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Abstract

Recently, Gelfond and Lifschitz presented a formal language for representing

incomplete knowledge on actions and states, and a sound translation from this

language to extended logic programming. We present an alternative translation

to abductive logic programming with integrity constraints and prove the sound-

ness and completeness. In addition, we show how an abductive procedure can be

used, not only for explanation, but also for deduction and proving satis�ability

under uncertainty.

From a more general perspective, this work can be viewed as a -successful-

experiment in the declarative representation of and automated reasoning on

incomplete knowledge using abductive logic programming.

1 Introduction

An outstanding problem in logic programming is the representation of incomplete

knowledge. In [17], Gelfond and Lifschitz propose an interesting methodology to

evaluate the expressivity of a formalism for representing incomplete knowledge. They

present a simple temporal languageA for representing incomplete temporal knowledge

and apply it successfully to a number of well-known benchmark problems in temporal

reasoning. Due to its natural and well-understood semantics, A provides a direct

means to evaluate the expressivity of other formalisms. By providing a transformation

from A to extended logic programming [16] and proving its soundness, they show

the expressivity of this formalism for representing temporal knowledge and, more in

general, incomplete knowledge.

In the past, another approach has been explored for temporal reasoning, based on

event calculus [13], [31], [25], [10]. [10] proposes solutions for the same benchmarks as

in [17]. This approach makes use of the formalism of abductive logic programming.

One may interpret an abductive program as an open logic program in the sense that it

contains only de�nitions for the non-abducible predicates. The completion semantics

for abductive logic programs of [3] reects this well by taking as the completion of an

abductive program the set of completed de�nitions of the non-abducible predicates

only. As a consequence, the completion does not impose any restriction on the inter-
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pretation of the abducible predicates and incomplete knowledge can be represented

via the abducible predicates. Observe that this treatment di�ers totally from the

treatment of a de�ned predicate with empty de�nition: the latter predicate is always

false.

In general an abductive program will allow too much uncertainty. In most appli-

cations, the knowledge engineer has knowledge that implicitly restricts the possible

states of the unde�ned abductive predicates. A declarative way of representing this

knowledge is by First-order Logic (FOL) axioms. In order to illustrate this approach,

we present a transformation from A domain descriptions to abductive logic programs

with FOL axioms (section 3). Despite the fact that the benchmarks in [10] were

solved with abductive event calculus, it turns out to be di�cult to transform A do-

main descriptions to event calculus programs: as situation calculus, A is based on

the branching time philosophy, whereas event calculus is based on a linear time phi-

losophy. However, the use of abductive logic programs is in no way restricted to

event calculus. The proposed transformation maps an A domain description to an

abductive situation calculus.

A second high level goal is to illustrate how an abductive procedure can be useful

for automated reasoning with abductive logic programs and FOL axioms. That an

abductive procedure can be used for explanation of some observation is well-known

from [29], [31]. It is less known that an abductive procedure can also be used de-

duction and for proving consistency of a theory. In section 4, we illustrate how an

abductive procedure can be used to prove the consistency of an abductive logic pro-

gram with FOL axioms and that an abductive procedure can be used for deduction

in an abductive logic program.

In the rest of the paper we will mostly refer to abductive logic programs as open logic

programs, and to abducible predicates as unde�ned predicates. We prefer these names

over the commonly used terminology because they reect the declarative meaning

of the concepts: an unde�ned predicate has no de�nition; an open logic program

is open in the sense that it describes the de�ned predicates in terms of a set of

unde�ned predicates whose interpretation is completely left open. The terminology

abductive logic program and abducible predicate is somewhat misleading, especially in

the context of this paper, whose goal it is to show explicitly how to perform other

forms of reasoning than abduction on abductive logic programs.

The paper is structured as follows. In section 2, we recall the language A and its

semantics. In section 3, the transformation from A to situation calculus programs is

presented and the soundness and completeness are proved. In section 4, the use of

abduction for explanation and deduction is illustrated. Section 5 gives a comparison

between our transformation and the transformation in [17]. Section 6 compares our

work with another recent transformation from A proposed in [11]. In section 7, we

discuss other related work. A short paper on this subject has been published as [8].

2 The temporal language A

The language A [17] allows to describe relationships between uents (= time depen-

dent properties of the world) and actions. A is a propositional language: both uents

and actions are represented by propositional symbols. Two types of expressions occur.
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A v-proposition describes the value of a uent after a (possibly empty) sequence of

actions. Its syntax is as follows:

f after a

1

; : : : ; a

n

Here a

1

; : : : ; a

n

is a sequence of action symbols and f is a uent expression: a positive

or negative literal containing a uent. The expression means that f is true after

executing the sequence of actions a

1

; : : : ; a

n

. If the sequence of actions is empty

(n=0), the v-proposition describes the initial situation. Instead of f after , one

usually writes:

Initially f

An e-proposition describes the e�ect of actions on the uents. It has the form:

a causes f if p

1

; : : : ; p

n

where f; p

1

; : : : ; p

n

are uent expressions and a is an action symbol. The expression

means that if p

1

; : : : ; p

n

are true, then the e�ect of a on the current situation is that

f becomes true. p

1

; : : : ; p

n

are called preconditions. If n=0, one writes:

a causes f .

A domain description is a set of v- and e-propositions.

Example We recall the Yale Turkey Shooting problem (YTS) as formulated in [17].

The uents are loaded, alive; the action names are shoot, wait and load. The

domain description D

Y TS

contains the following propositions:

Initially alive

Initially :loaded

load causes loaded

shoot causes :alive if loaded

shoot causes :loaded

Example The Murder Mystery domain D

MM

is a variant of YTS, obtained by sub-

stituting

:alive after shoot;wait

for Initially :loaded in D

Y TS

. This is a prototypical postdiction problem: we

want to obtain the conclusion that initially the gun is loaded.

The semantics for A is de�ned as follows. A state is a set of uent names and

describes a possible state of the world. Given a uent symbol f and a state �, f holds

in � if f 2 �, otherwise :f holds in �. A transition function � maps pairs (a; �)

of action symbols a and states � into the set of states. � describes how a situation

changes under application of an action a. A structure M is a pair (�

0

;�), where �

0

represents the initial state and � the transition function. M

a

1

;:::;a

m

denotes the state

�(a

m

;�(a

m�1

; : : : ;�(a

1

; �

0

) : : :)). A v-proposition

f after a

1

; : : : ; a

m

holds in a structure (�

0

;�) i� f holds in M

a

1

;:::;a

m

.
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De�nition 2.1 A structure M = (�

0

;�) is a model of a domain expression D if and

only if the following rules are satis�ed:

� Each v-proposition f after a

1

; : : : ; a

m

holds in M .

� For any state �, uent expression f and action a, if there exists an e-proposition

a causes f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold in �, then f holds in �(a; �). Otherwise, f holds in

�(a; �) i� f holds in �.

A domain description is called consistent if it has a model. We introduce a new

notion, e-consistency. A domain description is e-consistent if the set of e-propositions

of D is consistent. There is a simple necessary and su�cient condition for a domain

description to be e-consistent.

Lemma 2.1 A domain description D is e-consistent i� for each pair of rules

a causes f if p

1

; : : : ; p

n

and a causes :f if p

n+1

; : : : ; p

m

in D, there exists an i and j such that p

i

is the complement of p

j

.

This condition is satis�ed when the complementary literals are found in the bodies of

the two rules but also when they appear in the body of one rule, as in

shoot causes alive if loaded;:loaded

Such a rule has an inconsistent body. It can never be applied and can never cause an

inconsistency.

In [11], an action a for which there exists a pair of rules

a causes f if p

1

; : : : ; p

n

and a causes :f if p

0

1

; : : : ; p

0

m

such that no complement of a literal in the �rst is contained in the second is called

self-contradicted. [11] contains a similar proposition as lemma 2.1.

Proof Assume that for some pair of rules:

a causes f if p

1

; : : : ; p

n

and a causes :f if p

n+1

; : : : ; p

m

no complementary literals occur in fp

1

; : : : ; p

m

g. This set may contain positive

and negative literals. De�ne the state � consisting of only the positive literals

in fp

1

; : : : ; p

m

g. Then obviously each p

i

holds in �. �(a; �) is not consistently

de�ned because both f and :f should hold in �(a; �).

Vice versa, one easily veri�es that when the syntactical condition in the lemma

is satis�ed, the de�nition of a model of a domain description gives a consistent

description of a transition function �. 2
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De�nition 2.2 (Non-inertial) We say that a uent f is non-inertial under an ac-

tion a in a state � i� there exists an e-proposition

a causes f if p

1

; : : : ; p

n

or a causes :f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold in �. Otherwise, it is inertial under action a.

[17] observes that the e-propositions of a domain D completely determine the

transition function �. Below proposition 2.1 gives a precise and deterministic char-

acterisation of �, under the condition that D is e-consistent.

Proposition 2.1 Let D be e-consistent. If D has a model (�

0

;�) then � is de�ned

as follows: for any state �, action a and uent symbol f : f 2 �(a; �) i�

� f holds in � and f is inertial under a in state �, or

� there exists an e-proposition a causes f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold

in �.

The proof is straightforward.

Note that if the condition of e-consistency is not satis�ed, then the description

of � in the proposition does not correspond to the description of � in de�nition 2.1.

Indeed, for f , a and � such that for e-propositions

a causes f if p

1

; : : : ; p

n

and a causes :f if p

0

1

; : : : ; p

0

m

the uents p

1

; : : : ; p

n

; p

0

1

; : : : ; p

0

m

hold in �, the second item of de�nition 2.1 requires

that both f 2 �(a; �) and f =2 �(a; �). This is a contradiction. On the other hand,

proposition 2.1 requires that f 2 �(a; �) since the second item applies. Because the

transformation proposed in next section implements the formulation of proposition

2.1 rather than that of de�nition 2.1, it will be complete only for e-consistent domains.

A v-proposition Q is entailed by a domain description D i� Q holds in each model

of D. A domain description is called complete if it has a unique model. The YTS

domain and Murder Mystery domain are examples of complete domain descriptions.

Since they share their e-propositions, their models have an identical transition func-

tion � which maps tuples (wait; �) on �, (load; �) on �[floadedg, and maps (shoot; �)

on �nfalive; loadedg if loaded 2 �, otherwise on �. The modelM

0

ofD

Y TS

has initial

situation faliveg. The modelM

1

ofD

MM

has initial situation falive; loadedg. An in-

complete domain description is obtained by dropping the v-proposition Initially alive

from the Murder Mystery domain. One additional model is the structure with tran-

sition function � but with initial situation fg.

A provides only restricted expressivity: the language is only propositional, no

relationships between uents can be de�ned, no indeterminate events are allowed.

Nevertheless, A allows to formalise several interesting domains. This and its clear

semantics makes the language interesting for experiments as in [17], [11] and in this

paper.
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3 Translation to Open Logic Programs

In this section we present a general translation from an A domain description D to an

open logic program with FOL axioms. An open logic program is a pair of a set of nor-

mal clauses, Horn clauses augmented with negation as failure and a set of predicates,

called unde�ned or abducible, such that the unde�ned predicates occur only in the

body of the rules. Intuitively, an open logic program allows to represent incomplete in-

formation because it leaves open the interpretation of the unde�ned predicates. To see

this, consider the completion semantics of Console, Theseider Dupr�e and Torasso for

abductive logic programs [3], an extension of Clark's completion semantics. According

to this completion semantics, the declarative meaning of an open logic program P is

given by the theory, denoted comp

a

(P ), which consists of the axioms of Free Equality

(FEQ, also called Clark Equality Theory or Unique names axioms) and the completed

de�nitions of all de�ned predicates, i.e. all predicates of the language which are not

unde�ned. Otherwise said, comp

a

(P ) is obtained by taking P 's Clark completion and

dropping for each unde�ned predicate p=n its completed de�nition p(X)$ false.

Note that comp

a

(P ) contains only equivalences with de�ned predicates at the left.

Intuitively, such an equivalence de�nes when the predicate at the left is true in terms of

the situations described at the right. Since unde�ned predicates have no such de�ning

equivalence, the logic program leaves their interpretation open to a great extend

1

. In

general, an abductive logic program allows too much freedom to the interpretation

of unde�ned predicates. Most often, the program P must be augmented with a set

T of First-order Logic (FOL) axioms representing other information which restricts

the state of the unde�ned predicates. The declarative semantics of a couple (P; T ) is

given by the FOL theory comp

a

(P ) + T . This de�nes indirectly a model semantics

for (P; T ): in the sequel, when we talk about a model of (P; T ) we mean a classical

model of comp

a

(P ) + T .

That the resulting formalism is adequate for representing incomplete information

is now obvious: for P = fg with all predicates unde�ned, the theory comp

a

(P ) + T

collapses to FEQ+T , i.e. classical logic with unique names axioms. The expressivity

of this formalism for representing incomplete information is widely accepted.

Our transformation fromA to the above formalismproduces programs in situation

calculus style. Traditionally, two options are available to represent a uent f in a logic

formalism: by a predicate f(s) or by Holds(f; s) where s is a state argument. Then

:f is translated to :f(s) or :Holds(f; s). The two approaches are equivalent but the

meta-approach has the advantage that the frame axiom can be stated for all uents at

once, whereas in the �rst approach one frame axiom per uent predicate is needed. As

1

As so often with completion semantics, examples can be formulated which contradict this intu-

ition. For example, the 2-valued completion of the program:

p :-:p;:a

with unde�ned predicate a entails that a is true. The problem is caused by the loop over negation

of p. For programs which do not contain such loops, it can be shown that the unde�ned predicates

can have any interpretation. In other semantics such as the 3-valued completion semantics for

abductive programs [4], the justi�cation semantics for abductive programs [7] and the generalised

well-founded semantics for abductive logic programs [28], even for programswith loops over negation,

the interpretation of the unde�ned predicates can be any. Despite these problems with 2-valued

completion semantics, we use it here because of its declarative simplicity and its close relationship

with First-order Logic.
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in [17], we use Holds=2. The �rst order language L

D

contains the predicate symbols

Holds=2, Noninertial=3 and Initially=1. Each uent and action symbol occurs in

L

D

as a constant. In addition, there is a constant s

0

to denote the initial state and

a functor Result=2: Result(a; s) denotes the state obtained by applying action a on

state s. In the sequel, we will use Result[a

1

; : : : ; a

n

; s] as a shorthand notation for

Result(a

n

; Result(a

n�1

; : : :Result(a

1

; s) : : :)). For n = 0, this denotes s.

A allows uncertainty on the initial state. Correspondingly, the open program

comprises one unde�ned predicate, Initially=1. The translation maps a domain de-

scription D to a theory �D consisting of an open logic program P

D

and a set of FOL

axioms IC

D

. P

D

is de�ned as follows:

� Initialisation:

(3.1) Holds(F; s

0

) :- Initially(F )

� Law of Inertia:

(3.2) Holds(F;Result(A; S)) :- Holds(F; S);:Noninertial(F;A; S)

� For each e-proposition a causes f if p

1

; : : : ; p

m

;:p

0

1

; : : : ;:p

0

n

with f , p

i

and p

0

j

positive literals:

(3.3) Holds(f;Result(a; S)) :- Holds(p

1

; S); : : : ;Holds(p

m

; S);

:Holds(p

0

1

; S); : : : ;:Holds(p

0

n

; S)

As in [17], we introduce the convention that when f is a negative literal :f

0

,

Holds(f; t) is used as a textual denotation for :Holds(f

0

; t). This handsome

convention allows us to say that a causes f if p

1

; : : : ; p

n

is translated to the

clause:

Holds(f;Result(a; S)) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

without considering the sign of the literals p

i

. Be aware that a program should

never contain literals of the formHolds(:f; S), and that when these literals are

found in this and the following section, they always stand for :Holds(f; S).

� For each e-proposition a causes f if p

1

; : : : ; p

n

with f a positive or negative

uent literal:

(3.4) Noninertial(jf j; a; S) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

where j:j maps a uent expression to the comprised uent symbol, i.e. for a

uent symbol f , both jf j and j:f j denote f .

The set of FOL axioms IC

D

is de�ned as follows:

� For each v-proposition f after a

1

; : : : ; a

n

(n � 0):

(3.5) Holds(f;Result[a

1

; : : : ; a

n

; s

0

])
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with the same syntactic convention on Holds=2 as above.

Example The domain description D

Y TS

for the YTS problem is transformed to:

Holds(F; s

0

) :- Initially(F )

Holds(F;Result(A; S)) :-Holds(F; S);:Noninertial(F;A; S)

Holds(loaded;Result(load; S)) :-

Noninertial(loaded; load; S) :-

Noninertial(loaded; shoot; S) :-

Noninertial(alive; shoot; S) :-Holds(loaded; S)

Holds(alive; s

0

)

:Holds(loaded; s

0

)

The clause Noninertial(loaded; load; S) :- may be dropped from this programwithout

e�ect on the semantics of Holds/2. In general, all Noninertial=3 rules for initiating

e�ects of actions may be dropped, without e�ect on the semantics of Holds/2.

�D

Y TS

strongly resembles the YTS solution in [1] and in [14]. For example, [1]

proposes a Prolog program analogous to �D

Y TS

:

Holds(alive; s

0

) :-

Holds(F;Result(A; S)) :-Holds(F; S);:Noninertial(F;A; S)

Holds(loaded;Result(load; S)) :-

Noninertial(loaded; shoot; S) :-

Noninertial(alive; shoot; S) :-Holds(loaded; S)

Note that this program entails the two FOL axioms. [1] proves that the program is

acyclic. The same holds for �D

Y TS

, and in fact for all transformed domain descrip-

tions:

Proposition 3.1 The translation �D of any domain description D is acyclic.

Proof A slight modi�cation of the level mapping proposed in [1] for the YTS pro-

gram applies for all domain descriptions. For all ground terms t, let jtj

Result

denote the number of occurrences of the functor Result=2 in t. We de�ne j:j

for all ground terms t; a and s as follows:

jInitially(t)j = 0

jHolds(t; s)j = 2� jsj

Result

+ 1

jNoninertial(t; a; s)j = 2� jsj

Result

+ 2

One easily veri�es that j:j is a level mapping. 2

Several types of semantics have been de�ned for open logic programs: 2-valued

completion semantics [3], generalised stable semantics [20], the generalised well-founded

semantics [28], 3-valued completion semantics and 3-valued (direct) (partial) justi�-

cation semantics with FEQ [7]. Due to the fact that �D is acyclic and in each clause

of P

D

, the variables of the body occur in the head, all these semantics coincide in the

(weak) sense that the set of all ground atoms implied by �D under any of the seman-

tics is identical. This extension of results of [1] is proven formally in [4]. Because of
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these results, we can investigate the soundness and completeness of the transforma-

tion under the simplest semantics for open logic programs, the completion semantics

of [3].

The translation �D of a domain description contains two de�ned predicates,

Holds=2 and Noninertial=3. The completed de�nition of Holds=2 is of the form:

(3.6) 8F; T : Holds(F; T )$ E

1

_E

2

_ : : :_E

m

with: E

1

= T = s

0

^ Initially(F )

E

2

= 9A; S :T = Result(A; S)^

Holds(F; S) ^ :Noninertial(F;A; S)

E

i

(i > 2) = 9S :F = f ^ T = Result(a; S)^

Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

such that there is a correspondence between the disjuncts E

i

(i > 2) and the e-

propositions a causes f if p

1

; : : : ; p

n

with f a uent symbol.

If we map S on state �, the Result functor on � and Holds(F; S) to F 2 � then

the completed de�nition of Holds=2 is similar to proposition 2.1.

The completed de�nition of Noninertial=3 is of the form:

(3.7) 8A;F; S : Noninertial(F;A; S) $ E

1

_ : : :_E

m

with: E

i

= A = a ^F = jf j ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

such that precisely for each e-proposition a causes f if p

1

; : : : ; p

n

(f positive or neg-

ative), there exists one corresponding disjunct in the completed de�nition. This

formula is the counterpart of de�nition 2.2: the formulation is almost identical apart

from the fact that Holds(p

i

; S) should be replaced by "p

i

holds in S".

A transformation such as � can be considered correct if the set of entailed formulas

are equivalent. In [17] a translation � is de�ned to be sound i� for each domain D

and v-expression Q, if �D j= �Q then D entails Q. � is de�ned to be complete if the

reverse holds: if D entails Q then �D j= �Q.

Theorem 3.1 (soundness) Let D be a domain description. For any v-proposition

Q, if �D j= �Q then D entails Q.

For the proof of the theorem, we introduce the concept of a state function.

De�nition 3.1 Let M be any (possibly non-Herbrand) interpretation of L

D

, x an

element of the domain of M .

state

M

(x) = ff j f is a uent symbol and M j= Holds(f; x)g

The notation in which domain elements of a model appear in a term or formula,

as in Result(a; x) and Holds(f; x), is not conventional. Such a term or formula

can be interpreted as a pair of a term or a formula with free variables and a vari-

able assignment of these free variables. E.g. Holds(f; x) corresponds to the pair

(Holds(f;X); fX=xg). "M j= Holds(f; x)g" corresponds to the more conventional

"M; fX=xg j= Holds(f;X)".

Note that state

M

(x) denotes a state as in section 2, and a transition function � can

be applied on it. Note also that f 2 state

M

(x) is equivalent with M j= Holds(f; x).

9



Proof of Theorem 3.1.

Nothing is to be proved when D is inconsistent. So, assume D is consistent.

It su�ces to show that for each model M

a

= (�

0

;�) of D and for each v-

proposition Q, there exists a model M of �D such that Q holds in (�

0

;�) i�

M j= �Q. If then �Q holds in all models of �D, then also in these models

corresponding to models of D. Hence, Q holds in all models of D.

We construct a Herbrand model M . HU (L

D

) denotes the Herbrand uni-

verse. The basic idea is simple: we de�ne M such that for each state term

s = Result[a

1

; : : : ; a

n

; s

0

], state

M

(s) = M

a

1

;:::;a

n

and such that the atom

Noninertial(a; f; s) is true whenever f is non-inertial under a in the state

state

M

(s). Things are complicated due to the fact the �D is not a sorted

program and ill-sorted atoms may occur in the model. For that reason, we

extend D to D

0

by allowing each term t 2 HU (L

D

) as a uent symbol and

as an action symbol. Note that non-original uents t

f

(symbols of HU (L

D

)

which are not uent symbols in D) and non-original actions t

a

do not occur

in the e-propositions. This implies that a non-original uent t

f

of D

0

always

remains as in the initial state; a non-original action t

a

has no e�ect on a state

(like the action wait in the YTS D

Y TS

). (�

0

;�) can easily be extended to a

model (�

0

0

;�

0

) of D

0

. De�ne �

0

0

= �

0

. Let �

0

be any state of D

0

, consisting of

original uents � and new uents �

n

. Extend � to �

0

in the following way:

�

0

(t

a

; �

0

) = �

0

for t

a

a non-original action

�

0

(t

a

; �

0

) = �(t

a

; �) [ �

n

for t

a

an original action

One easily veri�es that (�

0

0

;�

0

) is a model ofD

0

. Moreover, for any v-proposition

Q based on the original language ofD, Q holds in (�

0

0

;�

0

) i� Q holds in (�

0

;�).

Next we associate to (�

0

0

;�

0

) a Herbrand model M of �D = �D

0

. With any

term t

s

2 HU (L

D

) we associate a speci�c state of D

0

. Below we call a term t

s

an empty-state term if t

s

6= s

0

and t

s

6= Result(t

1

; t

2

) for some t

1

; t

2

. For any

term t

s

2 HU (L

D

), state

M

(t

s

) is constructed as follows:

t

s

= s

0

) state

M

(t

s

) = �

0

t

s

is an empty-state term ) state

M

(t

s

) = �

t

s

= Result[t

1

; : : : ; t

n

; s

0

] ) state

M

(t

s

) = �

0

[t

1

; : : : ; t

n

; �

0

]

t

s

= Result[t

1

; : : : ; t

n

; t

0

], t

0

an empty-state term

) state

M

(t

s

) = �

0

[t

1

; : : : ; t

n

; �]

M is de�ned as follows:

fHolds(t

f

; t

s

) j t

f

2 state

M

(t

s

)g[

fNoninertial(t

f

; t

a

; t

s

) j t

f

is non-inertial under t

a

in state

M

(t

s

)g[

fInitially(t

f

) j t

f

2 �

0

g

Clearly for any v-proposition Q using original symbols of D, it holds that Q

holds in (�

0

;�) i� M j= �Q. A direct consequence is that M is a model of

IC

D

. It remains to be proven that M is a model of comp

a

(P

D

).

10



Before continuing with this proof, we want to stress that the complexity of the

construction above is in no way an indication that the proposed transformation

� is on itself unnecessarily complex or lacks elegance. The increased technicality

is only due to the fact that �D can be considered as an untyped meta-program.

It is well-known (see e.g. [19], [24]) that such programs give rise to technical

problems with respect to Herbrand semantics. Alternatives would have been

to de�ne �D as a typed logic program (as in [11]), or to make its clauses

range restricted, using additional range predicates. Both solutions would have

reduced the complexity of the proof, but increased the complexity of � itself.

This motivates our choice.

That the completed de�nition (3.7) ofNoninertial=3 is satis�ed follows straight-

forwardly: since the expression "p

i

holds in state

M

(t

s

)" is equivalent with

M j= Holds(p

i

; t

s

), the completed de�nition of Noninertial=3 is a direct rep-

resentation of de�nition 2.2.

Finally, we check the completed de�nition (3.6) of Holds=2. Essentially what

must be done is to check all its ground instances Holds(t

f

; t

s

) $ : : :. This

requires a simple case-analysis depending on the type of t

s

. We consider three

cases. Take t

s

= s

0

. The completed de�nition collapses to:

Holds(t

f

; s

0

)$ Initially(t

f

)

which is clearly satis�ed in M .

Take t

s

an empty-state term. The completed de�nition collapses to:

Holds(t

f

; t

s

)$ false

which is also satis�ed in M .

Finally, take t

s

= Result(t

a

; t). The completed de�nition collapses to the

equivalence Eq1:

Holds(t

f

; Result(t

a

; t))$ E

1

_ : : :E

n

with: E

1

= Holds(t

f

; t) ^:Noninertial(t

f

; t

a

; t)

E

i

(i > 1) = Holds(p

1

; t) ^ : : :^Holds(p

n

; t)

such that there is a correspondence between the disjuncts E

i

(i > 1) and the

e-propositions t

a

causes t

f

if p

1

; : : : ; p

n

in D.

Now, recall that (�

0

;�

0

) is a model of D

0

. By proposition 2.1, the equivalence

Eq2 holds:

t

f

2 �

0

(t

a

; state

M

(t)) i�

� t

f

holds in state

M

(t) and t

f

is inertial under t

a

in state

M

(t), or

� there exists an e-proposition t

a

causes t

f

if p

1

; : : : ; p

n

such that

p

1

; : : : ; p

n

hold in state

M

(t).

Now compare the equivalences Eq1 and Eq2. Because of the following equiva-

lences:

11



M j= Holds(p

i

; t) i� p

i

holds in state

M

(t)

M j= :Noninertial(t

f

; t

a

; t) i� t

f

is inertial under t

a

in state

M

(t)

one easily veri�es that the right-hand of Eq2 is satis�ed i� the right-hand of

Eq1 is satis�ed in M .

The left-hand of Eq1 holds in M i�:

M j= Holds(t

f

; Result(t

a

; t)) i� t

f

2 state

M

(Result(t

a

; t))

Now observe that by the de�nition of M , we have

t

f

2 state

M

(Result(t

a

; t)) i� t

f

2 �

0

(t

a

; state

M

(t))

Hence, the left-hand of Eq1 is satis�ed in M i� the left-hand of Eq2 is true.

Because Eq2 is true, Eq1 is satis�ed in M .

2

Theorem 3.2 (completeness) Let D be e-consistent. For each v-proposition Q, if

D entails Q then �D j= �Q.

Proof Since D is e-consistent, there exists a unique transition function � which

satis�es the e-propositions of D. As for the soundness, it su�ces to prove that

for each modelM of �D, there exists a modelM

a

= (�

0

;�) of D such that for

each v-proposition Q,M j= �Q i� Q holds inM

a

. Notice that this immediately

implies that all v-propositions of D hold in M

a

since M is a model of �Q for

each v-proposition Q of D.

M maps each term Result[a

1

; : : : ; a

n

; s

0

]) to a domain element which we denote

as:

~

M (Result[a

1

; : : : ; a

n

; s

0

])

M

a

is de�ned in the following way: � is given; �

0

is de�ned as state

M

(

~

M (s

0

)).

We should prove that for each sequence of actions a

1

; : : : ; a

n

:

M

a

1

;:::;a

n

a

= state

M

(

~

M (Result[a

1

; : : : ; a

n

; s

0

]))

The proof is by induction on n. For n = 0, this is trivial. So assume that the

theorem holds for n� 1, n > 0. We have the following identity:

M

a

1

;:::;a

n

a

= �(a

n

;M

a

1

;:::;a

n�1

a

)

= �(a

n

; state

M

(

~

M (Result[a

1

; : : : ; a

n�1

; s

0

])))

The second identity follows from the induction hypothesis. Let x be the domain

element

~

M (Result[a

1

; : : : ; a

n�1

; s

0

]). It su�ces to show that:

�(a

n

; state

M

(

~

M (Result[a

1

; : : : ; a

n�1

; s

0

]))) =

state

M

((

~

M (Result[a

1

; : : : ; a

n

; s

0

]))

or equivalently:

12



�(a

n

; state

M

(x)) = state

M

(

~

M (Result(a

n

; x)))

By proposition 2.1, we �nd that f 2 �(a

n

; state

M

(x)) i�

� f holds in state

M

(x) and f is inertial under a

n

in state

M

(x), or

� there exists an e-proposition a

n

causes f if p

1

; : : : ; p

m

such that the u-

ents p

1

, : : : , p

m

hold in state

M

(x).

Because M is a model of Noninertial=3, the �rst disjunct corresponds to

M j= Holds(f; x) ^ :Noninertial(f; a

n

; x)

The second disjunct corresponds to the fact that

M j= Holds(p

1

; x)^ : : :^Holds(p

m

; x)

for some e-proposition a

n

causes f if p

1

; : : : ; p

m

. Because M is a model of the

completed de�nition of Holds=2, we obtain that

f 2 �(a

n

; state

M

(x)) i� M j= Holds(f;Result(a

n

; x))

or equivalently

f 2 state

M

(

~

M (Result(a

n

; x)))

This gives the desired identity. 2

The following example shows that the condition of e-consistency is necessary: �

is not complete in general.

Example Consider the following domain description D

2

, which uses the uent alive

and the action shoot.

shoot causes alive

shoot causes :alive

Obviously, D

2

is inconsistent: no transition function � can exist which satis�es

the two e-propositions. Therefore, each v-proposition is entailed by D

2

. �D

2

is

given by:

Holds(F; s

0

) :- Initially(F )

Holds(F;Result(A; S)) :-Holds(F; S);:Noninertial(F;A; S)

Holds(alive;Result(shoot; S)) :-

Noninertial(alive; shoot; S) :-

This program is consistent. Below, Result[shoot; : : : ; shoot; s

0

] is denoted by

shoot

n

. A Herbrand model of �D

2

is given by the set:

fHolds(alive; shoot

n

); Noninertial(alive; shoot; shoot

n

) j n > 0g

In this model, the e-proposition shoot causes alive overrules the contradicting

rule shoot causes :alive. � is not complete since D

2

entails all v-propositions,

while �D

2

does not.

13



When D is inconsistent but e-consistent, then �D is inconsistent too. When D

is not e-consistent, then � is incomplete i� �D is consistent. Even in such a case,

it is often possible to restore the equivalence between D and �D by extending � as

follows. For each e-proposition a causes f if p

1

; : : : ; p

n

with f a positive literal, we

add the rule:

Initiates(a; f; S) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

For each e-proposition a causes :f if p

1

; : : : ; p

n

with f a positive literal, we add the

rule:

Terminates(a; f; S) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

In addition, we add the FOL axiom:

8A;F; S : :Initiates(A;F; S) _ :Terminates(A;F; S)

Example In �D

2

we have two additional rules:

Initiates(shoot; alive; S) :-

Terminates(shoot; alive; S) :-

It is trivial that the resulting program is inconsistent with the FOL axiom.

In some interesting situations, this solution does not work. Consider the following

example:

Example The domain D

3

is about ipping a (light) switch. There is one action:

switch and two uents, on and off .

switch causes on if off

switch causes off if on

switch causes :on if on

switch causes :off if off

Initially on

Initially :off

D

3

is not consistent, because �(switch; fon; offg) is not de�ned consistently.

However, starting from the initial situation in which on is true and off is false

and applying switch consecutively ips the state of on and off in such a way

that on and off are never true in the same state. Hence, from the initial state,

the problematic state fon; offg can never be reached. For this reason, �D

3

is consistent, even with Terminating=3 and Initiating=3. Below a Herbrand

model is given:

f Initially(on)

Holds(on; switch

n

) for each even n

Holds(off; switch

n

) for each odd n

Noninertial(on; switch; switch

n

) for each n

Noninertial(off; switch; switch

n

) for each n

14



Initiates(switch; on; switch

n

) for each odd n

Terminates(switch; on; switch

n

) for each even n

Initiates(switch; off; switch

n

) for each even n

Terminates(switch; off; switch

n

) for each odd n g

For this example, the semantics of D

3

and �D

3

di�er. Which semantics is to be

preferred? This is a matter of taste, but intuitively we �nd the domain description

D

3

a sensible theory, and the model a sensible model of the theory. By considering

D

3

inconsistent, the semantics of A is to our taste too severe

2

.

A �nal example illustrates why v-propositions are added as FOL axioms and not

as program clauses.

Example Take the domain D

4

:

a causes :f

f after a

Obviously this domain is inconsistent. �D

4

is also inconsistent: indeed the

completed de�nition of Holds=2 subsumes:

Holds(f;Result(a; s

0

))$ false

That contradicts with the FOL axiom Holds(f;Result(a; s

0

)).

On the other hand, adding Holds(f;Result(a; s

0

)) as a program clause has

the e�ect of adding the disjunct F = f ^ T = Result(a; s

0

) to the completed

de�nition of Holds. The resulting theory is consistent and has the model:

fHolds(f;Result(a; s

0

)); Noninertial(f; a; t

s

)jt

s

2 HU (L

D

4

)g

4 Reasoning on open logic programs

Traditionally, open programs have been associated with abduction as procedural

paradigm. We show how other important procedural paradigms such as deduction

and proving satis�ability are feasible and can be emulated by a suitable abduction

procedure.

In [6] we proposed SLDNFA, an abductive procedure for normal abductive pro-

grams. The soundness of SLDNFA has been proven. Two completeness results were

proven: if an SLDNFA execution terminates with failure on a query  Q, then

comp

a

(P

D

) j= 8(:Q); hence no abductive solutions exist. If an SLDNFA execution

terminates and generates abductive solutions �

1

; : : : ;�

m

, then for each other abduc-

tive solution �, there exists a �

i

which is more general than � in the sense that a

skolem substitution � exists such that �(�

i

) � �. If �

i

contains no skolem constants,

this simply means that �

i

� �

3

.

2

Notice that the inconsistency of D

3

can easily be repaired by dropping the uent off and

replacing it everywhere by :on. It is unclear to us whether such a solution exists in general when

the semantics of D and �D di�er.

3

Any other abductive procedurewhich satis�es the same completeness results can be used. At the

time of writing, SLDNFA seems to have advantages over other published procedures in two senses:

it su�ers less from oundering since it does not ounder on abducible atoms and more powerful

completeness results have been proved for it.
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SLDNFA is not developed for dealing with FOL axioms, but there is a general

technique to transform an open logic program P and a theory of FOL axioms T

into an equivalent open logic program P

0

. This transformation technique is a trivial

extension of the transformation proposed in [23]. In a �rst step, P is extended with:

false :- :F

for each FOL axiom F 2 T . The result is an open logic program with general clauses.

In the second step, it is transformed to a normal open logic program P

0

using the

technique in [23]. The transformation is correct in the sense that P + T is equivalent

with P

0

+ f:falseg according to completion semantics. The remaining FOL axiom

:false can be added as an extra literal to the query to be solved by the abductive

solver. This result shows that FOL (with FEQ) and open logic programming have

the same expressivity in the strongest possible sense, namely on the level of logical

equivalence. The proof of this result is an extension of the proof in [23] and can be

found in [4].

For a domain description D, the transformation of the FOL axioms of �D to

an open logic program is trivial. A ground atom Holds(f;Result[a

1

; : : : ; a

n

; s

0

]) is

transformed to:

false :- :Holds(f;Result[a

1

; : : : ; a

n

; s

0

])

A ground negative literal :Holds(f;Result[a

1

; : : : ; a

n

; s

0

]) is transformed to:

false :- Holds(f; [a

1

; ; : : : ; a

n

; s

0

])

Applying this technique on the FOL axioms of the Murder Mystery domainD

MM

,

we obtain an open program P

0

, in which the following rules:

false :- :Holds(alive; s

0

)

false :- Holds(alive; [shoot;wait; s

0

])

are substituted for the FOL axioms of �D

MM

.

An abductive procedure generates explanations for a given observation on the

problem domain. Here we can take :false as an observation. SLDNFA solves the

query  :false and returns the solution:

�

1

= fInitially(loaded); Initially(alive)g

This not only gives an explanation for :false, but also proves that �D

MM

is consis-

tent. The precise reasoning goes as follows: the resulting program P

0

+� is an acyclic

program and therefore is consistent wrt completion semantics [1]. P

0

+� comprises

P

D

MM

and entails both :false and :false $ IC

D

MM

. Hence a model of P

0

+� is

a model of �D.

An abductive procedure can also be used for deduction. For example, we want

to prove that �D

MM

j= Initially(loaded) or equivalently that the theory �D

MM

+

:Initially(loaded) is inconsistent. To prove that, we add the extra rule :

false :- Initially(loaded)
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Now SLDNFA fails �nitely on the query :false. From the �rst completeness result

of SLDNFA, it follows that �D

MM

+ :Initially(loaded) is inconsistent. Notice that

a completeness result for abduction is used here as a soundness result for deduction.

An abductive procedure allows reasoning under uncertainty. By dropping the v-

proposition Initially alive from the Murder Mystery domain D

MM

, an incomplete

domain description D

0

MM

is obtained. Using �D

0

MM

, SLDNFA answers the goal

 :false by returning the answer �

2

= fg. The original solution �

1

is still a

solution but is not generated. This does not conict with the completeness result of

SLDNFA because �

2

� �

1

.

That we have uncertainty in this domain description becomes obvious when we

want to know whether Initially alive is possible according to D

0

MM

. This is done by

posing the query  :false; Initially(alive). SLDNFA proves that Initially alive is

possible by returning �

1

.

Deduction under uncertainty is possible. Observe that D

0

MM

entails:

Initially :alive _ Initially loaded

SLDNFA can prove this. This is done by transforming the negation of the disjunction

to:

false :- Initially(loaded)

false :- :Initially((alive)

After adding these rules to �D

0

MM

, SLDNFA fails �nitely on  :false. This proves

the disjunction.

The above experiments show in the �rst place that though open/ abductive logic

programs are traditionally associated with abduction as procedural paradigm, other

procedural paradigms such as deduction and consistency proving are of interest. This

illustrates our argument that an abductive program is better called an open program.

In the second place, the experiments show that a suitable abductive procedure can

be used to emulate these paradigms.

5 The Gelfond & Lifschitz approach

We recall the transformation proposed in [17], fromA domain descriptions to extended

logic programs. For any domain description D, �

GL

D is de�ned as the extended logic

program containing the following extended clauses:

� Four inertia rules:

(5.1) Holds(F;Result(A; S)) :- Holds(F; S); not Noninertial(F;A; S)

(5.2) :Holds(F;Result(A; S)) :- :Holds(F; S); not Noninertial(F;A; S)

(5.3) Holds(F; S) :- Holds(F;Result(A; S)); not Noninertial(F;A; S)

(5.4) :Holds(F; S) :- :Holds(F;Result(A; S)); not Noninertial(F;A; S)
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� Each v-proposition f after a

1

; : : : ; a

n

, is transformed into:

(5.5) Holds(f;Result[a

1

; : : : ; a

n

; s

0

]) :-

Recall that Holds(:f; : : :) denotes :Holds(f; : : :).

� Each e-proposition a causes f if p

1

; : : : ; p

n

is translated into 2n+2 rules. Be-

low, Holds(f; S) denotes the complement of Holds(f; S) with respect to :.

(5.6) Holds(f;Result(a; S)) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

(5.7) Noninertial(jf j; a; S) :- not Holds(p

1

; S); : : : ; not Holds(p

n

; S)

For each i, 1 � i � n:

(5.8) Holds(p

i

; S) :- Holds(f; S);Holds(f;Result(a; S))

(5.9) Holds(p

i

; S) :- Holds(f;Result(a; S));

Holds(p

1

; S); : : : ;Holds(p

i�1

; S);

Holds(p

i+1

; S); : : : ;Holds(p

n

; S)

[17] gives the intuition behind the translation and gives a soundness theorem for

all domain descriptions D provided D does not contain similar e-propositions, i.e. e-

propositions which only di�er by the preconditions. A comparison of �

GL

D with �D

is of interest. Observe that if the two negations not and : in extended logic programs

are mapped both on ":" in open programs, we �nd the following correspondences

between �

GG

D and �D: (5:1)$ (3:2), (5:5)$ (3:5), (5:6)$ (3:3) (if f is a positive

literal), (5:7)$ (3:4), while (5:2), (5:3), (5:4), (5:8) and (5:9) lack in �D.

A striking fact is that �

GL

D contains four inertia rules instead of one in �D. (5:1)

and (5:2) are forward persistence rules for respectively positive and negative uents.

(5:3) and (5:4) are backward persistence rules for again positive and negative uents.

Clearly (5:2), (5:3) and (5:4) are natural rules, which are expected to hold in any

correct formalisation. Therefore, they must be subsumed by �D, otherwise � could

never be sound and complete. As a matter of fact, it is straightforward to prove

that for each of the extended rules in �

GL

D, the corresponding clause is subsumed

by comp

a

(P

D

), where P

D

is the logic program part of �D. For example, notice that

from the classical logic point of view the rules (5:1) and (5:4) are equivalent and

so are the rules (5:2) and (5:3). This immediately gives that comp

a

(P

D

) subsumes

(5:4). Clauses corresponding to (5:2) and (5:3) can be derived from the completed

de�nition (6.6) of Holds=2 in P

D

. Substitute Result(A; S) for T . After simpli�cation

one obtains:

8F;A; S : Holds(F;Result(A; S)) $ E

1

_ : : :_E

n

where E

1

is of the form:

Holds(F; S) ^:Noninertial(F;A; S)
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and for each e-proposition a causes f if p

1

; : : : ; p

n

with f is a positive literal, there

is an E

i

of the form:

F = f ^A = a ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

Now, it is easy to see that comp

a

(P

D

) satis�es:

8F;A; S : F = f ^A = a ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

! Noninertial(F;A; S)

By dropping :Noninertial(F;A; S) from the �rst disjunct and substituting

Noninertial(F;A; S) for the other disjuncts, we �nd:

8F;A; S : Holds(F;Result(A; S)) ! Holds(F; S) _Noninertial(F;A; S)

Simple rewriting gives formulas corresponding to (5:2) and (5:3).

A shortcoming of �

GL

is its incompleteness. [17] gives the following example D

5

:

a causes f if f

f after a

Clearly D

5

entails Initially f . However, Initially(f) is not entailed by �

GL

D

5

. On

the other hand, notice that D

5

is e-consistent. Therefore, �D

5

implies Initially(f)

and SLDNFA can prove that.

Another problem of �

GL

shows up when A is extended to allow predicates. Con-

sider the following rule:

Pick(X;Obj) causes thief(X) if owner(Y;Obj); X 6= Y

which says that X becomes a thief if he picks an object Obj which he does not own.

The translation to open logic programs does not require any modi�cation. � produces:

Holds(thief(X); Result(Pick(X;Obj); S)) :- Holds(owner(Y;Obj); S);

X 6= Y

Noninertial(thief(X); P ick(X;Obj); S) :- Holds(owner(Y;Obj); S); X 6= Y

For �

GL

, there are problems with the rules of type (5:8):

Holds(owner(Y;Obj); S) :- :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))

X 6= Y :- :Holds(thief(X); S);Holds(thief (X); Result(Pick(X;Obj); S))

These rules say that when X becomes thief by picking something in situation S, then

each Y is owner at situation S and no Y is equal to X. This is a contradiction.

The problem is that Y should not be universally but existentially quanti�ed. The

following formulas are subsumed by �D but are not extended clauses:

8Obj; S;X : 9Y : Holds(owner(Y;Obj); S)  :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))

8Obj; S;X : 9Y : X 6= Y  :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))
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The translation � to open logic programs is superior to the translation �

GL

to

extended logic programs. �

GL

creates a higher number of rules, is incomplete, suf-

fers from problems with similar e-propositions and is not directly extendible to the

predicate case. The open program approach seems more understandable because only

one negation occurs, is sound even with similar e-propositions, is complete for all rea-

sonable domain descriptions and applies without modi�cation for the predicate case.

Proofs are easy compared with the proofs in [17].

6 Dung's approach

Independent from the work presented here, another approach, quite similar to ours

in a number of aspects, has been developed for translating A domain descriptions

to a logic program formalism. This work, described in [11], maps A to the logic

program formalismand de�nes a special purpose semantics, similar to the completion

semantics.

On the syntactical level, the most important di�erence with our approach is

the symmetrical treatment of uent symbols f and their negation :f . The trans-

lation �

Du

D contains our frame axiom (6.2), and contains for each e-proposition

a causes f if p

1

; : : : ; p

n

(f positive or negative) the following rules:

Holds(f;Result(a; S)) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

Noninertial(f; a; S) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

Noninertial(f

�

; a; S) :- Holds(p

1

; S); : : : ;Holds(p

n

; S)

Here f

�

denotes the complement of f . Contrary to our approach, here uent literals

like :f appear within Holds=2. Each v-proposition f after a

1

; : : : ; a

n

is transformed

to the denial:

 Holds(f

�

; Result(a

1

; : : : ; a

n

; s

0

))

In addition, for each uent symbol f the following constraints are added:

 Holds(f; S);Holds(:f; S)

Holds(:f; s

0

)$ :Holds(f; s

0

)

These additional constraints are necessary due to the symmetrical treatment of a

uent f and its negation :f . In contrast, our transformation maps A domains to

a more classical situation calculus, which treats the positive and negative literals

asymmetrically. Considering only Dung's solution, one might wonder whether the

symmetrical treatment is crucial for solving the frame problem in logic programming

or whether it has advantages. Our transformation shows that a symmetrical treatment

is not necessary and leads to substantially more rules.

The semantics of �

Du

D is de�ned via a domain dependent variant of the comple-

tion semantics. It contains FEQ and the normal completed de�nition ofNoninertial=3,

but a specialised version of the completed de�nition of Holds=2. �

Du

D does not con-

tain rules with Holds(F; s

0

) in the head. As a consequence the standard completion

would imply that
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8F : :Holds(F; s

0

)

[11] avoids this by the following alternative:

8F;A; T : Holds(F;Result(A; S)) $ E

1

_ : : :_E

n

with: E

1

= Holds(F; S) ^ :Noninertial(F;A; S)

E

i

(i > 1) = F = f ^A = a ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

such that there is a correspondence between the E

i

(i > 1) and the e-propositions

a causes f if p

1

; : : : ; p

n

(f positive or negative). This formula says nothing about

Holds(F; s

0

), and therefore, we get a similar semantics as in our approach, but without

Initially=1.

Dung extends A to the predicate case and gives an application for integrity check-

ing of a database update. For this purposes, a predicate domain description D is

developed to represent the e�ects of primitive and compound update operations. An

unfolding partial evaluation procedure with constructive negation can then be ap-

plied on �

Du

(D) to check the consistency of one or more integrity constraints in the

database after the update. The use of a similar unfolding procedure has been pro-

posed earlier in the context of abductive logic programming by [3]. As Dung here,

Console et al. use a general unfolding procedure to reduce a given query by unfold-

ing all de�ned literals until a �rst order logic formula is obtained, containing only

abductive literals. The resulting formula is equivalent with the original query and

the equivalence with in the left the query and in the right the computed formula is

called the explanation formula. Though such a procedure can be used to solve abduc-

tive problems, it is much weaker than an abductive procedure like SLDNFA because

naive unfolding cannot guarantee the consistency of the right-hand of the explanation

formula. In [5, 9], we show that SLDNFA can be interpreted also as a kind of an

unfolding procedure, but SLDNFA is equipped with a mechanism for checking the

consistency of each of the disjuncts at the right hands of the generated explanation

formula. In our opinion, this is absolutely necessary because even for simple problems,

an explanation formula can be so complex that it is impossible for humans to grasp

its meaning and to check its consistency.

An interesting statement in [11] is related to the following example D

6

(a syntac-

tical simpli�cation of the example in theorem (8) in [11]):

Initially f

a causes :f if g

Dung observes that the Gelfond and Lifschitz transformation �

GL

D

6

has two answer

sets:

Z

1

= fHolds(f; s

0

)g [ fNoninertial(f; a; a

n

) j n 2 INg

Z

2

= fHolds(f; a

n

);:Holds(g; a

n

) j n 2 INg

In Z

1

, Holds(f; a

n

) (n > 0) and Holds(g; a

n

) (n � 0) are unknown since neither

the atom nor its negation appears in Z

1

. Z

2

corresponds to a two-valued model,

obtained by having f initially true and g false, a situation which is preserved when

applying a. Then Dung argues that "it is obvious that only the �rst solution captures

the intended semantics of D

6

, for if we don't know anything about g, it is impossible
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to say anything about the outcome of a". Remarkable now is that Z

2

corresponds to

a model of Dung's �

Du

D

6

.

Here we touch a fundamental issue in knowledge representation: how should in-

complete knowledge be formalised in a logic? What Dung suggests in this statement

is that a model of a theory should reect what one knows about the world: a model

should be the set of atoms which are known to be true. To formalise this view,

one needs 3-valued interpretations, in which atoms are either true, unknown or false.

Though technically spoken an answer set is 2-valued, it encodes a 3-valued interpre-

tation due to the presence of both a predicate and its explicit negation: given an

answer set M , p 2 M means that p is true; :p 2 M means that p is false; p 2=M

and :p 2=M means that p is unknown. The fourth case that both p and :p occur in

M is excluded by de�nition of answer set. Under the view of an interpretation as a

3-valued representation of beliefs, Z

1

is indeed the intended 3-valued model and Z

2

is incorrect, since we cannot know for sure that g is not true initially and hence f is

possibly terminated by applying a.

The above view on interpretations is not the classical logic view on incomplete

knowledge. In the classical logic view, a model is a mathematical abstraction of

a possible state of the world, not the set of ground atoms which are known by or

provable from the theory. To have incomplete knowledge on g in the initial state, is

reected by the fact that there are models in which g is initially true and others in

which g is initially false.

Of the two views, the classical view is de�nitely the richest one. Indeed, consider

the following formula:

:Holds(g; s

0

)! Holds(f;Result(a; s

0

))

which expresses that if g does not hold initially, then f holds after applying a on the

initial state. Surely one will agree that this conclusion is correct. It can be proven

from �D

6

and �

Du

D

6

using a simple case analysis: due to the 2-valued nature of

classical models, in any model either g is true at s

0

, or g is false at s

0

. In the �rst

case, the condition of the implication is not satis�ed. In the second case, the inertia

rule in �D

6

and �

Du

D

6

can be applied to obtain that f holds at Result(a; s

0

).

On the other hand, the formula is not true in the answer set Z

1

, and hence is not

implied by �

GL

D

6

. Due to the 3-valued nature of Z

1

, the case analysis which holds for

� and �

Du

, does not apply in Z

1

, since there the third case holds: neither Holds(g; s

0

)

nor :Holds(g; s

0

) is true. Due to this, Noninertial(f; a; s

0

) can be derived, and

hence, the inertia rule is disabled. Hence, Holds(f;Result(a; s

0

)) cannot be derived.

The 3-valued nature of answer set semantics is the cause of the incompleteness

of �

GL

. For example, take the example �

GL

(D

5

) which fails to entail the desired

conclusion Holds(f; s

0

). It is straightforward to see that in any answer set in which

Holds(f;Result(a; s

0

)) is true, then :Holds(f; s

0

) is inconsistent with rule (5.8). In a

2-valued semantics, this would immediately entail that Holds(f; s

0

) is true. However,

�

GL

(D

5

) has a unique answer set in which Holds(f; s

0

) is unknown, i.e. neither

Holds(f; s

0

) nor :Holds(f; s

0

) holds.

Actually, it has been argued before by Moore [27] that the form of reasoning by

2 cases (i.e. something is either true or false) is crucial for reasoning on uncertainty.

This reasoning principle is invalidated in 3-valued semantics. It is often believed that

logic programs under a 3-valued semantics (like well-founded semantics) can be used
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to represent uncertainty. Generalising the above observations, we believe that only

very restricted forms of uncertainty can be represented in any 3-valued logic.

Though Dung does not investigate this, his technique for representing uncertainty

can be generalised to other applications in a rather straightforward way. The resulting

formalism would be a generalisation of the abductive logic program formalism, in

which it is possible to give de�nitions at the level of atoms instead of predicates.

Such a generalised abductive program might be seen as a tuple of a set of de�ned

atoms D = fp

1

(t

1

); : : : ; p

n

(t

n

)g and a set of normal clauses such that if two atoms

p(t); p(s) occur in D, then they do not unify and if p(s) :-L

1

; : : : ; L

n

belongs to the

program, then p(s) should be an instance of an atom p(t) 2 D. Such a clause can be

viewed as a de�ning clause for p(t).

The semantics of such a generalised open program could then be given by FEQ

and for each de�ned atom p

i

(t

i

) a completed de�nition p

i

(t

i

)$ : : : constructed using

its de�ning clauses.

However, this generalisation does not produce extra expressivity, as the formalism

can be easily and elegantly translated to the open logic program formalism. Given

such a generalised logic programP , we can translate P to an open logic programP

0

ob-

tained by adding for each predicate p=n one new unde�ned predicate undefined p=n

and taking the clauses of P and adding for each predicate p=n with de�ned atoms

p(t

1

); : : : ; p(t

n

) one new clause:

p(X) :- :(9Y

1

:X = t

1

); : : : ;:(9Y

n

:X = t

n

); undefined p(X)

Here Y

i

is the set of variables var(t

i

) and X = t

i

denotes the conjunction of equality

atoms X

j

= t

i

j

. The completion of P

0

can easily be proven to be a conservative

extension of P .

Though our approach was developed independently of Dung's approach, it clearly

shows similarities it. Both generate a form of situation calculus using the logic pro-

gram syntax, and the semantics of the resulting programs is given by �rst order logic

theories, constructed using di�erent forms of completion of sets of clauses.

Despite the similarities, we believe that our work contributes in several important

aspects. Recall our two main goals of this experiment with A: �rst, to show the role

of open/abductive logic programs as a general purpose logic for representing uncer-

tainty and second, to show the role of a suitable abductive procedure (as SLDNFA)

for solving di�erent computational problems, including deduction under uncertainty,

abduction or the generation of explaining hypotheses and consistency proving. To

both goals, Dung's paper does not really contribute.

With respect to the �rst goal, Dung proposes a novel formalism. He does not relate

this formalismto open/abductive logic programming. As argued in section 3, we could

prove the correctness of the transformation � not only wrt completion semantics but

wrt 3-valued completion semantics, generalised stable model semantics, generalised

well-founded semantics, justi�cation semantics, etc. This aspect is necessarily lacking

in Dung's paper, since he doesn't consider abductive logic programming in the �rst

place.

With respect to the second goal, we have shown how SLDNFA can be used to

solve three important types of computational problems:

� deduction (under uncertainty)
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� abduction

� consistency proving

Dung does not consider these classical forms of reasoning but focusses on the use of an

unfolding partial evaluation procedure for integrity checking of database updates. The

question whether such an unfolding procedure is of practical use for general problem

solving in temporal domains is not dealt with in Dung's paper.

7 Discussion

In [12], a First Order Logic solution to the frame-problem was proposed. [30] uses the

same type of theory to formalise database evolution. This type of theory is a form of

situation calculus which shows a strong similarity with the completion of a program

�D. Result=2 is replaced by do=2. Instead of using the meta predicate Holds=2, [30]

adds one additional argument to each uent predicate; i.e. an atom Holds(p(x); t) is

contracted to the atom p(x; t). As a consequence the law of inertia has to be stated

for each uent. An example taken from [30] is given below:

8St; C;A; S : Poss(A; S)! (enrolled(St; C; do(A; S))$

A = register(St; C)_

enrolled(St; C; S) ^A 6= drop(A;C))

The rule says that when action A may be executed in situation S (Poss(A; S)), then

student St is enrolled in course C at time do(A; S) i� A is an action of registering St

in C or, St was enrolled at S and A is not an action of dropping St from the course

C.

As said above, this type of theory shows a strong similarity with the completion

of the open programs produced by � and with the completions of the logic programs

found in [14] and [1]. If we forget about Poss(A; S), and introduce Result and Holds,

we �nd:

8St; C;A; S : Holds(enrolled(St; C); Result(A; S)) $

A = register(St; C)_

Holds(enrolled(St; C); S) ^A 6= drop(St; C)

Similar formulas are subsumed by �D. The �rst disjunct corresponds to a rule

initiating enrolled(St; C) by enregister(St; C). The second disjunct corresponds to

the law of inertia, with :Noninertial(enrolled(St; C); A; S) replaced by its de�nition:

drop(St; C) is the only action which terminates enrolled(St; C)

4

.

It is remarkable and frustrating that the above monotonic solution in classical logic

has not been discovered much earlier. Some people have been experimenting with

situation calculus in logic programming ever since the �rst experiments in Kowalski's

Logic for problem solving [21] (�rst edition in 76). That Prolog with negation as

�nite failure can be interpreted as a sound theorem prover wrt to the completion of a

Prolog program is known since Clark's work [2] in 78. When [18] introduced the YTS

problem to show the failure of several nonmonotonic solutions to the frame problem,

4

Here the version of Noninertial=3 is needed which contains only rules for terminating e�ects of

actions.
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it was soon realised by some in the logic programming community that the Prolog

solution behaved perfectly correct. However, if Prolog can prove that waiting does not

unload the gun and that the turkey is dead after loading, waiting and shooting, then

from Clark's soundness theorem it follows immediately that the completion of the

Prolog program entails these conclusions also, and hence that the completion of the

Prolog program provides a (monotonic) solution to the frame problem. Generalising

this example, it is a relatively simple step to �nd that the principle of completion of

implications gives an elegant and general solution to the frame problem. Yet, it seems

that for many years, nobody, neither in the logic programming community nor in the

A.I. community has come to this obvious conclusion or was interested in it.

In the past, another approach has been explored for temporal reasoning, based

on event calculus [22]. [13] and [31] have simpli�ed event calculus and have extended

it with abduction for the purpose of planning. [31] extended event calculus to deal

with necessary preconditions of actions. [25] implemented a planning system based

on this formalism. Other work has been done to extend event calculus with continu-

ous actions [32] and time granularity [15], [26]. Recently [10] applied abductive event

calculus to solve a number of benchmark problems in temporal reasoning, such as the

Murder Mystery, the Stolen Car problem, the Walking Turkey Shooting problem and

the Russian Turkey Shooting problem. The latter problem contains an indeterminate

action. Situation and event calculus seem two non-equivalent ways of representing

time and action. A domain descriptions cannot (easily) be translated to event cal-

culus, because A assumes a branching time philosophy, as in the situation calculus,

whereas event calculus assumes a linear time philosophy. A deep analysis of situation

versus event calculus is beyond the scope of the paper.

The A language is designed to represent one form of incomplete temporal knowl-

edge: on the initial situation. A totally di�erent form of incomplete knowledge ap-

pears with indeterminate actions. Our transformation from A to open programs

can easily be adapted in order to deal with such actions, which shows again the

expressivity of the open program formalism for representing uncertainty. It turns

out that the technique used in [10] to represent indeterminate actions in the con-

text of event calculus can easily be translated to situation calculus. The Russian

Turkey Shooting problem is a variant of the Yale Turkey Shooting problem in which

one additional action spinning of spinning the gun's chamber occurs. The e�ect

is that the gun is possibly unloaded. Below we allow e-propositions of the form

a possibly causes f if p

1

; : : : ; p

n

. The problem is formalised as follows:

Initially alive

Initially loaded

load causes loaded

shoot causes :alive if loaded

shoot causes :loaded

spinning possibly causes :loaded

The semantics of A should be adapted. While in A, a successor state is completely

determined by the action and the previous state, this is not the case with indeter-

minate actions. Therefore, in the extended version the transition function should

be replaced by a transition relation. While it is beyond the scope of this paper to

work out this semantics in detail, it is easy to show how the transformation could
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be adapted to model this kind of indeterminate actions. The indeterminism can be

captured by introducing an unde�ned Good luck=2 predicate:

Noninertial(loaded; spinning; S) :- Good luck(spinning; S)

The above clause has the e�ect that the rule of inertia is disabled for loaded i�

good luck occurs at the spinning action in state S. In general, for each clause

a possibly causes f if p

1

; : : : ; p

n

the following rule must be introduced:

Noninertial(jf j; a; S) :- Holds(p

1

; S); : : : ;Holds(p

n

; S); Good luck(a; S)

For a positive f , in addition the following rule is added:

Holds(f;Result(a; S)) :- Holds(p

1

; S); : : : ;Holds(p

m

; S); Good luck(a; S)

8 Summary

We presented a sound and complete transformation � from A domains to open logic

programs with FOL axioms. We have illustrated the use of SLDNFA for abductive and

deductive reasoning and satis�ability proving under uncertainty. The transformation

of Gelfond and Lifschitz is more complex, is not complete due to the 3-valued nature of

answer set semantics, is only sound for domains without e-similar actions and cannot

be extended to the predicate case (at least not without imposing other syntactic

constraints). Moreover, no reasoning procedure is currently described for the resulting

programs. Dung's approach is in some aspects similar to ours and provides a reasoning

procedure, but is still more complex than ours, has the disadvantage of relying on a

special purpose logic and does not show the application of the reasoning procedure

for classical forms of reasoning such as deduction, abduction and consistency proving.

We have investigated also a number of typical temporal reasoning issues. Al-

though in �D only forward persistence axioms are contained, the completion of �D

subsumes backward persistence axioms. We have also shown how to extend A with

indeterminate actions.

From a more general perspective, this work can be viewed as a -successful- exper-

iment in the declarative representation of and diverse forms of automated reasoning

on incomplete knowledge using open logic programming and an abductive procedure.
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