, which must be re-evaluated

in each iteration, and variables, which

need not. Of the notations reviewed

here, only signal-flow diagrams

explicitly address this concern.

• Stochastic behaviour: while

Bayesian networks are the only

notation considered here that

explicitly address stochastic behaviour,

randomness can be incorporated into

all of these notations by using

functions returning random values.

The º-phage lysis/lysogeny switch has

been implemented in stock and flow

diagrams, for instance. One area of

modelling that includes an explicit

Table 1: Comparing properties of the reviewed formalisms

ODE HFPN BN DBN Signal-flow SD

Cumulative change Explicit support Explicit support Unsupported Unsupported Confusingly
supported

Explicit support

Flows Implicit support Explicit support Unsupported Unsupported Implicit support Explicit support
Weighted flow Implicit support Explicit support Unsupported Unsupported Confusingly

supported
Unsupported

Sinks/sources Implicit support Explicit support Unsupported Unsupported Implicit support Explicit support
Functional change Explicit support Confusingly

supported
Explicit support Explicit support Explicit support Explicit support

Dependency Explicit support Explicit support Explicit support Explicit support Explicit support Explicit support
Feedback loops Opaque Explicit support Explicit support Explicit support Explicit support Explicit support
Diagram complexity High Medium Low Low Medium Medium

Clear cumulative/
functional distinction

No No No No Yes Yes

Clear flow/dependency
distinction

No Yes No No No Yes

Animation semantics Numerical Quasi-numerical Rule based Probabilistic Numerical Numerical
Software tool Mathematica,

Wolfram Research
Visual Object Net,
Ilmenau, University of
Technology

None known BayesiaLab,
Bayesia

WinFACT Vol. 6,
BORIS
Ingenieur-büro Dr
Kahlert

Stella, ISEE-Systems

ODE = ordinary differential equations; HFPN = hybrid functional Petrinets; BN = Bayesian networks; DBN = dynamic Bayesian networks; SD = system
dynamics
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stochastic element, but that has been

excluded from our discussion for

reasons of space, is agent-based

modelling.

Our findings in this paper are

summarised in Table 1. HFPNs are

particularly strong in representing non-

conserved reaction flows; Boolean

networks are well suited to representing

the Boolean switching of gene activations;

SD links these ideas together into an

intuitively coherent framework; and

signal-flow diagrams make explicit the

link between these formalisms and the

mathematical underpinning provided by

ODEs. In addition, the probabilistic

approach of dynamic Bayesian networks

explicitly incorporates uncertainty into

the modelling process.

The next logical step is of course to

construct a novel formalism that combines

the strengths of these various notations.

Each of the notations reviewed here

originated in areas of application whose

requirements only partially overlap with

those of the bioinformatics or systems

biology endeavour. The authors are

currently engaged in developing precisely

such a new formalism, the details of

which will be published in a future paper.
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