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Mental abacus (MA) is a system for performing rapid and precise arithmetic by manipulating a mental

representation of an abacus, a physical calculation device. Previous work has speculated that MA is based

on visual imagery, suggesting that it might be a method of representing exact number nonlinguistically,

but given the limitations on visual working memory, it is unknown how MA structures could be stored.

We investigated the structure of the representations underlying MA in a group of children in India. Our

results suggest that MA is represented in visual working memory by splitting the abacus into a series of

columns, each of which is independently stored as a unit with its own detailed substructure. In addition,

we show that the computations of practiced MA users (but not those of control participants) are relatively

insensitive to verbal interference, consistent with the hypothesis that MA is a nonlinguistic format for

exact numerical computation.
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Human adults, unlike other animals, have the capacity to per-

form exact numerical computations. Although other creatures are

sensitive to precise differences between small quantities and can

represent the approximate magnitude of large sets, no nonhuman

species can represent and manipulate large, exact numerosities

(Feigenson, Dehaene, & Spelke, 2004). Multiple forms of evi-

dence suggest that this human capacity is related to natural lan-

guage (Barner, Chow, & Yang, 2009; Dehaene, Spelke, Pinel,

Stanescu, & Tsivkin, 1999; Frank, Everett, Fedorenko, & Gibson,

2008; Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004; Wynn,

1990). Language, however, may not be the sole cognitive system

capable of symbolically representing exact number. Experienced

users of an abacus—a physical calculation device—can learn to

perform arithmetic computations mentally, as though visualizing a

mental abacus (MA; Hatano, Myake, & Binks, 1977; Hatano &

Osawa, 1983; Hishitani, 1990; Miller & Stigler, 1991; Stigler,

1984; Stigler, Chalip, & Miller, 1986).

Previous work, reviewed below, has described the MA phenom-

enon and has provided suggestive evidence that MA is represented

nonlinguistically, in a visual format. However, this proposal re-

mains tentative for two reasons. First, early studies that directly

tested the role of language in MA were compelling but imperfect

and used sometimes informal methods to test small and unusual

populations of participants. Second, previous proposals fail to

explain how MA could be represented in a visual format. The

present study addressed these issues in a series of three experi-

ments. We conducted detailed studies of MA processing to ask

how it might be represented in visual working memory, given

known limitations on the nonlinguistic processing of quantity

information. In addition, we used a dual-task paradigm to test the

role of language in MA computations. Taken together, our results

support the view that MA relies on visual resources, and in

particular the ability to represent multiple groupings of objects in

parallel, to create visual representations of exact number that differ

fundamentally from those constructed using natural language.

Background and Previous Work on MA

The abacus has been used in Asia since AD 1200 for rapid

precise calculation, and may have emerged from earlier Roman

counting boards, which bear a similar structure (Menninger, 1969).

It represents number via the arrangement of beads into columns,

where each column represents a place value that increases in value

from right to left (see Figure 1). On a Japanese soroban abacus—

the most commonly used type of abacus—each column is divided

into two levels separated by a horizontal beam. On the bottom are

four “earthly” beads, and on top is one “heavenly” bead, whose

value is 5 times greater than the individual earthly beads below.

Moving beads toward the dividing beam places the beads “in

play,” thereby making them count toward the total number repre-

sented. Other varieties of abacus represent number similarly but

with interesting differences. One variety of the Chinese suanpan

has five bottom beads and two top beads on each column, allowing

for both decimal and hexadecimal computation, whereas the Rus-
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sian schoty (similar in appearance to the “school abacus” in the

United States) is organized into rows of 10 beads, color coded into

sets of four, two, and four on each row.

In addition to using the physical device, MA users are trained to

visualize an abacus and to move imagined beads on this abacus in

order to perform arithmetic calculations. Many users appear to

move these imagined beads using their hands, and thus move their

hands in the air as they perform calculations, suggesting that motor

representations somehow interface with the number representa-

tions created in MA. MA is commonly used for calculations such

as addition and subtraction, but with practice users can also learn

routines to perform multiplication and division or even square and

cube roots. Because of its incredible speed and accuracy, MA

compares favorably to other methods of computation, including

electronic calculators (Kojima, 1954) and alternative systems of

mental arithmetic. For example, the 2010 Mental Computation

World Cup was won by an 11-year-old MA user. (For examples of

mental and physical abacus use and an example of a participant in

Experiment 2 discussing the MA procedure, see supplementary

movies at http://langcog.stanford.edu/materials/abacus.html.)

Although abacus instruction is conducted verbally and begins

after children learn to count, previous studies argue that MA

representations are not linguistic in nature but rely on visual

mechanisms (Hatano et al., 1977; Hatano & Osawa, 1983; Hishi-

tani, 1990). For example, Hatano et al. (1977) investigated how the

calculation abilities of expert MA users were affected by concur-

rent verbal, spatial, and motor interference tasks. In keeping with

their hypothesis, Hatano et al. found that MA users could perform

difficult arithmetic problems while doing concurrent tasks. The

generality of these findings is limited, however, because (a) Ha-

tano et al. tested only a small group of MA grand masters and (b)

the interference tasks were somewhat informal in nature. For

example, the verbal interference task consisted of answering basic

factual questions while completing addition problems, potentially

allowing participants to switch rapidly between tasks during the

course of the experiment. Follow-up studies tested the digit-span

capacity of three national champions in mental calculation (Hatano

& Osawa, 1983) and a developmental sample of intermediates and

experts (Hatano, Amaiwa, & Shimizu, 1987; Lee, Lu, & Ko, 2007)

and showed that experienced MA users can effectively store long

strings of digits with greater accuracy than long strings of verbal

material, presumably by remembering these strings as abacus

images.

Echoing Hatano et al. (1977), subsequent studies have also

reported differences in how MA users represent number. First,

studies using functional magnetic resonance imaging have found

different processing signatures for MA and verbal arithmetic.

When asked to recall a long string of digits or do complex

arithmetic tasks, MA users show selective activation of cortical

areas associated with vision and visuospatial working memory. In

contrast, untrained controls exhibit patterns of activation related to

verbal processing and verbal working memory (Chen et al., 2006;

Hu et al., 2011; Tanaka, Michimata, Kaminaga, Honda, & Sadato,

2002). Second, according to Stigler and colleagues (Stigler, 1984;

Stigler et al., 1986), there is a close correspondence between what

MA users see in their mind’s eye and the structure of the physical

device. They reported that MA users are far more likely to make

calculation errors involving quantities of 5 (due to misrepresenta-

tion of heavenly five beads) than control participants, who make

these errors less than a quarter as often. Also, they found that MA

users were able to access intermediate states in calculations that

are unique to abacus (e.g., when adding 5 ! 3, the abacus passes

through states representing 5, 6, 7, and 8 as each bead is moved).

When shown a card depicting an abacus state, subjects could

identify whether this state appeared in a subsequent mental addi-

tion problem, and they did so with the same accuracy as when

doing problems on a physical device. This result suggests that

participants’ MAs pass through the same set of states as the

physical device does. Taken together, the previous work suggests

that MA representations are structured like a physical abacus.

The Nature of MA Representations

Stigler (1984) and Hatano et al. (1977) both argued that MA

relies on a nonlinguistic, visual representation of an abacus, but

little is known about how such representations could be imple-

mented by the visual system. Consider an MA representation of the

number 49. Representing this quantity requires tracking the precise

location of nine beads. Representing the identity and precise lo-

cation of each bead is critical not only for identifying states of the

abacus (e.g., reading off values) but also for performing arithmetic

computations. For example, when adding 49 ! 30, it is not enough

to know that four beads are present in the 10s column. An MA user

must also know which four beads are in play (the bottom four) in

order to select the correct motion that will transform these appro-

priately when the quantity 3 is to be added.1 Thus, a user of MA

must represent the location and position of each bead in the current

state of the abacus to perform basic addition tasks successfully.

It is a puzzle how such states can be represented, given what is

known about the processing of quantity information in the visual

system. Previous studies indicate that visual working memory can

represent both the location and the identity of three to four items,

but not more (Alvarez & Cavanagh, 2004; Cowan, 2000; Feigen-

son et al., 2004; Luck & Vogel, 1997). Thus, this system is

insufficient for representing anything but the smallest quantities in

MA. The approximate cardinality of large sets can also be repre-

sented with the approximate number system (ANS), where error in

estimation is proportional to the size of the set being evaluated

(Feigenson et al., 2004; Whalen, Gallistel, & Gelman, 1999; Xu &

Spelke, 2000). The ANS does not track the location of individual

objects, however, and although the ANS exhibits relatively little

error for small sets (e.g., with fewer than four or five members), it

1 In this case, the user would have to subtract 2 from the earthly (1)

beads and add the heavenly (5) bead to represent the total quantity 7 in the

10s place.

Figure 1. A Japanese soroban abacus of the type used by our participants.

The rightmost nine columns represent the number 123,456,789.
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can represent the cardinality of large sets only approximately.

Because representing the quantity 49 requires keeping track of the

locations of each of nine abacus beads (and simply maintaining the

information that there are nine and not 10), it would appear that

neither of these nonlinguistic systems could alone represent the

structure of an MA.

Because there is no obvious answer to how MA representations

are constructed in the visual system, it is tempting to conclude that

each column is represented by a symbol that is unconnected to the

underlying semantics of the physical abacus. On this kind of

account, the picture of a column with four earth beads in play is

equivalent to the Arabic numeral 4: Both are an abstract represen-

tation of a particular quantity that can be composed to create larger

numbers like 40 or 400. In addition to the findings that we present

in this study, several facts speak against this. First, Arabic numer-

als and MA representations are defined differently. The Arabic

numeral 4 has no internal structure—nothing that says that the

symbol “4” should not stand for five objects and the symbol “5”

stand for four, for example. In contrast, the MA representation of

four gains its numeric value because of a set of rules that also

define the MA representations of other quantities. Representing the

internal structure of columns in MA is necessary for supporting

arithmetic computations such as addition and subtraction, because

these computations rely on moving individual beads. Second, as

reviewed above, MA users make errors that are consistent with

access to intermediate states in the abacus calculation—

intermediate states that could only be available if they were rep-

resenting the substructure of abacus columns. Third, MA is often

tightly linked to gesture (a striking part of the MA phenomenon for

observers). These movements correspond to moves on the abacus

and appear to facilitate the movements of individual beads in the

mental image (an observation supported by the motor interference

results shown by Hatano et al., 1977, and in Experiment 2). Thus,

the evidence does not support a view of MA representations as

unanalyzed wholes.

Instead, recent work on visual working memory suggests a

possible mechanism by which abacus representations might cir-

cumvent the limits of known number representation systems. Ac-

cording to these reports, subjects can select and represent up to

three or four sets of objects in parallel (Feigenson, 2008; Halberda,

Sires, & Feigenson, 2006). These sets can then be manipulated in

different ways. For example, in one study subjects saw arrays that

contained spatially overlapping sets of dots of different colors and

were probed to estimate the number of items for a particular color

after the array disappeared (Halberda et al., 2006). When the

number of sets was three or fewer, subjects were able to estimate

the quantity of the probed set with relative accuracy and showed

signs of using the ANS. However, when four or more sets were

presented, they failed to make reliable estimates. In another study,

subjects watched as different kinds of objects (e.g., candies, bat-

teries, toy pigs) were placed into a container while they performed

a concurrent verbal interference task that prevented them from

counting. Here again, subjects could perform reliable estimates

when three or fewer kinds of things were involved but failed when

they were required to keep track of four or more sets at a time

(Feigenson, 2008). Together, these studies suggest that normal

adults can represent multiple sets in parallel using visual working

memory and can perform numerical estimates on these sets.

Supporting this view, some work suggests that objects contained

in multiple sets can be tracked individually, as long as there are no

more than three to four objects in each set. For example, Feigenson

and Halberda (2008) showed that young children can represent and

compare two sets of objects, binding property information to the

objects in each set and tracking their locations over time. In

addition, in those studies, infants’ ability to track objects improved

when arrays were first presented as smaller subsets divided in

space, suggesting that spatial grouping cues could facilitate object

tracking. Consistent with this, studies of adult visual attention find

that subjects are significantly better at attentional tracking when

targets are divided across the two visual hemifields (Alvarez &

Cavanagh, 2005). By organizing sets into horizontally segregated

arrays, much like the abacus, subjects can optimize the number of

objects they are able to track in parallel.

In keeping with these findings, Figure 2 shows a schematic

proposal for how MA might represent a number like 49.2 By

treating each column of the MA as a separate set in visual working

memory, users could track the locations of beads in up to three or

four columns in parallel. The main studies of parallel set repre-

sentation have investigated the approximate quantities represented

in each set (Feigenson, 2008; Halberda et al., 2006). Nevertheless,

we do not believe that the information represented about an indi-

vidual column is restricted to the approximate quantity of beads

present; instead, column representations must contain information

about the precise quantity and locations of the beads in the column

(we return to the issue of the relationship between MA and

approximate number representations in the General Discussion).

Thus, recent work lends plausibility to the idea that MA uses

existing visual resources to store multiple, internally structured set

representations in parallel in order to represent large exact numer-

osities.

The Current Studies

We explored the proposal described above—that MA represen-

tations are column-based models in visual working memory—in a

series of three experiments. The goal of the studies was not to

compare this hypothesis to an existing alternative, as no viable

alternative hypotheses exist in the literature. Instead, our studies

were exploratory in nature, testing the plausibility of the view that

MA is a nonlinguistic representation of number that uses existing

visual resources to perform exact arithmetic computations.

To do this, we tested a population of children in Gujarat Prov-

ince, India, where MA is taught in a 3-year after-school program.

Because of the effectiveness of MA for arithmetic calculation—a

critical component of standardized tests in the Indian educational

system—MA courses have experienced huge growth in India in

the past decade. Many children from throughout Gujarat Province

and the rest of India compete in regional, national, and interna-

tional abacus competitions using both MA and physical abacus.

This situation has created a large student population within which

to study MA. Our studies examined both highly practiced users of

2 It is conventional in drawings of abacus representations only to rep-

resent those beads that are in play; thus, an MA image of the number 10

involves imagining an abacus with only one bead, whereas an MA image

of 49 involves nine beads.
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MA (Experiment 2) and children who were sampled from the

larger student population (Experiments 1 and 3).

Experiment 1 asked children studying MA to perform challeng-

ing addition problems in order to test the limits on MA addition

and their relationship to limits on visual working memory. Ac-

cording to our hypothesis—that abacus columns are stored as sets

in visual working memory—MA users should show limits on the

number of columns they can compute over. The results of Exper-

iment 1 are congruent with this prediction: MA is sharply limited

by the number of digits in each addend—a limit that corresponds

to the capacity of visual working memory (approximately three to

four digits). However, there appears to be no hard limit on the

number of distinct addends children can add, suggesting that the

total number of computations in a problem cannot fully explain its

difficulty.

Experiment 2 then follows up on Hatano et al.’s (1977) work by

using a variant of the adaptive addition paradigm of Experiment 1

to investigate the effects of verbal and motor interference on both

MA users and untrained adults. The goal of this study was to

determine the relative role of language in MA computations. Our

results suggest that although language interference has some effect

on MA calculation, the effect of motor interference was approxi-

mately equivalent, and most participants were still able to perform

extremely well on difficult addition problems under interference.

This finding is in contrast to the large effects of verbal interference

on untrained control participants, for whom motor interference had

no effect on computation.

Experiment 3 investigated the behavior of MA users and un-

trained control participants on a final task: translating a picture of

an abacus to Arabic numerals (“abacus flashcards”). This study

provides a second, independent test of the column limit found in

Experiment 1. Also, it tests whether the encoding of visual arrays

in an unrelated estimation task is facilitated when arrays become

more abacus-like in structure. The results suggest that untrained

control participants perform in ways that are remarkably similar to

MA users, giving evidence that MA expertise does not fundamen-

tally alter the method of representation of the abacus image.

Instead, on the basis of these results, we conclude that MA repre-

sentations are optimally designed to exploit preexisting visual

representations.

These studies make three primary contributions. First, our stud-

ies suggest that MA representations are supported by the recently

discovered capacity of visual working memory to select multiple

sets and store information about them concurrently. Second, Ex-

periment 2 replicates and extends Hatano et al.’s (1977) claim that

linguistic resources are not essential to abacus computations and

that motor representations may be more critical. Finally, our stud-

ies suggest that MA is not—as would be expected from previous

literature—a phenomenon in which experts’ representations differ

dramatically in structure from those of novices. Instead, the power

of the MA technique is that mental representations of the soroban

abacus fit neatly into visual working memory, such that untrained

controls store abacus images in a way not unlike highly trained

MA users. In summary, our studies support a view of MA as a

visual method for representing exact number that is tailored to the

structure of the visual system.

Experiment 1: Rapid Addition

Our first experiment was designed to probe the limits of the MA

representation. Because of the problem posed above—the inability

of the ANS or visual working memory to represent the whole of

the abacus—we were interested in what factors affected the diffi-

culty of doing particular arithmetic problems with MA. To the

extent that performance is tied to particular aspects of the under-

lying representation, this method may allow us to differentiate

hypotheses about MA.

We were particularly interested in whether MA performance

declines as the total number of beads in a representation increases,

or whether some sort of grouping in MA representations mini-

mizes error related to bead number. One such grouping would be

the partition of the MA image into columns. We hypothesized that

each column in MA could be stored as a separate set in visual

working memory. A strong prediction of this hypothesis is that

MA users should be able to represent only three to four abacus

columns, as previous work has found that only three to four sets

can be represented in parallel (Feigenson, 2008; Halberda et al.,

2006).

We used a task that was well practiced for the students in our

population: addition. To map out each participant’s performance

on a range of different problems, we made use of adaptive para-

digms that presented more difficult problems when participants

succeeded and easier problems when participants made errors. The

use of adaptive paradigms is an important part of psychophysics

research, but these paradigms are less used in research on higher

level cognitive phenomena. In the following set of experiments,

we make extensive use of adaptive designs because of quirks of the

population we were studying. Although many MA students were

extremely proficient at the technique, they were still relatively

young children and could not be relied on to complete very long

experiments. In addition, their level of skill varied widely. Thus,

we needed a method for quickly tuning an experiment to the level

at which participants would give us information about the ques-

tions of interest.

In a between-subjects design, we tested the dependence of MA

computations on (a) the number of abacus columns in an addition

problem (width condition) and (b) the number of addends in a

problem (height condition). In the width condition, we manipu-

lated the width of the addends participants were asked to solve,

first testing 1 ! 7, then 18 ! 34, then 423 ! 814, etc. In the height

condition, we manipulated the number of two-digit addends pre-

Figure 2. A schematic proposal for a mental abacus representation of the

number 49.
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sented, first testing 18 ! 34, advancing to 53 ! 19 ! 85 and

eventually to problems like 77 ! 56 ! 21 ! 48 ! 92 ! 55 !

61 ! 57.

Method

Participants. All MA participants in all experiments were

children enrolled in Universal Computation Mental Arithmetic

System (UCMAS) franchise schools in Gujarat Province, India.

Participants were chosen for inclusion in the initial subject pool on

the basis of (a) their completion of Level 4 UCMAS training

(which includes approximately a year of physical abacus training

and an introduction to the MA method), (b) their ability to travel

to the test site, and (c) their instructor’s judgment that they were

among the best students in their cohort. In Experiment 1, 119

children participated; they had a mean age of 10.3 years (range:

5.8–16.3).

Stimuli and procedure. All stimuli were presented on Ma-

cintosh laptops via custom software designed with MATLAB with

Psychtoolbox. Responses were entered on USB numeric keypads.

Instructions were given in English, unless children had difficulty in

comprehension. In that case, instructions were given by a trilingual

teacher in either Hindi or Gujarati depending on the child’s pref-

erence. Instructions were illustrated with examples until the child

had successfully answered several trials. In general, children had

considerable practice with addition and thus had little difficulty

understanding the task.

On each trial, children were asked to enter the sum of a group

of addends. The addends were presented simultaneously on a

computer screen until the participant typed an answer or until 10 s

had elapsed. In the width condition (N " 51), on each trial, the

participant was presented with two vertically arranged addends

and asked to sum them, and the size of the addends was varied

from two one-digit addends up to two eight-digit addends. In the

height condition (N " 68), on each trial, the participant was

presented with some number of two-digit, vertical addends and

asked to sum them. The number of addends was varied from two

addends to a maximum of 10 addends.

In each condition, the manipulated variable was adapted via a

transformed staircase procedure (Levitt, 1971). These procedures

are commonly used in psychophysics to estimate accuracy in a task

and to find the level of difficulty for that task at which participants

performance meets a particular accuracy threshold. For example,

in the width condition, the staircase procedure proceeded as fol-

lows: Following two correct answers, the width of the addends

increased by one digit; following one incorrect answer, the width

decreased by one digit. In the height condition, the staircase was

identical except that the number of addends increased by one

following two correct answers and decreased by one following an

incorrect answer.

This two-up/one-down staircase has been shown to converge

around a stimulus difficulty level for which participants give

approximately 71% correct answers (Levitt, 1971). We chose this

kind of staircase in order that participants would be making pri-

marily correct answers so that the task was not demoralizing or

unnecessarily difficulty while still measuring performance across a

range of difficulties, even for students of highly varying levels of

expertise.

Stimuli for the height condition were sampled randomly from

the range 10–99, whereas those for the width condition were

sampled in the same manner from the appropriate range for the

width of the addends. Participants received feedback following

their answer and saw a message indicating that they were out of

time if they did not answer within 10 s. The task was timed to last

5 min, and participants generally completed between 30 and 40

trials within this time limit.

Results and Discussion

Participants were in general highly expert at the addition task.

Representative results from seven participants in each condition

are shown in Figure 3. These curves summarize the percentage of

correct answers given at each level the participant was exposed to;

participants in the figure are sampled uniformly so that those on

the left are the lowest performers and those on the right are the

highest performers and those in the middle are approximately

evenly spaced on the dimension of task performance.

For the purposes of our analysis, we were interested in the limits

on performance across conditions. Thus, we needed a robust

summary statistic describing individual participants’ performance.

We experimented with a variety of summary measures, including

the parameters of the logistic curves plotted in Figure 3. Of these

measures, the one that proved most robust to participants’ errors

was the average number of addends presented after the staircase

converged (in practice, we allowed 20 trials for convergence). As

noted above, this number corresponds to an estimate of the level at

which participants would be 71% correct—a psychophysical

threshold value. We use this number as the primary description of

an individual participants’ threshold on the measure that was being

manipulated. For the width condition, this was the size of the

addends they could add together successfully within the time limit.

For the height condition, this threshold was the number of addends

they could add together successfully within the time limit.3

In the width condition, whereas most children were able to add

two three-digit addends consistently (average performance on

these trials across participants was 67% correct), almost none were

able to add four-digit addends (average performance was 23%).

Corresponding to participants’ difficulty in performing four-digit

problems, there was a very tight distribution of addend thresholds.

Figure 4A shows a histogram of these average digit thresholds.

Consistent with natural variation in a cognitive limit, the digit

thresholds were normally distributed (# " 3.1, $ " 0.62, Shapiro–

Wilk test for violations of normality, W " 0.98, p " .74) and did

3 Although a standard method of finding thresholds in a psychophysical

task would be to extrapolate from the logistic curve to find the number of

addends at which participants’ performance was expected to be a particular

level (e.g., 50%), the wide range of psychometric functions we observed—

and the relatively limited number of trials we were able to ask for from our

participants, many of whom were grade-school children—made this ap-

proach unreliable. In contrast, the average trial level metric that we adopted

accorded very well with our intuitions about participants’ performance,

formed after close examination of individuals’ data. Nonetheless, we

believe the choice of summary measure did not qualitatively affect our

results: The same basic patterns were observed for measures such as

parameters of the logistic curve or alternative threshold values estimated

from the logistic curves.
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not show nonnormal kurtosis (Anscombe–Glynn test for nonnor-

mal kurtosis, k " 2.91, z " 0.25, p " .80).

In contrast, in the height condition, there was no tight limit on

the number of addends that participants were able to sum. A

histogram of addend thresholds is shown in Figure 4B; the distri-

bution was quite different from that in the width condition. The

thresholds were not normally distributed (# " 5.1, $ " 1.99,

Shapiro–Wilk W " 0.95, p " .02). In addition, threshold scores

exhibited substantially lower kurtosis, indicating a wider spread of

abilities (Anscombe–Glynn test for nonnormal kurtosis, k "

%2.05, z " %2.05, p " .04). Finally, participants’ addend thresh-

old scores ranged widely, from 2 to 10.

What explained this difference in threshold distributions? The

diffuse distribution of thresholds in the height condition might

simply reflect the varying skill levels across participants; some

added quickly and accurately due to greater practice with the MA

technique, whereas others were slower and more error prone. In

contrast, the tight distribution of thresholds in the width condition

was more puzzling. There is no qualitative change between how

two-, three-, or four-digit addends are added on the abacus. In-

stead, a limit on the structure of the MA representation seems like

a possible explanation for this result. This explanation would be

consistent with our hypothesis about the relation between the

number of columns on the abacus and the limits on the number of

Figure 3. (A) Accuracy curves for representative participants in the width condition. Each subplot shows the

percentage of correct trials by the number of digits presented; the line shows the results of a logistic regression.

Participants were selected by sampling uniformly along the dimension of digit thresholds. (B) Accuracy curves

for representative participants in the height condition. Participants were again sampled uniformly across the

range of thresholds. Probability correct is plotted by the number of addends in a problem, and plotting markers

correspond to the number of beads.

Figure 4. (A) Histogram of thresholds from width condition: mean size of addends presented for trials after the

staircase had converged. (B) Histogram of results from height condition: mean number of addends presented for

trials after the staircase had converged.
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sets that can be stored in parallel in visual working memory, but

might also be confounded with the number of beads on the abacus,

as opposed to the number of sets. The next analysis follows up on

this possibility by performing a separate analysis of the data in the

width condition.

We investigated the distribution of thresholds in the width

condition by contrasting two possible explanations of participants’

trial-by-trial performance in this task. The first explanation was

that problem difficulty increases as the number of abacus beads in

play on the abacus increases. The second explanation was that the

number of beads was irrelevant to problem difficulty and that

the number of columns of abacus involved in the problem is the

primary determinant of performance.

We plotted the probability of success in a problem by the

number of beads required to represent the solution, marking the

number of columns by using a numeric marker in the plot in place

of a dot or square. We found no relationship between the number

of beads and probability of success (see Figure 5A). In contrast,

when we plotted probability of success by the number of columns

of abacus involved (the number of digits in the addends), there was

a strong relationship between these two factors (see Figure 5B).

To quantify this visual impression, we used multilevel logistic

regression models (Gelman & Hill, 2006). These models allowed

us to model the entire data set produced by our participants (all

trials in all conditions). Unlike typical analyses of variance, they

(a) are appropriate for binary response variables (such as whether

or not a response was correct), (b) allow for the analysis of

adaptive–asymmetric designs such as the one we used here, and (c)

allow us to test for the effects of trial-level predictors such as the

number of beads or columns involved in a particular addition

problem. We use these models throughout the studies reported

here. In each experiment, we used the multilevel model to capture

the effects of interest using trial-level coefficients (fixed effects);

each model also included separate intercepts (random effects) for

each participant.

To test the effects of the number of abacus beads and abacus

columns on participants’ performance in the width condition, we

created separate models with trial-level effects of either beads or

columns and then compared their fit to the data. Because the

number of beads and columns in a display were highly correlated

(r " .65), this model-comparison approach provides a principled

method for determining which predictor better fits the data. Al-

though both bead and column predictors were highly significant in

their respective models (both ps & .001), the column-based model

fit the data far better overall ('2 " 504.58, p & .001). In a model

with both predictors, the column predictor remained highly signif-

icant (p & .001), whereas the bead predictor was no longer

significant (p " .21). This result shows that all variance explained

by beads is due to the correlation of number of beads with number

of columns.

In summary, although MA students varied widely in the number

of two-digit addends they could successfully sum in 10 s, nearly all

students were equally limited in the width of the addends they

could sum. This difficulty going beyond three-digit addends was

consistent with a column-based limit on computations (but not a

limit based on the number of beads involved in the computation)

and further consistent with a theory of MA as drawing on parallel

set representations in visual working memory.4

Experiment 2: Verbal and Manual Interference

Hatano et al. (1977) observed that MA users could answer basic

factual questions while doing abacus calculations. This result

suggested that some language comprehension and production

could be integrated into the abacus routine, again suggesting that

MA representations are primarily visual rather than linguistic. In

addition, both Hatano et al.’s observations and our own experi-

ences suggested that MA users made considerable use of abacus-

like gestures to facilitate computation. These gestures vary from

person to person in their degree of intensity, but they are a notable

feature of the MA technique, and obstructing them appears to

cause difficulty in calculation. Thus, we were interested in com-

paring verbal and manual interference effects to understand the

relative contributions of linguistic and gestural resources to MA

computation.

Because of the relatively demanding nature of dual-task studies,

which involve carrying out two complex and unrelated tasks at

once, we wanted to identify a subgroup of MA participants who

were expert enough to be able to do any kind of computation under

interference. We thus conducted an initial screening experiment

with children from local abacus schools, and asked the most expert

group of children in the initial sample to return for testing in

Experiment 2 and perform a set of adaptive addition tasks, similar

to the height condition of Experiment 1.

Participants were tested in three interference conditions—

manual interference, verbal interference, and combined manual–

verbal interference—as well as a baseline no-interference condi-

tion. In the manual interference condition, participants were asked

to tap their fingers on the table as they did the addition problem

(pausing only to enter the sum on a keypad). In the verbal inter-

ference task, participants listened to a story on headphones and

“shadowed” it by repeating back words and phrases immediately

after hearing them. Combined interference required performing

both of these tasks at once.

To test whether the pattern of interference effects we observed

was specific to MA representations or general across other strat-

egies for mental arithmetic, we additionally tested a group of

untrained control participants in an identical paradigm.

Method

Participants. The MA participants in this experiment were

selected due to exceptional performance on a prescreening test

given to 346 MA students, which tested both physical and mental

abacus ability. Our participants either scored higher than 90% on

the mental or physical portion of the test, had completed the full

UCMAS course of 3 years of training and gone on to the “grand

levels” (advanced training available for high performers), or were

members in a group of UCMAS students who performed demon-

strations of mental arithmetic at public events. The 15 expert MA

participants had a mean age of 13.3 years (range: 9.7–16.3).

4 In fact, one advanced MA technique (which these participants had not

been exposed to) involves learning to use a three-column abacus to add

much larger numbers by breaking them into parts. Although Hatano and

Osawa (1983) suggested that very highly trained adult MA experts may

gain the ability to represent more abacus columns over the course of many

years of practice, we found no evidence for a significant expansion in even

the most experienced abacus users we tested.
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Control participants were 23 undergraduates at the University of

California, San Diego, who participated in exchange for course

credit.

Procedure. The basic procedure was substantively identical

to that of the height condition in Experiment 1: Participants were

given an adaptive addition task in which they added sets of

two-digit addends under a 10-s time limit. There were two minor

differences: First, the paradigm began with a control task of

retyping a single addend, and second, the maximum number of

addends was limited to eight rather than 10.

Each participant received four 5-min blocks of trials. In the

no-interference block type, sums were computed as in Experiment

1. In the verbal interference block, participants were asked to listen

to and repeat a children’s story (verbal shadowing). The story that

we used for the verbal shadowing task was “Ali Baba and the Forty

Thieves.” It was read in Indian English, Hindi, and Gujarati by a

trilingual instructor, and children were allowed to pick the lan-

guage in which they were most comfortable to do the shadowing

task (so as not to conflate language difficulties with true interfer-

ence effects). Participants were instructed on verbal shadowing via

a demo by an experimenter and then given approximately 1 min of

shadowing practice before they began the addition task. For un-

trained control participants, an American English version of “Ali

Baba” was used for verbal shadowing.

During the manual interference block, participants were in-

structed to drum their fingers on the table and then pause briefly

with one hand to type in the answer. If children had difficulty

drumming their fingers independently (as some of the youngest

participants did), they were encouraged to tap their hands on the

table at the same pace. The manual interference task was also

demonstrated by the experimenter. The last block combined si-

multaneous manual and verbal interference. All participants per-

formed all four blocks (no-interference, verbal interference, man-

ual interference, and both interference tasks). The second and third

blocks were counterbalanced for order.

Ensuring compliance was difficult. An experimenter was pres-

ent to remind participants to continue performing the manual

interference task and would tap along with the participants to

remind them to be consistent in performing the task. However, this

was not possible during the shadowing task because the experi-

menter could not hear the exact source text. Accordingly, we

conducted an analysis to ensure that participants were not trading

off one task against the other, failing to shadow verbally while they

were performing the addition task. An independent coder seg-

mented videotapes of each participant’s performance by trial and

rated their shadowing on each trial on a scale of 1 to 5, from

completely disfluent to completely fluent. We then split these

ratings by the difficulty of the addition problem (number of ad-

dends) and whether the participant had given a correct or an

incorrect answer. This analysis showed no evidence for trading off

between one task and the other. Shadowing fluency was numeri-

cally very similar between trials where answers were correct

versus incorrect and did not vary with the difficulty of the addition

task.

Results and Discussion

Despite the unfamiliarity and difficulty of the interference tasks,

the MA experts still showed surprising proficiency in adding while

performing them, with some participants at ceiling even while

performing both interference tasks simultaneously. In contrast,

control participants were far less proficient at addition overall and

were unaffected by motor interference but strongly affected by

verbal interference. Figure 6 shows estimated performance at each

level for each condition and group, along with a summary of the

data.

Because of the complexity of this data set (two groups, each

with four within-subjects conditions), we began by analyzing each

group’s data separately using a separate mixed logistic regression

model, as in Experiment 1. Each model included a group-level

Figure 5. Probability of a correct response in the width condition of Experiment 1 is plotted by two predictors

on the horizontal axis. (A) Probability correct is plotted by the number of abacus beads in the solution of the

addition problem. The numbers used as markers on the plot correspond to the number of columns involved in

a problem. For problems with a given number of columns (e.g., all instances of “4” on the plot mark all the

problems with four columns), there is no relationship between number of beads and probability of success. (B)

Probability correct is plotted by the number of columns in a problem, and plotting markers correspond to the

number of beads (points are jittered slightly on the horizontal to avoid overplotting). Now it is clear that number

of columns predicts performance and there is no additional effect of beads.
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intercept term as well as effects of the number of addends in a

problem, effects of verbal and manual interference, and an inter-

action term for performing both interference tasks simultaneously;

the model also included participant-level slope and intercept terms

to account for differing baseline levels of abacus skill across

participants. Coefficients for the models for both groups are given

in Table 1.

For MA participants, the manual and verbal interference tasks

decreased participants’ performance significantly from baseline

(p & .001 for both coefficients), but they did not differ signifi-

cantly from one another. The Manual ( Verbal interaction term

had a positive coefficient value, indicating a significant subaddi-

tive interaction. We speculate that this interaction is probably due

to some fixed task-switching cost that is incurred regardless of

whether there are two tasks being performed or three, as well as the

specific costs due to each interference task. For control partici-

pants, performance was significantly decreased by verbal interfer-

ence (p & .001), but there was no significant effect of manual

interference and no interaction.

Next, to test for a significant Group ( Interference Type inter-

action, we constructed a mixed model for both data sets. This

model included terms for participant group (MA vs. control), an

interaction of participant group and number of addends, and terms

for motor interference, verbal interference, their interaction, and

the interaction of all three with participant group. This complex

model nevertheless yielded highly interpretable coefficient esti-

mates. In the interest of brevity, we report only those that relate

directly to the question of what the differences were between

groups. Capturing the overall higher performance of MA partici-

pants in the task, there was a highly significant interaction between

the coefficient on number of addends and participant group () "

1.55, p & .001). In addition, there was an interaction of participant

group and motor interference () " %1.76, p & .001), capturing the

greater effect of motor interference on MA users.

Most adults in the control group were unable to add more than

two addends with any facility while under verbal interference. Our

own anecdotal experience suggested that the most difficult oper-

ation under verbal interference was “carrying”: when the sum in

one place value exceeded 9 and needed to be applied to a higher

place value (as in 27 ! 19 but not 27 ! 12). To capture this effect,

we created a mixed model of control participants’ data, identical to

that reported in Table 1 except in that it included a term for the

number of carries in each problem. We found that the coefficient

added significantly to the fit of the model, '2(1) " 342.47, p &

.001, with a coefficient estimate () " %1.24) of approximately the

same magnitude of that for addends () " %1.18). When we added

an interaction between verbal interference and number of carries,

this coefficient was also significant and negative () " %0.38, p "

.002). These analyses indicate that carrying is a difficult operation

in verbal arithmetic and, further, that carrying interacted with
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Figure 6. Results of Experiments 2. The probability of a correct response in an adaptive addition task with an

increasing number of two-digit addends is plotted by the type of interference and the number of addends for

mental abacus users (A) and controls (B). Size of dots reflects the proportion of participants with a given mean

performance; lines reflect the best fit curves for a mixed logistic regression model, with colors showing the

different interference conditions.

Table 1

Coefficient Weights for Mixed Regression Models Fit Separately to Error Rates for Mental Abacus and Control Participants in

Experiment 2

Predictor

Mental abacus Untrained control

Coefficient SE z Coefficient SE z

Intercept 4.78 0.28 16.93 6.93 0.34 20.17
Addends %0.45 0.07 %6.67 %2.09 0.14 %15.22
Manual interference %1.61 0.20 %8.22 0.11 0.14 0.81
Verbal interference %1.34 0.19 %7.06 %1.22 0.14 %8.50
Manual ( Verbal 0.87 0.23 3.74 %0.28 0.19 %1.49
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language interference to produce an extra interference effect.

When we performed the same analysis with the MA participant

data (coefficient estimates can again be compared with those in

Table 1), we found neither a significant effect of carries () "

%0.11, p " .17) nor a significant interaction between number of

carries and verbal interference () " %0.07, p " .26). This analysis

confirms that MA users are employing different representational

resources to complete their calculations than control participants.

Both verbal and manual interference produced decrements in

some MA participants’ performance, but if anything, manual in-

terference was harder (despite the simplicity of the tapping task).

Some participants were still able to perform close to ceiling even

under interference. These data speak against an account under

which either language or manual skills are critical to MA perfor-

mance, although both may play some facilitatory role.5 Comparing

the magnitude of interference effects between the MA and control

groups is difficult across groups with such disparate baseline skill

levels. Nonetheless, two pieces of evidence suggest differences in

the method of computation employed by the two groups: First, the

MA group made much greater use of motor resources during

computation, and second, the MA group did not show the same

interaction between verbal interference and the number of carries

shown by the control group. Thus, evidence from this experiment

does not rule out the possibility that there is some involvement of

language in MA (we return to this issue in the General Discussion),

but it does strongly suggest qualitative differences between the

verbal algorithm used by control participants and the MA strategy.

Experiment 3: Abacus Flashcards

In our final experiment, we asked whether the benefit of MA

expertise is seen in forming initial MA representations, or whether

the primary benefit of practice with MA comes in performing

computations once representations have already been formed. Al-

though it seems clear that MA training requires extensive practice

with computational procedures, it is less clear whether it also

involves a form of perceptual expertise, or whether, as we sug-

gested in the introduction, MA takes advantage of existing visual

resources to build representations of number. However, because

Experiments 1 and 2 relied on addition, these studies were unable

to differentiate computational expertise from perceptual expertise.

To explore this question, we contrasted the performance of MA

experts and adult novices on a task that does not require arithmetic

computation but that does require forming MA representations:

flashcard reading.

As part of their abacus training, children studying MA learn to

read abacus flashcards: Cards showing a schematic representation

of an abacus are flashed and participants call out the value shown

on the abacus. We asked whether adult novices could also perform

this task with a brief training and whether their performance

differed qualitatively from that of child experts or whether instead

the two groups exhibit similar limits in their ability to perceive

bead arrays rapidly. Evidence that the two groups use similar

perceptual mechanisms for representing abacus structures would

suggest that MA training does not involve acquiring unusual

perceptual expertise, but instead involves practice of computa-

tional algorithms that are defined over existing perceptual re-

sources.

To compare how experts and novices encode abacus structure,

we not only tested both groups with an abacus reading task but also

asked them to perform a series of dot array estimation tasks. The

logic of this second set of tasks was as follows. If MA experts

acquire perceptual expertise when they learn MA, then they may

become better not only at reading an abacus flashcard but also at

encoding other perceptual arrays, such as a set of dots on a screen.

For example, when asked to estimate the number of beads on an

abacus structure, MA experts may be faster at this nonabacus task

than adult controls. However, in contrast, if MA expertise is not

perceptual in nature, then we may expect little difference in how

experts and novices make such estimates.

In addition, using a dot array estimation task allowed us to probe

whether abacus structure might be, in some sense, optimized for

visual processing. If abacus was designed to fit the limits of visual

processing, rather than requiring the development of perceptual

expertise, then we may expect that a nonabacus task such as

estimation will be facilitated when arrays of dots are organized,

like an abacus, into small vertical columns.

To test this, we asked experts and novices to make estimates for

five types of dot array. Across these five conditions, we paramet-

rically varied the similarity of the displays to an abacus, as shown

in Figure 7A. The identical display tested the difference between

the abacus reading task and the estimation task. The rotated and

configural estimation displays tested whether the specific orienta-

tion and rectilinear arrangement of beads, respectively, contributed

to estimation accuracy. The jittered estimation task tested whether

the spatial extent of the abacus display was important. Finally, the

random dot estimation display provided a baseline for estimation

performance. By systematically varying aspects of the abacus

structure in a distinct task, these conditions allowed us to investi-

gate which parts of abacus structure aid in perceptually grouping

elements of complex displays.

Method

Participants. The 133 MA participants in Experiment 3 had

a mean age of 11.2 years (range: 6.8–15.0). All participants were

familiar with the abacus reading task from their training; these

participants were sampled from the same population as those in

Experiment 1 and had the same level of training. In addition to the

MA participants, 30 University of California, San Diego, under-

graduates participated for course credit. None had any prior expe-

rience with abacus calculation or MA technique. Due to experi-

menter error, one estimation task from three participants in the

control group was not included in the analysis.

Stimuli and procedure. Each MA participant in this exper-

iment performed two tasks, in a random order: an abacus flashcard

5 We noted anecdotally one very interesting phenomenon with respect to

shadowing performance: Gaps or difficulties in shadowing were almost

always at the end of an abacus computation, immediately before entering

the sum onto the keypad. We hypothesized that these gaps were caused by

the necessity of translating abacus representations into Arabic numerals.

This translation process is likely at least partially linguistic (as Arabic

numerals are closely linked to their corresponding word forms) and hence

would be likely to cause greater difficulties in the verbal interference task

if abacus computations were otherwise nonlinguistic, congruent with our

hypothesis.
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reading task and one of the five estimation tasks. For control

participants, stimuli and procedures were identical, but all control

participants were tested in all six tasks in one of two random

orders. Prior to testing, control participants completed a two-page

abacus training worksheet that taught them how to read abacus

representations of the type used in our experiments and that gave

them practice on 12 abacus reading problems.

Example stimuli for each of the six conditions are given in

Figure 7A. In the abacus flashcard task, participants were pre-

sented with schematic images of an abacus (flashcards) for 500 ms

on a computer screen and were asked to report the cardinality

represented by the abacus using a numeric keypad. The task was

adaptive in the number of abacus columns in the pictured

quantity. If participants gave a correct answer on two consec-

utive trials, an extra column was added to the next trial; if they

were incorrect on one trial, a column was subtracted. Partici-

pants were given feedback after each trial, and there was no

time limit for responses.

For the estimation tasks, participants simply reported the num-

ber of dots on the screen. Tasks were (a) identical: abacus flash-

cards identical to those used in the reading task (N " 24); (b)

rotated: mirror images of abacus flashcards rotated 90° (N " 24);

(c) configural: abacus flashcards with the beam and rod structures

removed but the configuration of beads preserved (N " 36); (d)

jittered: random dot arrays jittered within the bounding box space

that the beads in the corresponding abacus flashcard would have

occupied plus a small constant (N " 25); and (e) random: random

dot arrays (N " 24).
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Each estimation task was adaptive according to the same distri-

bution of trials as the flashcard task. For individual participants,

stimuli were generated beginning with one-column abacus flash-

cards (with one to five beads) and then converted into estimation

displays. If two of these trials were completed correctly, stimuli

sampled from a two-column abacus display were converted into

estimation displays (with one to 10 beads). This procedure

matched the adaptive structure of the estimation tasks exactly to

the adaptive structure of the flashcards task. Because of the inher-

ently noisy nature of the ANS, this procedure ensured that the

majority of trials were in the range of one to 10 items (as nearly all

trials with one to five items were correct, and most were incorrect

for quantities above five). Nevertheless, most participants saw at

least some trials in the 10–15 range.

Results and Discussion

All results for both MA and control participants are given in

Figure 7. We began by analyzing the abacus reading component of

the experiment, which every participant completed. In line with the

results of Experiment 2, we found that abacus reading accuracy

was better predicted by a model including the number of columns

on the abacus than by a model with the number of beads in play

('2 " 815.89, p & .001). Abacus reading accuracy was highly

comparable across the groups of MA children tested in each of the

five estimation tasks (M " .72, .72, .73, .74, and .73, respectively).

Although accuracy data were noisier in the untrained participants,

results resembled those for MA users: The column-based model fit

far better than the bead-based model ('2 " 128.36, p & .001).

Hence, even in the absence of extensive MA training, untrained

participants grouped the abacus displays into columns.

Supplementing this analysis, we conducted an error analysis of

the MA users’ data. The most interpretable errors came on the 57%

of error trials where only a single column was misread. In these

trials, there was an effect of the number of beads being read, but

it was not a linear effect that grew with quantity. Instead, children

were most likely to make errors when reading columns that con-

tained three beads (39% of all errors), followed by columns with

two and four (20% and 28%, respectively), and were least likely to

make errors for columns containing one or five beads (9% and 4%,

respectively). Although this result is congruent with a number of

possible theories about the internal structure of MA columns, it

argues against the operation of the ANS even within individual

columns. If columns were represented with the ANS, we would

predict the largest number of errors to occur in columns with five

beads rather than three. We return to the implications of this

analysis in the General Discussion.

Next, we compared flashcard accuracy data with accuracy data

from the estimation tasks. For each group, we fit a single multi-

level model to the entire data set produced by our participants (all

trials in all conditions), with group-level effects for each condition

and the interaction of condition with number of beads in the trial.

Coefficients are reported in Table 2, along with z value approxi-

mations for the group-level effects in the model.6 The ordering of

accuracies for the five estimation tasks was almost identical for the

MA-trained and untrained groups. In both groups, jittered and

random estimation tasks grouped together, and these two tasks

were more difficult than the three configural conditions, which

also grouped with one another. This suggests that the increased

performance of MA users in the identical, rotated, and configural

conditions relative to random and jittered conditions was not due

to their extensive MA training. Instead, the advantage seen in these

conditions seems to be a consequence of the perceptual properties

of the stimuli. However, abacus reading was a difficult and error-

prone task for the control participants, whereas for the MA users,

abacus reading exhibited greater accuracy (with lower intercept

and higher slope) than any of the five estimation tasks (p & .001

for all comparisons).

For each group, we also fit similar models to reaction times,

measured at their first keypress (see Table 3).7 We used a linear

regression to predict the natural logarithm of reaction time, choos-

ing a log transform because individual reaction times (the input

data to the mixed linear model, which operated over every trial

individually rather than over means) are well described by a

log-normal distribution. Reaction times greater than 3 standard

deviations above the mean (constituting 1.9% of the total data)

were omitted from this analysis. Because reaction times tend to

decrease over the course of an experiment, we added a coefficient

for trial number to the model.

For both groups, the reaction time slope for abacus flashcards

was qualitatively different from that of all the estimation tasks

(which were largely undifferentiated). Both untrained adults and

MA users showed a lower reaction time slope for abacus reading

than for any other task (all ps & .001 for comparisons between

coefficients). Because estimation reaction times increase according

to the number of items in a display (Whalen et al., 1999), the flatter

slope and faster reaction times for abacus reading indicate a

distinct process (e.g., one that operates over columns and their

configurations, rather than over individual beads). Nevertheless,

for control participants, their intercept was significantly higher

than for all other conditions (all ps & .001). This higher intercept

likely reflects a greater constant cost for conversion of abacus

quantities to Arabic numerals.

We conducted this experiment to test the nature of MA expertise

and whether it is rooted primarily in the mastery of computational

procedures or also involves acquiring perceptual expertise. The

flashcard reading task, easily learned by novice adults, found

qualitatively similar limits in both novices and MA experts, sug-

gesting that similar mechanisms were used by both groups. Fur-

ther, we found that in both groups dot array estimation grew more

accurate as dot arrays grew closer in structure to actual abacus

configurations, suggesting that visual arrays are more easily pro-

cessed as they become more similar to abacus structures. Both

findings are consistent with the hypothesis that MA is adapted to

the design of the human visual system, rather than requiring the

acquisition of perceptual expertise. We conclude, therefore, that

6 All p values are derived from this z approximation (and the corre-

sponding t approximation for the linear model of log reaction time).

Although this approximation can be anticonservative for small amounts of

data, the large size of the data set we used means that this anticonservatism

is quite minimal (Pinheiro & Bates, 2000). With this approximation,

nonoverlapping standard errors can be interpreted as significant differences

at p & .05.
7 We made use of the first keypress rather than total input time to avoid

the confound that larger numbers take longer to input. Thus, reaction times

analyzed here are due to processing time for different displays.
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the difference between MA and control participants is the set of

highly practiced operations that MA participants are able to bring

to bear on arithmetic problems, not the nature of the representa-

tions they can form.

General Discussion

Our studies examined mental abacus, a powerful mental arith-

metic technique that allows users to make extremely fast and

accurate computations beyond the reach of typical mental arith-

metic techniques. We asked two broad questions about MA. First,

building on previous reports, we tested the idea that MA compu-

tations are nonlinguistic by asking users to add while performing

concurrent linguistic and motor interference tasks. Second, we

asked how MA might be represented in the visual system. Our

results support the idea that columns in MA are represented as

separate sets. On our view, inputs and outputs to MA computations

are linguistic, but computations performed over this parallel set

representation involve visual working memory resources (along

with an intriguing gestural component related to the motor oper-

ations involved in individual steps of MA arithmetic). In the

following two sections, we sketch a more detailed picture of MA

representations and then discuss the relationship of MA computa-

tions to language and the ANS. We end by considering some

broader implications of this work.

The Nature of MA Representations

Visual working memory is believed to be limited in its capacity

to approximately four objects, and the ANS lacks the precision to

capture the exact number used in abacus computations (Alvarez &

Cavanagh, 2004; Feigenson et al., 2004; Luck & Vogel, 1997). As

a result, neither system has the capacity to encode abacus structure.

Thus, the status of the initial proposal (that MA representations are

images) has been tentative, awaiting an account of how the de-

tailed structure of an abacus could be represented with limited

visual resources.

Table 2

Coefficient Weights for Logistic Mixed Model Analyses of Accuracy in Mental Abacus Users and Control Participants in

Experiment 3

Predictor

Mental abacus Untrained control

Coefficient SE z Coefficient SE z

Abacus 2.80 0.07 41.03 3.24 0.21 15.34
Identical 3.54 0.19 18.24 3.35 0.20 16.82
Rotated 3.92 0.19 20.40 3.84 0.20 18.83
Configural 4.10 0.15 27.63 4.70 0.23 20.63
Jittered 5.66 0.24 23.88 5.29 0.23 23.25
Estimation 5.52 0.24 22.87 5.17 0.23 22.50
Abacus ( Beads %0.21 0.01 %28.16 %0.36 0.03 %14.48
Identical ( Beads %0.31 0.02 %14.48 %0.29 0.02 %13.96
Rotated ( Beads %0.36 0.02 %16.94 %0.33 0.02 %15.81
Configural ( Beads %0.41 0.02 %22.98 %0.40 0.02 %17.79
Jittered ( Beads %0.65 0.03 %21.61 %0.55 0.02 %22.39
Estimation ( Beads %0.63 0.03 %20.98 %0.53 0.03 %21.43

Table 3

Coefficient Weights for Linear Mixed Model Analyses of Log Reaction Time in Mental Abacus Users and Control Participants in

Experiment 3

Predictor

Mental abacus Untrained control

Coefficient SE t Coefficient SE t

Abacus 0.28 0.02 11.55 0.40 0.06 6.85
Identical 0.37 0.04 9.70 %0.43 0.06 %7.34
Rotated 0.21 0.04 5.63 %0.58 0.06 %9.85
Configural %0.10 0.03 %3.38 %0.61 0.06 %10.39
Jittered %0.15 0.03 %4.44 %0.79 0.06 %13.57
Estimation %0.11 0.04 %2.98 %0.65 0.06 %11.16
Abacus ( Beads 0.06 0.002 34.01 0.08 0.007 11.50
Identical ( Beads 0.13 0.004 31.16 0.14 0.006 22.51
Rotated ( Beads 0.12 0.004 32.16 0.14 0.006 22.90
Configural ( Beads 0.14 0.003 48.18 0.14 0.006 23.26
Jittered ( Beads 0.13 0.004 36.72 0.14 0.006 23.90
Estimation ( Beads 0.15 0.001 39.79 0.14 0.006 23.52
Trial number %0.0020 0.0001 %14.740 %0.001 0.0001 %12.731
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As noted in the introduction, recent studies provide evidence

that the visual system can represent information about multiple

sets. In these studies, participants perform three to four numerical

estimates in parallel (Feigenson, 2008; Halberda et al., 2006).

Additional evidence suggests that multiple object tracking abilities

are enhanced when targets are displaced horizontally in space

(allowing each visual hemifield to form independent representa-

tions; Alvarez & Cavanagh, 2005). Together, these studies suggest

that untrained subjects can use attention to track not only multiple

objects but also the members of multiple sets. These studies raise

the possibility that the columnar structure of MA allows users to

select multiple horizontally adjacent columns in parallel, then to

track their contents, assign features to columns, store their values,

and perform computations over their contents.

Evidence for this proposal comes from several findings reported

here. In Experiment 1 we found a tight limitation on the number of

columns that can be involved in an addition problem but a much

looser limit on the number of addends. These signatures were also

found in Experiment 3, where subjects were asked either to read

abacus flashcards or to make estimates for visual arrays that varied

in their resemblance to an abacus. This study also revealed a

difference in reaction time slopes for abacus reading compared

with estimating from comparable displays. The presence of a

distinct reaction time slope in even novice adults with only brief

exposure suggests that grouping the MA representation in this way

is an automatic consequence of the place value organization of

abacus combined with its visual structure, rather than an over-

learned strategy.

Our findings also suggest that the particular layout of MA—

rectilinear, horizontally extended, and segregated into columns—is

optimized for visual processing. When participants were asked to

estimate the number of beads in a visual array, both MA users and

controls performed better as the structure of the arrays become

more similar to actual abacus structures. Previous studies report

that configural cues similar to those provided by the abacus greatly

facilitate numerical estimation, mirroring our findings (Atkinson,

Francis, & Campbell, 1976; Mandler & Shebo, 1982; Van Oef-

felen & Vos, 1982). For example, in a study by Atkinson et al.

(1976), participants were asked to make estimates for columns of

dots including up to 12 items. Accuracy was perfect for arrays up

to four but fell off quickly thereafter. However, critically, esti-

mates for sets of up to eight were also perfect if items were

arranged into rows of four or fewer dots and the rows were

presented at a 90° angle to one another. Thus, it is likely that the

rectilinear structure and frame of the abacus make it considerably

easier for the image to be grouped into sets and maintained in

memory.

Our proposal leaves open the precise internal structure of abacus

columns in MA, however. According to the proposal just de-

scribed, either ANS or visual working memory alone might rep-

resent the beads within individual columns (e.g., by representing

columns as approximate values from 1 to 5, or as arrays of objects,

each able to receive its own attentional index). Although our

current data do not provide conclusive answers about the internal

structure of columns in the MA representation, they nonetheless

speak to the question, suggesting that the ANS is not likely to be

used to represent the contents of columns. Instead, our data suggest

that MA users track individual beads within each column, perhaps

shifting attention from one column to the next as they do compu-

tations.

First, in analyses of the data from Experiment 3, we found that

MA users’ errors when reading flashcards did not increase linearly

as the number of beads on a column increased, but instead were

affected by configural cues related to the position of particular

beads. Thus, an estimate based purely on approximate number

cannot explain children’s errors. Second, when MA users do

arithmetic, they track the location of individual beads in space and

move them in their visual image. Evidence that users do this comes

not only from the errors that they make and their access to

intermediate steps of MA computation (Stigler, 1984), but also

from the robust and often highly detailed gestures that children

make when doing computations: Their fingers move in space as

they move beads up and down the columns of their virtual device

(for discussion, see Brooks, Goldin-Meadow, Frank, & Barner,

2011). These abilities cannot be explained if column contents are

represented in the ANS alone.

In addition, we found that the ANS abilities of the MA users in

Experiment 3 were quite similar to those of control participants.

This result is interesting to consider with respect to an ongoing

discussion about the role of the ANS in symbolic math expertise.

Halberda, Mazzocco, and Feigenson (2008) showed that those

children who had more accurate approximate number representa-

tions also performed better in standardized tests of symbolic math-

ematics, even controlling for a host of other cognitive factors. This

finding has since been replicated in another population (Gilmore,

McCarthy, & Spelke, 2010), but the causal direction underlying

the correlation is puzzling. Is it the case that practice with exact

numerosities improves approximate magnitude estimation, or is

approximate magnitude precision important for “checking your

work” in symbolic mathematics? Our findings suggest a bound on

any causal connection between symbolic practice and improve-

ments in ANS accuracy. Even extensive MA practice—enough to

allow children to be considerably better at mental arithmetic than

adults—does not make children adult-like in their estimation abil-

ities.

In summary, we propose that MA representations are supported

by parallel set representations, which operate over the columns of

the abacus. Individual columns preserve information about the

identity and location of individual beads, suggesting that they are

not approximate number representations but instead have some

more complex substructure. This substructure is not specified by

the current data and may be a fruitful topic for future work.

The Relationship of MA to Language

Our proposal is that MA involves performing mental arithmetic

in a nonverbal format, unlike standard mental arithmetic tech-

niques that rely on phonological working memory. One component

of this argument, made in Experiments 1 and 3 of this article,

involved showing how such representations might be possible,

given known limits of visual working memory. An equally impor-

tant step in the argument, however, is to show experimentally that

MA users remain proficient at arithmetic even when doing a

concurrent verbal task. This was the goal of Experiment 2.

In this experiment, inspired by earlier work of Hatano et al.

(1977), we showed that experienced MA users were surprisingly

competent at doing mental sums while simultaneously repeating an
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auditorily presented story (and were equivalently affected by a

simple tapping task). In contrast, we found that untrained adults

were much more affected by verbal interference than MA users but

not affected at all by motor interference. In addition, controls but

not MA users showed differential verbal interference effects for

sums that contained many carries (operations that spanned place

values). Together, these results confirm Hatano et al.’s results and

provide support for the contention that MA relies on primarily

nonverbal structures.

Language likely does play a role in the acquisition and use of

MA, however. First, to our knowledge, abacus use is always taught

after children learn verbal numbers. Second, when individuals use

MA, both the inputs and the outputs of computations are either

Arabic numerals or their verbal counterparts. As a result, verbal

interference should have some modest effect on the use of MA, to

the extent that it interferes with this translation process. What we

have argued here is that although the inputs and outputs to MA are

linguistic, the format of representations during MA computation is

not. MA is like an electronic calculator in this sense: Its internal

states use a representation that is convenient for calculation but not

linked to language, whereas its inputs and outputs are base-10

numerals linked to language. In the case of a calculator, the

internal representation is binary or hexadecimal numbers stored in

electronic registers; in the case of MA, the internal representation

is abacus columns stored in visual working memory.

The language interference effects shown by MA users in Ex-

periment 2 could therefore have several explanations that are

consistent with a visual theory of MA representations. First, verbal

interference could have interfered with (linguistic) input and out-

put processes for MA computations. As noted above, we saw

anecdotal support for this explanation from pauses in shadowing

that corresponded to when participants were outputting the results

of MA calculations. Second, verbal shadowing could simply im-

pose a general task-switching or task-monitoring cost because of

the complexity of the shadowing task. In neither case would the

relatively modest decrement verbal interference effect that we

observed be evidence for MA representations being linguistic in

nature.

In summary, MA is a representation of exact number that draws

on visual (and perhaps motor) resources to complete computations.

Inputs and outputs for these computations are often linguistic, but

due to their unique structural signatures and their relative resis-

tance to verbal interference, we do not believe that the represen-

tations themselves critically depend on language.

Conclusions

Over human history, from Babylon to Roman times to China

and Japan, almost every form of counting board and abacus has

organized counters into small sets that fall within the limits of

visual working memory. Even apparent exceptions like the Rus-

sian schoty prove the rule. The schoty features 10 beads per

column but groups the beads into a 4%2%4 structure using color

cues in order to allow users to identify bead configurations easily

(Menninger, 1969). Our study suggests that the soroban abacus is

optimally designed to take advantage of grouping cues that permit

the rapid encoding of objects in visual working memory. Even

slight deviations from the soroban structure cause both trained and

untrained individuals to be slower when encoding sets.

The mental structure of MA allows users to store multiple

columns of beads simultaneously in working memory. By assign-

ing each column a distinct place value, users can represent and

manipulate large exact numerosities using visual resources. Al-

though MA interfaces with language, numerical content nonethe-

less appears to be represented in visual working memory, suggest-

ing that language is not the sole mental format for representing

precise numerosities. More generally, the example of MA suggests

that humans can make use of a range of cognitive resources in

constructing symbolic systems.
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