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ABSTRACT

The fundamental problem of finding
a suitable representation of the orien-
tation of 3D surfaces is considered. A
representation is regarded suitable if it
meets three basic requirements: Unique-
ness, Uniformity and Polar separability. A
suitable tensor representation is given.

At the heart of the problem lies the
fact that orientation can only be defined
mod 180° , i.e the fact that a 180° rota-
tion of a line or a plane amounts to no
change at all. For this reason represent-
ing a plane using its normal vector leads
to ambiguity and such a representation
is consequently not suitable. The am-
biguity can be eliminated by establish-
ing a mapping between R3; and a higher-
dimensional tensor space.

The uniqueness requirement implies
a mapping that map all pairs of 3D
vectors x and -x onto the same tensor
T. Uniformity implies that the mapping
implicitly carries a definition of distance
between 3D planes (and lines) that is
rotation invariant and monotone with
the angle between the planes. Polar
separability means that the norm of the
representing tensor T is rotation invari-
ant. One way to describe the mapping
is that it maps a 3D sphere into 6D
in such a way that the surface is uni-

formly stretched and all pairs of antipo-
dal points maps onto the same tensor.
It is demonstrated that the above
mapping can be realized by sampling
the 3D space using a specified class of
symmetrically distributed quadrature fil-
ters. It is shown that 6 quadrature filters
are necessary to realize the desired map-
ping, the orientations of the filters given
by lines trough the vertices of an icosahe-
dron. The desired tensor representation
can be obtained by simply performing a
weighted summation of the quadrature
filter outputs. This situation is indeed
satisfying as it implies a simple imple-
mentation of the theory and that re-
quirements on computational capacity
can be kept within reasonable limits.

Noisy neigborhoods and/or linear
combinations of tensors produced by the
mapping will in general result in a ten-
sor that has no direct counterpart in
R3;. In an adaptive hierarchical signal
processing system, where information is
flowing both up (increasing the level of
abstraction) and down (for adaptivity
and guidance), it is necessary that a
meaningful inverse exists for each level-
altering operation. It is shown that the
point in R3 that corresponds to the best
approximation of a given tensor is given
by the largest eigenvalue times the cor-
responding eigenvector of the tensor.



INTRODUCTION

A meaningful application of most signal
processing concepts requires that the data to
be processed represent some aspect of the real
world in an orderly way. More precisely, it
is generally required that an increased differ-
ence between real world events results in an in-
creased distance between the data points that
represent these events. Working with repre-
sentations where these reguirements are not
met would make most signal processing con-
cepts meaningless, e.g. averaging and differ-
entiation. Thus, it must be concluded that a
suitable representation of events to be anal-
ysed is the basis for succesful signal process-
ing. For many real-world aspects, however,
establishing well behaved representations is a
non-trivial task and in these cases a first and
necessary step of any analysis is to find such
a representation.

In this paper the problem of finding a suit-
able representation of 3-D surface orientation
is considered. As an introductory example the
equivalent 2-D case will be discussed. The
problem then of course reduces to finding a
suitable representation for 2-D lines.

In the following a line will be taken to
mean a symmetric separator of two regions
such that no relation between the reqions can
be inferred, whereas by an edge will be un-
derstod an asymmetric separator such that
an ordering of the two regions is always im-
plied. Note that a consequence of this defi-
nition is that lines can only be unambigously
assosiated with an angle over an intervall of
180°,while edges can be unambigously assosi-
ated with angles spanning an intervall of 360°.
Another way to view the situation is that
both lines and edges are assosiated with angles
spanning a 180° interval and that in addition,
edges are ‘signed’ but lines are ‘unsigned’.

Considering the above, it is argued that a
general partitioning element must have the
properties of a line. The reason for this is that

it is not possible to consistently define an or-
dering of regions if the data constituting the
different regions are intrinsically more than 1-
dimensional and consequently the consept of
an edge is not applicable. To see why the edge
concept does not work for multi-dimensional
data, consider the case of differently colored
adjacent patches (to a human observer color is
intrinsically 2-dimensional). It does not seem
to make much sense to say that one color has a
higher value than any other (equal brightness
and saturation assumed) and furthermore it is
easy to convince oneself that all attempts to
impose an ordering of the color space will re-
sult in unreasonable distances between at least
some of the colors.

Considering the fact that a substantial part
of the concepts used in image processing are
of multi-dimensional nature (color, texture,
shape etc.) it becomes apparent that, in any
image processing theory claiming generality,
a partitioning element must have the above
mentioned line properties.

Another and perhaps more fundamental
view of the situation is the following. The
representation should be invariant to what is
in the regions and only represent the geomet-
ric qualities of the separator itself i.e. in this
case, its orientation.

In trying to find a representation for line ori-
entation vectors defined over a 2-dimensional
half plane immediately suggests itself, the vec-
tor angle being identical to the line orientation
and the vector length being a positive valued
function of some other property of the line (e.g
its energy, probability or some other definition
of its ‘magnitude’). A space resulting from
this type of direct mapping will be referred
to as the original space. It is obvious in the
present case that, for a given vector length,
the original space corresponds to a half circle.
The problem with this original space is that
it leads to an unacceptable distance measure
as vectors representing two lines differing by a
small angle can end up being represented by



vectors that are very far apart, i.e. one line is
represended close to one end of the half circle
and the other line is represented close to the
opposite end.

MAPPING REQUIREMENTS

To remove this discontinuity a mapping is
reguired that maps the original space into a
suitable representation space. To guarantee
a suitable mapping three basic requirements
should be met.

The ‘uniqueness’ requirement:

It is evident that the discontinuity will
be removed if the mapping is such that it
maps the vectors x and —x of the original
space onto the same vector in the repre-
sentation space i.e.

where:
X is a vector in the original space.
T is the map of x.

The ‘uniform stretch’ requirement:

The mapping should locally preserve the
angle metric of the original space, i.e

H(ST“ = C”(sXHT:const- (2)

where:
r =[x
¢ is a ‘stretch’ constant.

The ‘polar separability’ requirement:

As the information carried by the mag-
nitude of the original vector x does not
normally depend on the vector angle, it
is reasonable to reguire that:

1Tl = i) (3)

i.e the norm of T is independent of the
direction of x.

THE MAPPING

A mapping M that maps the vector x onto
the tensor T and meets all the above criteria
is given by:

M : T = r ' xx’ (4)

The norm of T is taken to be the Frobenius
norm and is given by:

ITI® = >t = >-A% ()
1] n

where:
ti; are the components of T and

A, are the eigenvalues of T.

Since T is a quadratic form a change in the
sign of x will have no effect and it follows
directly that the ‘uniqueness’ requirement is
met. That the ‘polar separability’ requirement
is met is easily demonstrated by calculating
the norm of T.

1T = > r?afai =0 (6)
ij

where x;(;) are the components of x.

Showing that the norm of T is equal to the
norm of x.

That the ‘uniform stretch’ requirement is
met is shown in appendix A.

A FILTERING REALISATION

Having found a suitable mapping the ques-
tion arises: Can the representation implied by
the mapping be realized using measurements
on actual image data, where lines (or other
structures) are represented as local grayscale
correlations? It will be shown that by combin-
ing the outputs from polar separable quadra-
ture filters, it is possible to produce a repre-
sentation corresponding exactly to eqn. (4).



The exactness relies on the image data beeing
locally 1-dimensional, i.e. on the existence of
a locally well defined orientation. The case
where the 1-dimensionality assumption does
not hold is discussed in ‘THE INVERSE’ sec-
tion.

There are four features of the above proce-
dure relevant to the present paper.

1. The quadrature filter concept.

The quadrature filter concept forms a ba-
sis for obtaining phase invariant informa-
tion. A quadrature filter can be defined
in Fourier space as a filter beeing positive
over half of the Fourier space and zero

over the other half, or more precisely de-
fined by:

if u-ng >0

Fr(u) = 0 otherwise

where:
ny is the filter directing vector.
u is the frequency.

The output ¢p of the corresponding
quadrature filter will be a complex num-
ber. The magnitude ||gx|| of g, will be
phase invariant (implying local shift in-
variance) and the argument arg(gy) rep-
resents the local phase.

2. The filter shape.

In addition to the quadrature require-
ment, eqn.(7), it is required that the
frequency responce of the filters when
(u-ny) > 0 can be expressed as:

Fi(u) = g(Ju)(u-ng)*  (8)

In other words the filter shape is polar
separable, the radial part of the function
is arbitrary but positive (usually some
type of bandpass function) and the an-
gular part varies as cos®(p), where ¢ is

the difference in angle between u and the
filter direction ng. (In general the filters
are spatially localized, but this is a sep-
arate issue not discussed in the present

paper.)
3. The minimum number of filters.

The discussion regarding the minimum
number of filters can be found in ap-
pendix B. The result is that the minimum
number of filters is 3 for 2D and 6 for 3D.

4. The combination of filter outputs.

The final result T” can be obtained by
linear summation of the quadrature filter
output magnitudes as indicated by eqn.

9.

T =3 lall(nmy — o) (9)

where:

g is the output from quadrature fil-
ter k.

ny is the orientation of quadrature

filter k.
1/(m — 1); m beeing the di-
mensionaliy of T’.

o =

I is the identity tensor.

The calculations leading to this result can
be found in appendix C.

THE INVERSE

If the neighborhood is not 1-dimensional,
due to noise or surface curvature, it is ness-
esary to find a best approximation T to
T’ where T corresponds to a 1-dimensional
neighborhood. This is simply done by finding
the x that minimizes:

A = || T —r'xx7| (10)



It is shown in appendix D that x is given by:

(11)

X = >\1€1
giving:

_ T

(12)

where:
A1 is the largest eigenvalue of TV and

e; is the corresponding eigenvector.

The value of A indicates how well the 1-
dimensionality hypothesis fits the neighbour-
hood, the smaller the value the better the fit.

Appendix A
UNIFORM STRETCH

To show that the uniform stretch require-
ment is met by the mapping is fairly straight-
forward. Add a small perpendicular vector ev
to x and calculate the relative difference in the
norm of T. To start define S to be:

T(x + ev) — T(x)

S = 1151(1) - (13)
where:
vl = 1 and
VX =
then
|6 = [[S[|0x]|r=const. (14)

Carrying out the limit calculation is simple
and yields:

S = rt(xv! +vx') (15)
Let S operate on x and v.
Sx = rv
(16)
Sv = rx

Combining the results yields:

{ S(x+rv) = x+71rv a7

S(x—rv) = 1rv—x

showing that (x+rv) and (x—rv) are eigen-
vectors of S the eigenvalues beeing 1 and -1
respectively. Since all other eigenvectors of
S are ortogonal to x and v it follows from
eqn.(15) that all other eigenvalues are zero.

Then, according to eqn.(5), the norm of S
is given by:

ISl = YAt +23 = v2

showing that the ‘uniform stretch’ require-
ment is met.

(18)

Appendix B
FILTER OUTPUT

The analysis in this appendix will deal
only with real valued neighbourhoods of one-
dimensional variation i.e. neighbourhoods
that can be expressed as:

§(s) = f(s-ng) (19)

where:
s is the spatial coordinate and

n; is a unit vector oriented along the axis
of maximal signal variation.

For this type of signal the Fourier transform
is non-zero only on the line defined by:

u X g

(20)

Thus the situation can be treated as 1-
dimensional and, using eqn. (8) and 1-
dimensional filter theory, it is not hard to
show that the magnitude of the quadrature
fiter output (as a function of the signal orien-
tation) is given by:

lgell = d(ng - ny)? (21)



where d can be considered a constant as it
is independent of the filter orientation and de-
pends only on the magnitude and radial dis-
tribution of the signal spectrum.

Appendix C
FILTER COMBINATION

As in appendix B the analysis in this ap-
pendix will deal only with real valued neigh-
bourhoods of one-dimensional variation. In
addition it is assumed that the filters axes
should be symmetrically distributed over the
orientation space. It is felt that this is a rea-
sonable assumption as the final result, T, by
definition is invariant to rotation of the filters.

It is helpful in the following discussion to
bear in mind that:

1. The Fourier transform is invariant to ro-
tation of the coordinate system.

2. The Fourier transform of a signal of one-
dimensional variation is a line through
the origin paralel to the signal orienting
vector, eqns. (19) and (20).

3. The quadratue filter output is invariant
to rotation around its axis (given by ny)
and also diametrically symmetric so that

lg(w] = llg(=w)]], eqn.(21).

Consider the case of 2V~! quadrature fil-

ters, having symmetry axes passing through
the corners of a cube in N dimensions, giving
a fully symmetric distribution of filters. Con-
sider the contribution to the filters from fre-
quencies on a line through the center of two
opposing cube faces. Since the angle between
the line and any filter axis will be the same it
is clear that all the filters will give the same
output. Consequently the filter set is inca-
pable of giving information sufficient to de-
termine wich pair of cube faces the line passes
through and thus, the orientation of the signal
is undecideable. It can be concluded, there-
fore, that more than 2V~! quadrature filters
must be used.

It has been shown in [2] that the minimum
number of filters required when N = 2 is 3,
the filter orientations given by:

n; = (1 ,0)
n, = (-0.5 ,v3/2)
n = (=05 ,—/3/2)

For N = 3 the number of filters must be
greater than 4 but, since there does not exist
a way of distributing 5 filters in 3-D in a fully
symmetrical fashion, the next possible num-
ber is 6. (In fact the only possible numbers
are those given by half the number of vertices
(or faces) of a diametrically symmetric regu-
lar polyhedron, leaving only the numbers 3,
4, 6 and 10. Note that this is in contrast to
the 2-D case where the only symmetry restric-
tion is K > 2.) It turns out that the mini-
mum required number of quadrature filters K
18 6. To attain the final result for the 3-D case,
eqn.(31), a number of steps have to be taken.

The orientations of the filters are given by
vectors pointing to the vertices of a hemi-
icosahedron, see fig. 1.

(22)

The 6 normal vectors are given in cartesian
coordinates by:

n=c(a, 0, b )"
n,=c(-a , 0, b )"
ng=c( b, a, 0)"
ng=c(b ,—a, 0)" (23)
ns=c( 0, b, a)t
ng=c( 0, b ,—a )

b= (1++/5)
c = (10 42y/5)71/2



then the magnitude of the outputs from the
6 quadrature filters are, according to eqn.(21),
given by:

a1 = d*r=2(ax? + 2abxz + b?2*
g2 = d*r=2(ax?® — 2abxz + b*22

( )

( )
lgs| = de*r=2(b2a? + 2abay + a?y?)

( )

(

(

(26)
llas|| = d*r=2(b*x?* — 2abzy + a*y?
llgs|| = dc®r=2(0?y? + 2abyz + a*2?)
Figure 1: An icosahedron (one of the 5 Pla- llgs|| = dPr=2(b*y? — 2abyz + a*2?)
tonic polyhedra).
Next, calculating the sum
Then the el ts of th . i
. e1n € elements O € N S are given _ Z qunxkxz (27)
y: k
> g ; yields the components of T”:
a a
nn! = ¢ 0 0 O ty =d (¥ 2+ %)
ab 0 b
a® 0 —ab =i é)
n2n2T = 2 0 0 0 tsg = d'(2°r 202 4 5)
—ab 0 P (28)
2 b 0 t1g =191 = d/ZL‘yTiz
a
nznl = ¢? ab a* 0 tis =ty = d'zzr?
0 0 0
. b0 (24) tag = tgp = d'yzr?
—a
mnj = c*| —ab a® 0 where d' = 4d.
0 0 0 °
0 0 0 It is evident that if the quantity 20l’ is sub-
nenl — 2 0 B ab tracted from the diagonal elements of T” the
Ea 0 ab a2 result will be of the desired form.
0 0 0 T =T — 1d = dnenf (29)
neng = ¢ 0 b —ab Finally calculate th £ all quad
0 —ab o2 mally calculate the sum of all quadrature

Let the signal orienting vector be given by:

ng = r_l(:v, Y, 2)

filter output magnitudes.

Zk: k|l = 2d (30)

(25)



Combining eqns. (27),(29) and (30) yields
the desired result:

Tdng) = Y Jaclmnf — ;1) (31)
k

A few comments about higher dimensional
spaces are appropriate. For N = 4 the number
of filters must be greater than 8 and the only
possible number is 12. No calculations for the
4-dimensional case have been carried out. For
N greater than 4 no regular polyhedron having
more vertices than a cube exists.

Appendix D
THE INVERSE

The norm of a tensor is invariant under ro-
tation of the coordinate system and eqn.(10)
can be rewritten as:

A= AT —rxxDA|| (32)

giving:

A= |[[ATTT'A - A IxxTA|| (33)

where A is an ortogonal matrix.

Let A be such that A7'T'A is diagonal
and note that only one eigenvalue of xx? is
nonzero. Then, since the norm of A~'T'A
is the sum of the squares of its elements, it
is clear that A is minimized if A~'r~'xx”A
removes the largest of these values, i.e. the
largest eigenvalue of A='T'A. Thus, if the
eigenvalues are numbered in decreasing order,

A is given by:
A= [T x
n#l

Then, since T’ and r~!xxT are subject to

identical rotation, it is clear that the x wich
minimizes A is given by:

(34)

(35)

X = )\181

where e, is the eigenvector corresponding
to the largest eigenvalue of T.
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