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ABSTRACT: Representation of multidimensional global
potential energy surfaces suitable for spectral and dynamical
calculations from high-level ab initio calculations remains a
challenge. Here, we present a detailed study on constructing
potential energy surfaces using a machine learning method,
namely, Gaussian process regression. Tests for the 3A″ state of
SH2, which facilitates the SH + H ↔ S(3P) + H2 abstraction
reaction and the SH + H′ ↔ SH′ + H exchange reaction,
suggest that the Gaussian process is capable of providing a
reasonable potential energy surface with a small number (∼1 ×
102) of ab initio points, but it needs substantially more points
(∼1 × 103) to converge reaction probabilities. The
implications of these observations for construction of potential energy surfaces are discussed.

I. INTRODUCTION

The Born−Oppenheimer potential energy surface (PES),
namely, the adiabatic potential energy of a molecular system
as a function of its nuclear coordinates, plays a fundamentally
important role in physical chemistry.1,2 It governs the nuclear
motion and gives rise to spectral and dynamical properties of
the system, which eventually contribute to its thermodynamics
and kinetics.3 Recent advances in electronic structure theory
have enabled accurate calculations of adiabatic potential
energies for small systems at any arbitrary molecular
configuration.4 However, faithfully representing the global
PES from these ab initio points remains a challenge. This is
particularly true for a reactive system in which a global PES in
the entire configuration space between reactants and products
needs to be characterized accurately for quantum or classical
scattering calculations.5 While traditional interpolation methods
are effective in small systems,6−9 recent attention has been
focused on more efficient means to represent high-dimensional
global PESs in larger systems.10−12 Some of these efforts have
taken advantage of emerging techniques in machine learning.13

For example, feed-forward artificial neural networks (NNs)
have been very successful in providing an extremely flexible and
relatively straightforward method for fitting PESs to a large
number of ab initio points.14−18 In our recent work, for
example, a 60-dimensional PES for molecular scattering from a
metal surface was fit using a NN method.19

Another popular machine learning strategy is the Gaussian
process (GP) regression.20 Instead of an analytical NN function
with parameters optimized by training with data points, GP
provides a statistical estimate of the potential energy in an
unknown geometry based on the known ab initio points. This is

done by means of Bayesian inference in the functional space,
and it thus has no fitting parameters. The GP PESs are smooth
and differentiable, and in general they represent the known ab
initio points accurately. In addition, the quality of the
estimations improves systematically as more points are added.
Perhaps most importantly, it has been argued that GP can
provide a good estimate for an N-dimensional system with only
∼10N well-selected points,21 and there is some evidence in
support of this claim in PES fitting.22 Therefore, it could in
principle offer an efficient way to represent high-dimensional
PESs.
While much work has so far been done using GP to represent

high-dimensional PESs for systems near equilibrium,23−26 there
have been few attempts to tackle reactive systems.22 A chemical
reaction by definition is far from equilibrium, as reactive
trajectories necessarily access high-energy regions of the PES
between the reactant and product asymptotes. As a result, it is
much more challenging to accurately represent the global
reactive PES across a large energy range and configuration
space than to map out the PES near equilibrium configurations
near the potential wells. In this publication, we examine the GP
representation of the lowest triplet PES for SH2 based on
varying numbers of ab initio points in an attempt to understand
the behavior of GP in predicting potential energies in
configurations that are not included in the ab initio data set.
In addition to the commonly used error assessments, we use
quantum scattering to quantify the quality of the reactive PES.
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In other words, special attention is paid to the convergence of
dynamical results with respect to the number of points used to
build GP PESs. This is important, as the prediction errors alone
do not necessarily provide definitive information on the quality
of the PES for scattering calculations, because reactive
scattering depends exquisitely on the details of the PES. Such
knowledge has important implications in future applications of
the GP method in general. This publication is organized as
follows. Section II presents the GP method and its
implementation, along with details of the ab initio and
quantum scattering calculations. The results are presented
and discussed in Section III. Finally, the conclusions and
prospect of this approach are given in Section IV.

II. METHODS

A. Ab Initio Calculations. Energies of SH2 configurations
were obtained via explicitly correlated unrestricted coupled
cluster theory with single, double, and perturbative triple
excitations (UCCSD(T)-F12b),27 based on spin-restricted
open-shell Hartree−Fock (ROHF) wave functions, using the
aug-cc-pVTZ basis set.28,29 All calculations were performed
with the Molpro 2010 program,30 and the wave functions were
constrained to 3A″ symmetry. A frozen-core of the sulfur 1s, 2s,
and 2p orbitals was excluded from the correlation treatment.
B. Gaussian Processes. Gaussian processes (GPs) are

kernel-based supervised statistical learning models, which have
been widely applied to regression and classification problems in
machine learning.20 More recently, they have been used to
solve physical chemistry problems, for example, constructing
PESs22−26 and modeling collision dynamics.31,32 Rather than
giving any specific functional form and then optimizing the
corresponding coefficients, a GP represents a collection of
random observations, any finite number of which have a joint
Gaussian or normal distribution. The Gaussian distribution is
defined by its mean function and the covariance function.
Supposing we have n variables x = {x1, ..., xn}, where xi can be a
vector representing internal coordinates of a molecular system,
and corresponding n observations y={y1,..., yn}, say the potential
energies, this joint multivariate Gaussian distribution N can be
expressed as
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or in the vector-matrix form as

∼ Ny 0 K x x( , ( , )) (2)

where the mean function is taken to be zero for simplicity, and
the covariance or kernel function k(xi, xj) represents the
similarity of two variables xi and xj, that is, the covariance of
these two; and K(x,x) is the covariance matrix for the entire
data set. Given the property of GP, an unknown point to be
predicted (x*,y*) would also follow this prior distribution, so we
have
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where K** = k(x*,x*), K* is the vector that consists of the
covariance between x* and all existing data, and K*

T is its
transpose. Interestingly, the conditional distribution of y* for
the given y is itself Gaussian-distributed.20

*
| ∼
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* *
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(4)

As a result, a GP model does not yield a single prediction of y*,
like NNs do, but its entire distribution in which the mean of y*
is

*̅
=

*
−y K K y1 (5)

and its variance is

Δ
*

=
**

−
* *

−y K K K K1 T
(6)

The statistical mean in eq 5 is taken as the prediction with
uncertainty given in eq 6. In practice, the data may be noisy, for
example, y = f(x) + ε, where error is also Gaussian-distributed,
that is, ε ≈ N(0,δn

2) with δn being the noise variance. The noise
terms are then taken into account in the diagonal elements of
the covariance matrix, that is, Kii = k(xi,xi) + δn

2.
GP is a probabilistic model based on Bayesian analysis, which

relies explicitly on the correlation between the data themselves
and is thus referred as a “non-parametric” model.20 The GP
model is closely related to the reproducing kernel Hilbert space
(RKHS) and spline models,20 which are better known as
interpolation methods in the reaction dynamics community.7 It
is worthwhile to point out that the original data are required in
such a non-parametric model when making predictions, while
in parametric models, such as NNs and polynomial expansions,
only the fitting parameters are required once they are
determined. However, note that the kernel or covariance
function contains hyper-parameters that are optimized in GP.
The choice of the covariance function is quite flexible. In this
work, the so-called neural network covariance function,33 given
by

σ
λ λ

=
− −

−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥k x x

x x

x x
( , ) sin

( )( )
i j

i j

i j

f
2 1

T

2 2 2 2

(7)

was used. σf is the standard deviation, and λ is a characteristic
correlation length, which can be dimension-specific. Several
other covariance functions were tested, including squared-
exponential and various members of the Mateŕn family.
Different choices did not change the qualitative results of the
present work.
One must also choose a likelihood function and a prior

mean. These combined choices result in a small set of hyper-
parameters that must be determined, most commonly by
maximizing the log marginal likelihood function, given by

θ π| = − − | | −−P
n

y x y K y Klog ( , )
1

2

1

2
log

2
log 2T 1

(8)

using any multivariate optimization algorithm, such as quasi-
Newton methods. Once the hyper-parameters are determined,
eqs 5 and 6 can yield the prediction y* and its variance Δy* at a
new point x*.
The determination of the hyper-parameters requires the

inversion of the covariance matrix, which scales as the cube of
the number of training examples. As a result, it becomes less
efficient when the number of points increases beyond ∼1 ×

104. In addition, the estimate of potential energy scales as n2
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due to the matrix multiplications. These steep scaling laws
could limit the applicability of this method in representing PESs
unless only a small number of points is required.
In this work, the GP modeling was performed in MATLAB,

using the Gaussian Process for Machine Learning (GPML)
code of Rasmussen and Nickisch (version 3.6).20 For the SH2

system, optimal results were obtained using exact inference
with a Gaussian likelihood (with the variance σn as the lone
hyper-parameter), a constant mean function (with hyper-
parameter c), and the covariance function given in eq 7 (with
hyper-parameters σf and λ), resulting in a total of four hyper-
parameters. As stated above, values for these parameters were
selected by optimizing the log marginal likelihood using
MATLAB’s constrained optimization routines.
The triatomic configuration was given to the GP as a set of

three interatomic distances. Since the two hydrogen atoms are
indistinguishable, leading to a twofold exchange symmetry
between them, the S−H distances were presented to the model
with the shorter one always first. The shorter S−H distance was
allowed to range between 0.9 and 5 Å, and the H−H distance
varied between 0.4 and 4 Å. Structures with energies more than
2.5 eV above the asymptotic H2 + S were not used in the fitting.
This configuration space was partitioned into three regions,
H2+S, the interacting region, and SH+H. Training points were
selected from each region via the Latin hypercube sampling
(LHS) approach as implemented in the “lhs” R package.34

Problem regions (those with significant oscillations or
unphysical wells) were addressed by adding training points in
batches of a few hundred, which are selected using the same
LHS approach. We note in passing that the LHS method might
not be the most efficient sampling method, but it is sufficient
for the current problem, particularly when individual regions
defined above are used. The final fits were tested against a test
set consisting of 424 points selected within the relevant region
using the same approach as the training data.
C. Quantum Scattering. Quantum reactive scattering

calculations are performed to test the accuracy of the GP
PESs obtained with different numbers of ab initio points. Such
quantum dynamical calculations provide a stringent test of the
PESs. The total reaction probabilities for zero total angular
momentum are computed for both the abstraction and
exchange channels, using a standard time-dependent wave
packet method.35 Specifically, a Gaussian wave packet defined
in the reactant Jacobi coordinates is launched from the SH + H
asymptote and propagated using the split-operator time
propagator.36 The Hamiltonian is given in the corresponding
Jacobi coordinates, and an L-shaped grid37 was used. The total
reaction probabilities into both the abstraction and exchange
channels are obtained using a flux method with a dividing
surface placed in the product channels. The wave packet is
absorbed in both product channels. The parameters used in the
calculation are listed in Table I.

III. RESULTS

The hydrogen abstraction reaction

+ → +SH H S( P) H3
2 (R1)

has been extensively studied and thus serves as a proto-
type.38−42 Reaction R1 proceeds on both the 3A′ and 3A″ state
PESs, characterized by collinear S−H−H transition states that
are quite alike. The corresponding PESs also facilitate the
exchange reaction:

+ ′ → ′ +SH H SH H (R2)

Reaction R1 is exothermic with a small barrier, while reaction
R2 is thermoneutral with a much higher barrier. There have
been several previous studies of the PESs.38−40 The PESs by Lv
et al.39,40 were obtained at the multireference configuration
interaction (MRCI) level of theory, which is more accurate
than the earlier PES by Maiti et al.38 For this system, which is
dominated by a single reference, the CCSD(T) PES developed
here is expected to be more reliable because of the higher-order
excitations included, as demonstrated recently in some recent
studies of reactive PESs.43

Tests with geometries and energies obtained via UCCSD-
(T)-F12b/aug-cc-pVTZ theory yield a barrier and overall
energy change of 8.2 and −92.4 kJ mol−1 for R1. This is in good
agreement with the MRCI values (8.4 and −91.4 kJ mol−1) of
Lv et al.39 Use of the larger aug-cc-pVQZ basis set at the same
geometry raises the barrier only by 0.3 kJ mol−1 and raises the
reaction energy by 0.1 kJ mol−1. These negligible changes
suggest that convergence with respect to basis set size has been
effectively reached at the triple-ζ level. As a result, the ab initio
points were computed at the UCCSD(T)-F12b/aug-cc-pVTZ
level. For the diatomic species H2 and SH, this level of theory
yields bond lengths (re) of 0.742 and 1.343 Å, respectively, in
excellent accord with experimental values of 0.741 and 1.341
Å.44 Similarly, the computed harmonic frequencies (ωe) of
4401 and 2696 cm−1, respectively, lie within 1 cm−1 of the
experimentally derived values.44 Inclusion of unscaled zero-
point vibrational energy yields a 0 K enthalpy barrier and
reaction enthalpy (ΔH0) of 8.05 and −82.23 kJ mol−1,
respectively. As a check on the accuracy of the theory
employed, we note that the latter quantity compares well
with the experimental value of −81.4 ± 1.2 kJ mol−1.45,46

A total of 3741 points were computed at the UCCSD(T)-
F12b/AVTZ level of theory. These points were chosen to cover
the entire configuration space relevant to R1 and R2. Only
points with energies up to 148 kJ mol−1 above the SH + H
asymptote were chosen. Five PESs were determined using the
GP method described in Section II, with 250, 500, 1000, 2000,
and all 3741 points. These points were selected randomly from
the ab initio data set. The fitting and prediction root-mean-
square errors (RMSEs) of these PESs are given in Table II, and
error distributions are shown in Figure 1. To compare the
PESs, the contour plots of four PESs are shown in Figure 2, in
which all the four versions are very close in the dynamically
accessible region of the PES.

Table I. Parameters Useda in the Quantum Dynamics
Calculations in an L-Shaped Scheme

grid/basis range and size

R ∈ [1.5,21.0], NR
1 = 228, NR

2 = 144

r ∈ [2.0,12.0], Nr
1 = 600, Nr

2 = 90

j ∈ [0,100]

initial wave packet: exp{−(R − R0)
2/(2ΔR

2)}exp{−ik0R}

R0 = 13.5

ΔR = 0.4

μ=k E2
R0 0 with E0 = 0.5 eV

absorbing potentials: −
−

−( )Cx
x x

x x

n
e

s e

x

CR = 0.018, nR = 2, Rs = 17.0

Cr = 0.018, nr = 2, Rs = 8.0
aAll units are given in atomic units unless stated otherwise.
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In Figure 3, the J = 0 reaction probabilities for both the
abstraction and exchange channels are displayed. The
abstraction channel has a very small reaction threshold, thanks
to the relatively low barrier. However, its reactivity is much
lower than that of the exchange channel, which has a higher
threshold because of its higher barrier. For the PES with 250
points, the reaction probabilities in both channels deviate
significantly from the converged values. This is consistent with
the relatively large prediction errors of this PES shown in Table
II and in Figure 1. When the number of data points is increased
to 500, there are significant improvements for both channels,
but the exchange probability still contains substantial errors. In
all other three cases, the reaction probabilities of both channels
are reasonably well converged. For the PES with 2000 points,
the results are almost identical to the one trained with all the
points, indicating that 2000 points are sufficient to provide a
quantitatively converged PES for these reactions.

An interesting observation of these results is that the fitting
errors, namely, RMSEs for the points included in the GP
representation, are not exactly zero, albeit quite small. This
suggests that the GP means do not always pass through the ab
initio points, although the deviations are quite small. This is due
to two factors. One is the choice of the covariance function,
which is not as flexible as some other such functions. The other
factor is the small noise included in the GP modeling, which
improves the numerical stability. In addition, the prediction
errors are all small, with perhaps the exception of the 250-point
set. However, the calculated quantum reaction probabilities
clearly demonstrate that small prediction errors do not
necessarily lead to convergence in observables. This is an
important point, as the previous work of Cui and Krems22 has
demonstrated small prediction errors in representing PESs but
did not provide evidence for convergence of measurable
quantities for dynamics.
These results also indicated that that the 10N rule for

representing PESs depends on the level of accuracy required by
the physical problem. For this three-dimensional reactive
system, it is apparent that 30 points cannot produce a
sufficiently accurate PES. The minimal number in this particular

Table II. Fitting and Prediction RMSEs of the Four PESs in
Predicting the Entire ab Initio Data Set

N Efit (meV) Eprediction (meV)

250 0.8 26.7

500 2.0 10.3

1000 3.0 4.3

2000 1.2 1.6

all (3741) 2.1 0.88

Figure 1. Violin plots of the error distribution for each of the five fits
performed here as a function of the number of training points in the
fit. For each size of training set the plot shows the median value (○),
the range containing 50% of the data (the dark vertical black bar), and
a kernel density plot showing the full distribution of the errors (the
shaded area). For example, for the 500 training point set the median
error is very close to 0 meV, 50% of the errors lie within ±10 meV, and
almost all the remaining errors lie within ±40 meV, though there are
outliers beyond this range. Note that, for visibility of the more accurate
sets, the y-axis has been made smaller than would be necessary to show
the entire range of errors for the 250 and 500 training point sets. It is
apparent that the fits can become quite accurate, but more than ∼500
points are required for quantitative accuracy.

Figure 2. Contour plots of the four versions of PESs in the two radial
Jacobi coordinates (in bohr) with (a) 500, (b) 1000, (c) 2000, and (d)
all data points. The Jacobi angle is optimized.

Figure 3. J = 0 reaction probabilities for both the abstraction (R1) and
exchange (R2) channels on five PESs trained with 250, 500, 1000,
2000, and all 3741 points.
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system seems to be 500. This itself is already quite impressive,
as thousands of points are typically needed for an NN fit,18 and
over 6000 points were used by Lv et al.39 to construct a PES for
the same system using many-body expansion with an RMSE of
∼19 meV. It should probably be pointed out that the
topography of the reactive PES is intrinsically more complex
than that near the equilibrium geometry. Thus, it is possible
that high-dimensional near-equilibrium PESs can still be
represented by GP with a small number of points. For reactive
systems, it is important to test more systems to establish the
applicability of the GP approach and to see if the scaling is
linear with respect to dimensionality.

IV. CONCLUSIONS

In this work, we have explored the possible GP representation
of reactive PESs in a triatomic system. The results are
promising, but more work is certainly needed to establish its
applicability, especially in higher dimensions. The results
presented in this work suggest that, at least for the current
system, a smaller number of points is needed to produce a
reasonably good PES, but significantly more points are required
to produce quantitatively converged reaction probabilities. This
is a common behavior of Bayesian inference-based methods.
This observation underscores the difficulties associated with
representing global PESs with even accuracy in all config-
urations, including those far from the potential wells. More
studies in higher dimensionality are needed to verify the
scalability of this method. In addition, an efficient and rigorous
symmetry adaptation scheme is needed to enforce the
permutation invariance of the PESs.
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