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Abstract. Atmospheric flux inversions use observations of

atmospheric CO2 to provide anthropogenic and biogenic

CO2 flux estimates at a range of spatio-temporal scales. In-

versions require prior flux, a forward model and observation

errors to estimate posterior fluxes and uncertainties. Here,

we investigate the forward transport error and the associ-

ated biogenic feedback in an Earth system model (ESM)

context. These errors can occur from uncertainty in the

initial meteorology, the analysis fields used, or the advec-

tion schemes and physical parameterisation of the model.

We also explore the spatio-temporal variability and flow-

dependent error covariances. We then compare the error with

the atmospheric response to uncertainty in the prior anthro-

pogenic emissions. Although transport errors are variable,

average total-column CO2 (XCO2) transport errors over an-

thropogenic emission hotspots (0.1–0.8 ppm) are compara-

ble to, and often exceed, prior monthly anthropogenic flux

uncertainties projected onto the same space (0.1–1.4 ppm).

Average near-surface transport errors at three sites (Paris,

Caltech and Tsukuba) range from 1.7 to 7.2 ppm. The global

average XCO2 transport error standard deviation plateaus at

∼ 0.1 ppm after 2–3 d, after which atmospheric mixing sig-

nificantly dampens the concentration gradients. Error corre-

lations are found to be highly flow dependent, with XCO2

spatio-temporal correlation length scales ranging from 0 to

700 km and 0 to 260 min. Globally, the average model er-

ror caused by the biogenic response to atmospheric meteo-

rological uncertainties is small (< 0.01 ppm); however, this

increases over high flux regions and is seasonally depen-

dent (e.g. the Amazon; January and July: 0.24 ± 0.18 ppm

and 0.13 ± 0.07 ppm). In general, flux hotspots are well-

correlated with model transport errors. Our model error es-

timates, combined with the atmospheric response to anthro-

pogenic flux uncertainty, are validated against three Total

Carbon Observing Network (TCCON) XCO2 sites. Results

indicate that our model and flux uncertainty account for

21 %–65 % of the total uncertainty. The remaining uncer-

tainty originates from additional sources, such as observa-

tion, numerical and representation errors, as well as struc-

tural errors in the biogenic model. An underrepresentation of

transport and flux uncertainties could also contribute to the

remaining uncertainty. Our quantification of CO2 transport

error can be used to help derive accurate posterior fluxes and

error reductions in future inversion systems. The model un-

certainty diagnosed here can be used with varying degrees of

complexity and with different modelling techniques by the

inversion community.

1 Introduction

Since 1750 global atmospheric CO2 concentrations have in-

creased from 277 ppm (Joos and Spahni, 2008) to 2019 val-

ues of 410 ppm (Dlugokencky and Tans, 2019). The initial

growth in CO2 was primarily caused by land use change and

then subsequently by fossil fuel sources. The budget con-

tribution from anthropogenic sources, along with existing

ocean and biogenic fluxes, is difficult to disentangle at both

short (days) and long (decades) timescales. For example, Le

Quéré et al. (2018) found a 2008–2017 budget imbalance of

0.5 GtC yr−1 caused by uncertainties in fossil fuel emissions,

land use change and the land–ocean sink.

Atmospheric inversions are often used to estimate both

biogenic and anthropogenic CO2 fluxes at a range of spa-
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tial and temporal scales (e.g. Gurney et al., 2002; Peylin et

al., 2013; Lauvaux et al., 2016). These inversions typically

follow a Bayesian framework whereby prior information is

used in an atmospheric transport model; those fluxes and

uncertainties are then updated based on comparisons with

atmospheric observations. Inversion intercomparison studies

show that whilst model agreement is improving, large differ-

ences remain between different inversion systems (Peylin et

al., 2013; Le Quéré et al., 2018; Gaubert et al., 2019). These

are caused by a combination of differences in the prior in-

formation, transport model and observation networks used to

constrain the fluxes.

Bayesian CO2 inversions require combined knowledge of

the prior uncertainty, model transport uncertainty, measure-

ment error and representation error to provide an accurate

estimation of fluxes (e.g. Engelen et al., 2002). Neglecting

these components of uncertainty imposes a hard constraint

on the inversion, resulting in unreasonable solutions.

Prior fluxes are typically derived from bottom-up process

models and observations. The uncertainty can, in part, be es-

timated by sampling the prior inventory probability distri-

bution function (PDF), perturbing the meteorological data

used to force the process models, using ancillary informa-

tion on uncertainty estimates (e.g. national energy statistics)

or a combination of these. Spatial and temporal prior flux er-

ror correlation structures can also be considered (e.g. Wu et

al., 2013). The prior uncertainty is often only applied to the

biogenic fluxes, with assumed perfect knowledge of the an-

thropogenic flux, although joint inversions of both biogenic

and anthropogenic fluxes require consideration of uncertain-

ties from both.

The observation uncertainty is independent, relatively

small and well-known for in situ observations, and the ap-

plication of this uncertainty to an inverse system is straight-

forward. For satellite observations, spatially coherent biases

might influence uncertainties (Basu et al., 2018).

The representation error consists of two components. The

first is the internal model component, which relates to the

model inversion resolution being lower than that of the for-

ward model (see Engelen et al., 2002, for more details). The

second is the error that arises from spatio-temporal differ-

ences between the model and observations: for example, a

point measurement compared to a model grid box average.

This error is expected to be reduced as both the forward

and inverse model resolution increase, and to an extent it

can be quantified using multi-resolution models (see Agustí-

Panareda et al., 2019, for more details).

Here, we investigate the forward transport error and the as-

sociated biogenic feedback in an Earth system model (ESM)

context. Model transport error is usually larger than the ob-

servation error (Stephens et al., 2007; Law et al., 2008) and

often consists of simplified assumptions. Depending on the

configuration of the forward model, errors can occur from

uncertainty in the initial meteorological conditions, the anal-

ysis fields used, or the advection schemes and physical pa-

rameterisation of the model.

Uncertainties in the physical parameterisation of land sur-

face and planetary boundary layer schemes can cause errors

in the mixed layer (ML) depth, which can lead to errors in the

vertical mixing of CO2 (Sarrat et al., 2007; Díaz-Isaac et al.,

2018). For CO2, the biogenic flux exchange at the surface

correlates with changes in the ML depth, making the issue

more complex (Denning et al., 1995). When performing in-

versions using surface observations, the accurate representa-

tion and consideration of any uncertainties in vertical mixing

are especially important to avoid biases in estimated fluxes

(Yi et al., 2004; Denning et al., 2008; Ahmadov et al., 2009).

For aircraft and column observations the errors in the verti-

cal mixing may become less important; for example, Verma

et al. (2017) found that inverse flux estimates from aircraft

profiles are not sensitive to errors in the ML depth. Similarly,

satellite-based inversions, which retrieve total-column CO2

(XCO2), are expected to be less sensitive to vertical mixing

errors. However, the issue of sensitivity becomes more com-

plex in this case because the XCO2 signal is smaller than the

ML signal (Basu et al., 2018). In addition to vertical mixing,

advection errors associated with horizontal wind can result

in errors up to 6 ppm (Lin and Gerbig, 2005).

CO2 inversions are performed using either an online model

with a full physics scheme used to compute the meteorology

or offline using analysis transport fields. Online inversions

are computationally expensive, require access to a numerical

weather prediction (NWP) system and, without the benefit of

analysed transport fields, are limited by the accuracy of the

physical forecast model. There is the added logistical chal-

lenge of reconciling the relatively short NWP assimilation

window length (hours to days) with the typically longer CO2

window length (weeks to years). Typically, online systems

have a higher temporal frequency than offline systems, which

are limited by the output frequency of the archived analysis

fields used. Vertical transport and other subgrid-scale pro-

cesses, which are missing from the analysis, are computed

by offline systems using schemes that are likely to be incon-

sistent with the original analysis, resulting in further errors

(Engelen et al., 2002). Within an online ESM context, bio-

genic fluxes and surface parameter estimation can be inte-

grated within the inversion system at a high temporal reso-

lution. The advantages of an online inversion system for the

attribution of model uncertainty are investigated here.

Ensembles of transport models are often used to quantify

transport uncertainty (e.g. Gurney et al., 2002; Baker et al.,

2006; Peylin et al., 2013; Basu et al., 2018). Whilst this rep-

resents the variability between models, systematic errors in-

herent within those models remain unaccounted for. For ex-

ample, several models within an ensemble may use the same

planetary boundary layer scheme, resulting in an unrealistic

assumption of transport uncertainty. Ensembles using multi-

ple schemes or resolutions may yield different inverse results

(Gaubert et al., 2019), but this does not necessarily mean
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they provide an accurate representation of transport uncer-

tainty. Alternatively, multi-physics ensembles with perturbed

parameterisations provide a representation of transport un-

certainty caused by parametric uncertainty during the simu-

lation period (Kretschmer et al., 2012; Lauvaux and Davis,

2014; Díaz-Isaac et al., 2019). The stochastic representation

of model uncertainty required for reliable ensemble forecasts

has been thoroughly researched within the NWP community

(e.g. Leutbecher et al., 2017). The ensemble approach may

also consist of models which use forcing data taken from

the same analysis product, leading to an underestimate in the

uncertainty associated with the initial conditions and mete-

orological fields. A representation of uncertainties in initial

meteorological conditions, boundary conditions (for regional

models), forcing data and model physics is required to accu-

rately evaluate transport uncertainty. Numerical uncertainty

in models, including errors relating to interpolation, diffu-

sion and advection, also contribute to transport uncertainty,

although these are not investigated in this study. A comple-

mentary approach to quantify transport uncertainty is to per-

form direct comparisons with modelled and observed mete-

orological variables, as described by Lin and Gerbig (2005).

Here we use an NWP ensemble forecast system, initialised

from an ensemble data assimilation (EDA) system, to inves-

tigate transport model uncertainty relating to both the un-

certainty in the initial meteorological conditions and in the

model physics. Furthermore, we explore the spatio-temporal

variability and flow-dependent error covariances. We per-

form preliminary investigations into the biogenic fluxes as-

sociated with the meteorological uncertainty, resulting in a

more complete model uncertainty. The biogenic feedbacks

here do not account for parameterisation and mapping un-

certainties. Finally, we investigate the signal-to-noise ratio

for a prospective CO2 flux inversion system by comparing

model uncertainties to the atmospheric response to anthro-

pogenic emission uncertainties. The combined XCO2 error

from model uncertainty and anthropogenic flux uncertainty

is validated against Total Carbon Observing Network (TC-

CON) observations. If the model uncertainty is comparable

to the model–observation error, as given by a control exper-

iment, then it can be reasoned that the estimated model un-

certainty is a relatively accurate estimation of the true model

uncertainty. Other errors not accounted for, such as the repre-

sentation error, would further increase this error towards the

true model uncertainty.

2 Model set-up

We have used version 46R1 of the Integrated Forecasting

System (IFS), operated and licensed by the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF). A de-

tailed scientific and technical description of the IFS can be

found at https://www.ecmwf.int/en/forecasts/documentation/

evolution-ifs/cycles/summary-cycle-46r1 (last access: 22

September 2019). The IFS primary use is in NWP, although

extensions exist for atmospheric CO2 modelling. We used the

Ensemble Prediction System (EPS) component of the Inte-

grated Forecasting System (IFS), detailed in Leutbecher and

Palmer (2008), to simulate 3-D atmospheric CO2 concentra-

tions given a combination of prescribed and modelled surface

fluxes. The EPS is configured to represent the uncertainty in

both the initial meteorological conditions and the model for-

mulation. The uncertainty in initial conditions was inherited

from an operational EDA, wherein input observations were

perturbed with stochastic noise based on a given observa-

tion error (Isaksen et al., 2010). In addition to this, both the

EPS and EDA use a stochastically perturbed parameterisa-

tion tendencies (SPPT) scheme to represent errors caused by

uncertainty in physical parameterisations, including subgrid-

scale processes (Buizza et al., 1999; Leutbecher et al., 2017).

Different from the operational configuration of the EPS we

start the ensemble members directly from the EDA members

instead of adding perturbations to the deterministic analysis.

Furthermore, we do not apply singular vector perturbations

to the initial conditions.

All simulations were performed globally for January and

July 2015 with 137 vertical levels and at ∼ 25 km horizon-

tal resolution (TCo399). Instantaneous 3-D model CO2 fields

and biogenic fluxes calculated online by CTESSEL, the land

surface component of the IFS (Boussetta et al., 2013; Agustí-

Panareda et al., 2014, 2016), were output at hourly frequency.

The uncertainty in each simulation is represented by the stan-

dard error of a 50-member ensemble; the sampling error re-

sulting from the ensemble size is discussed in the following

sections. The 3-D CO2 fields for all ensemble members were

initialised using the ECMWF operational product, which is

provided under the Copernicus Atmosphere Monitoring Ser-

vice (Agustí-Panareda et al., 2019). Each month-long ensem-

ble member is comprised of 24 h forecasts reinitialised from

the operational EDA, with the 3-D CO2 field cycled from the

last time step of the previous forecast. As a result, on the first

day of the month the ensemble does not include a representa-

tion of the initial atmospheric 3-D CO2 uncertainty; however,

the error in initial CO2 concentrations for each forecast is es-

tablished within the ensemble after a few days. To account

for this the first 2 d are discarded from all monthly values

provided.

Multiple experiments were performed to identify specific

contributions to the total ESM uncertainty. Perturbing the ini-

tial conditions, model physics and the meteorologically de-

pendent biogenic flux provides a representation of model un-

certainty; hereafter, this simulation is referred to as FME. In-

dividually, the uncertainties associated with the initial condi-

tions (IME), the model physics (PME) and the biogenic re-

sponse to uncertainty in meteorological forcing (BME) were

investigated by performing ensemble simulations in which

only the target component was perturbed. It is important to

note that the biogenic uncertainty shown here only represents

the biogenic feedback to uncertainties in meteorology and
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not the mapping or process uncertainty inherent within the

model. A simulation in which both the initial meteorological

conditions and model physics were perturbed (TME) repre-

sents the transport model uncertainty by using offline bio-

genic emissions from a control experiment. Hereafter, trans-

port model uncertainty is defined as the uncertainty associ-

ated with the initial conditions and model physics during the

integration, which is typically simplified in inverse modelling

studies, and model uncertainty includes uncertainty in bio-

genic fluxes associated with meteorological uncertainty. The

biogenic response to errors in the forcing is estimated us-

ing the member-specific biogenic fluxes from TME as offline

fluxes in BME.

Offline biogenic emissions were broadly consistent with

online biogenic emissions in that they were generated us-

ing CTESSEL; the only difference is in the frequency. The

online biogenic emissions were applied at model time step

frequency (20 min), whereas the offline biogenic emissions

were input at 3 h intervals and interpolated across each time

step. Unless otherwise stated offline biogenic emissions were

generated using a control forecast. Offline monthly anthro-

pogenic emissions were generated using EDGAR v4.3.2

(Janssens-Maenhout et al., 2019), extended to 2015 with

monthly scaling factors derived from 2010. These were re-

gridded to the model grid from a native 0.1◦ × 0.1◦ reso-

lution. Daily mean fire emissions were also regridded from

0.1◦ × 0.1◦ resolution, taken from the Global Fire Assimi-

lation System (GFAS; Kaiser et al., 2012). Monthly mean

ocean fluxes were taken from Jena CarboScope v1.6 based

on the SOCAT data set of pCO2 observations (Rödenbeck et

al., 2014). The uncertainties in fire and ocean fluxes are not

considered here.

The forward model component of an ensemble-based CO2

flux inversion provides an estimated PDF of atmospheric

CO2 based on a signal (prior emission uncertainty) and noise

(model uncertainty). To investigate the signal-to-noise ratio

relevant for anthropogenic CO2 inversions, additional simu-

lations were performed using estimated anthropogenic emis-

sion uncertainties and are described alongside all other ex-

periment configurations in Table 1 (EXP, PEM and PEA).

These estimates are calculated per sector and per country fol-

lowing the error propagation method outlined by the IPCC

guidelines (IPCC, 2006) and are based upon uncertainties

in emission factors and activity data. The statistical infras-

tructure development level of the country is also considered,

defining all countries as either statistically well-developed

or less developed. The most commonly used fuel type is

considered for uncertainty calculations when multiple types

are used. Uncertainties are assumed to be uncorrelated in

time and between sectors and countries. Further details will

be discussed in detail in a follow-up paper (Choulga et al.,

2020). Anthropogenic emissions were grouped into six sec-

tors: large power plants, the remaining energy sector, man-

ufacturing, transport, settlements and other. National uncer-

tainties for annual and monthly emissions are strongly sector

and country dependent, ranging from annual transport uncer-

tainties of ∼ 4 % for numerous developed nations to monthly

other sector uncertainties of ∼ 330 % for the Democratic Re-

public of the Congo. Aviation emissions were used as 3-D

profiles but remained unperturbed in these simulations.

The uncertainties used here are thought to be relatively

modest considering the timescales being investigated. Data

availability for several aspects of anthropogenic uncertain-

ties currently limits our ability to diagnose a reasonable at-

mospheric XCO2 response signal at short timescales. For ex-

ample, daily uncertainties, which would be required for high-

temporal-frequency flux inversions, are expected to be con-

siderably larger than monthly uncertainties. This would pro-

vide, in principle, a larger signal. Additionally, a lack of prior

information prevented the consideration of uncertainty corre-

lations in prior fluxes. Finally, the diurnal variability in emis-

sions, which is likely to influence the modelled atmospheric

response to anthropogenic emissions, is not considered. The

missing information in prior uncertainties of anthropogenic

fluxes leads to an underestimation of the flux signal and as a

result the signal-to-noise ratio.

3 Observations

We used atmospheric XCO2 measurements from the Total

Carbon Column Observing Network (TCCON) (Wunch et

al., 2011) to evaluate the combined forward model error and

the atmospheric response to anthropogenic flux uncertain-

ties. Assuming the 50-member ensemble accurately repre-

sents the atmospheric CO2 PDF accounting for all uncer-

tainties, the standard error in EXP should be comparable

to the model–observation error. However, the total error is

expected to underrepresent the model–observation error be-

cause some uncertainties were either missing or underes-

timated by the ensemble. For example, the representation

error is not present in our ensemble, and the prior anthro-

pogenic flux uncertainty is based on monthly estimates and

not weekly or daily values.

Here, we focus on model uncertainty relative to prior an-

thropogenic flux uncertainty. Therefore, three TCCON sites

with nearby anthropogenic sources and with available data

for 2015 were selected for evaluation: Paris (Té et al., 2014),

Caltech (Wennberg et al., 2015) located near Los Angeles

and Tsukuba (Morino et al., 2018) near Tokyo. Sounding-

specific TCCON averaging kernels were applied to inter-

polated model output for direct model–observation compar-

isons.

4 Results

4.1 TCCON site-specific error representation

All results shown are taken from the January 2015 simula-

tions; results from the July simulations, although discussed

Geosci. Model Dev., 13, 2297–2313, 2020 www.geosci-model-dev.net/13/2297/2020/



J. R. McNorton et al.: Representing model uncertainty using ECMWF-IFS-46R1 2301

Table 1. Configuration of model experiments used for the attribution of model uncertainty and the signal-to-noise ratio for atmospheric CO2

inversions. The control denotes the control member of the EDA.

Name Initial conditions Physics Biogenic emissions Anthropogenic emissions Error information

IME EDA SPPT off Offline Fixed Initial meteorological

PME Control SPPT on Offline Fixed Model physics

TME EDA SPPT on Offline Fixed Transport

BME Control SPPT off Offline FME Fixed Biogenic feedback

FME EDA SPPT on Online Fixed Model (noise)

PEA Control SPPT off Online Perturbed annual error Anthropogenic emission (signal)

PEM Control SPPT off Online Perturbed monthly error Anthropogenic emission (signal)

EXP EDA SPPT on Online Perturbed monthly error Full PDF (signal and noise)

here, are shown in the Supplement. The relative contribu-

tion to total XCO2 variability from the uncertainties in ini-

tial meteorological conditions, model physics and biogenic

feedback, as well as the atmospheric response to prior an-

thropogenic uncertainty, is shown to be location and time de-

pendent (Fig. 1 and Fig. S1 in the Supplement; for illustration

purposes only the first 5 d are shown). After 2–3 d the total

error stabilises, caused by the impact of atmospheric diffu-

sion (Figs. 2 and S2). All monthly averages are calculated

after an initial 2 d spin-up, omitting the first and second of

the month.

Over Paris the initial meteorology (IME) and model

physics (PME) errors are the largest individual components

of the total XCO2 variability for January (Table 2). The com-

bined average transport error (TME) increases further, with

a January maximum of 0.61 ppm. The biogenic feedback

(BME) errors are small. The average atmospheric XCO2

variation associated with annual anthropogenic flux uncer-

tainties (PEA) is relatively small; however, using monthly

uncertainties (PEM) this variability increases slightly, but

this is still below the derived transport error.

Average initial meteorological error and model physics er-

ror also dominate the total error over Tsukuba in January,

with a combined average transport error reaching a maxi-

mum of 1.01 ppm. The biogenic feedback errors are again

smaller in comparison. Monthly and annual anthropogenic

emission uncertainties over Tsukuba consistently produce

smaller errors than the total transport error.

Over Caltech the January average variability in the atmo-

spheric response to annual anthropogenic emission uncer-

tainties is lower than that from the initial meteorological er-

ror, the model physics error and the combined transport error

(maximum value of 2.55 ppm). Conversely, the monthly an-

thropogenic uncertainties produce the largest average error in

atmospheric XCO2. The average biogenic feedback error is

once again small. For small periods the PEM standard error

exceeds the EXP standard error over Caltech; this is thought

to either be due to spurious noise generated by the small en-

semble size or a compensating reduction in total error caused

by other sources of errors (transport and biogenic).

Variability between the three sites is a result of multiple

factors including nearby fluxes, regional atmospheric trans-

port and orography. The minor impact of the biogenic feed-

back, caused by meteorological uncertainty, results in the

FME and TME errors being almost identical at all three sites.

July simulations show comparable model transport er-

rors to January over Paris (0.15 ± 0.06), decreases over

Caltech (0.23 ± 0.10 ppm) and increases over Tsukuba

(0.38 ± 0.23 ppm), showing site-specific seasonal variability

(Figs. S1 and S2). The biogenic feedback error increased

over all three sites in July (Paris: 0.02 ± 0.01 ppm, Caltech:

0.02±001 ppm, Tsukuba: 0.04±0.03 ppm) due to Northern

Hemisphere summer. This remains smaller than the trans-

port and anthropogenic uncertainty response but is no longer

negligible. The July spread in the atmospheric response to

monthly anthropogenic flux uncertainties is increased over

Paris (0.08±0.05 ppm) and Tsukuba (0.38±0.2 ppm) when

compared to January. Over Caltech (0.47 ± 0.19 ppm) the

same error is reduced for July.

There is no clear diurnal cycle in the column transport

error at any of the three stations; January midnight aver-

ages at Paris (0.15 ± 0.08 ppm), Caltech (0.48 ± 0.47 ppm)

and Tsukuba (0.29 ± 0.18 ppm) are all comparable to mid-

day averages (0.15 ± 0.07 ppm, 0.46 ± 0.32 ppm and 0.25 ±

0.18 ppm, respectively). For July, only Caltech exhibits a

slight diurnal cycle, with midday averages of 0.29±0.13 ppm

and midnight averages of 0.18 ± 0.05 ppm. Over Caltech in

July, a diurnal cycle is found in the atmospheric XCO2 er-

ror as a response to both the biogenic feedback uncertainty

and anthropogenic flux uncertainty, with midday averages of

0.02±0.01 ppm and 0.73±0.30 ppm, respectively, and mid-

night averages of 0.01±0.01 ppm and 0.43±0.18 ppm. With-

out a diurnal cycle in anthropogenic fluxes, this would sug-

gest that the diurnal meteorological variability causes the ob-

served difference in model error as the magnitude in prior

flux and error remains the same for both night and day.

Summertime diurnal variability over Caltech has previously

been attributed to the sea–mountain breeze, whereby CO2-

enhanced air masses peak in the afternoon before being re-

duced again in the evening (Agustí-Panareda et al., 2019).

These enhancements cause an increase in atmospheric CO2

www.geosci-model-dev.net/13/2297/2020/ Geosci. Model Dev., 13, 2297–2313, 2020
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Figure 1. IFS model XCO2 (ppm) variability over three TCCON sites for the 50-member ensemble for 1–5 January 2015 from uncertainties

in model transport (first row), biogenic feedback from meteorological uncertainty (second row), monthly uncertainties in anthropogenic

emissions (third row) and a combination of all uncertainties (fourth row). Individual ensemble members are shown with grey lines, and the

ensemble mean is the black line. TCCON observations, when available, are shown for 5 d (black circles). Values denote standard error after

12, 24, 48 and 96 h.

Table 2. The average IFS model XCO2 (ppm) standard error across the 50-member ensemble over three TCCON sites for seven different

model configurations for January 2015.

Average January XCO2 standard error (ppm) across 50 ensemble members

TME EXP

Site IME PME (transport error) BME PEA PEM (total error)

Paris 0.12 ± 0.07 0.09 ± 0.05 0.15 ± 0.08 0.01± < 0.01 0.05 ± 0.04 0.06 ± 0.05 0.16 ± 0.06

Tsukuba 0.16 ± 0.10 0.19 ± 0.15 0.24 ± 0.16 < 0.01± < 0.00 0.03 ± 0.02 0.09 ± 0.09 0.27 ± 0.19

Caltech 0.41 ± 0.41 0.29 ± 0.27 0.50 ± 0.45 0.01 ± 0.01 0.13 ± 0.13 0.61 ± 0.47 0.69 ± 0.52

gradients, resulting in an increased transport error. Diurnal

variability in emissions is expected to increase the diurnal

signal in the atmospheric transport error, with typically lower

night-time emissions resulting in lower transport model er-

rors; however, we have not tested this hypothesis here.

Flux inversions, more specifically posterior error reduc-

tions, depend on the signal-to-noise ratio, wherein the atmo-

spheric response to prior flux uncertainty is the signal and

the remaining errors represent the noise. As previously men-

tioned, we underestimate the noise here by only account-

ing for some model uncertainty. Using annual anthropogenic

uncertainties to perturb January fluxes generates an aver-

age signal-to-noise ratio, after a 2 d spin-up, of 0.38 ± 0.37,

0.27 ± 0.16 and 0.20 ± 0.17 at Paris, Caltech and Tsukuba,

respectively (Fig. 2). Over Caltech and Tsukuba, the ratio

does not exceed 1 for the whole of January and only ex-

ceeds 1 % for 8 % of the month over Paris. Using monthly an-

thropogenic uncertainties, the signal-to-noise ratio over Paris

and Tsukuba after a 2 d spin-up increases to an average of

0.54±0.37 and 0.36±0.21, exceeding 1 % for 9 % and 1 % of

the month, respectively. Over Caltech this increases to a ra-

tio of 1.02±0.68, exceeding 1 % for 44 % of the month. The

average signal-to-noise ratio, when using monthly uncertain-

ties, increases at all three sites in July to 0.61±0.42 ppm over

Paris, 2.48±0.93 ppm over Caltech and 0.94±0.48 ppm over

Tsukuba (S2). The ratio exceeds 1 % for 11 % of the month

over Paris, > 99 % over Caltech and 38 % over Tsukuba. It is

reasonable to assume that the uncertainties, and therefore the

signal-to-noise ratio, will increase by a similar order of mag-

nitude from monthly to daily uncertainties as the increase

seen here from annual to monthly uncertainties; however, no
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data are currently available for daily anthropogenic flux un-

certainties.

To evaluate the accuracy of the total error in XCO2 (model

uncertainty and atmospheric response to anthropogenic flux

uncertainty) the standard error across ensemble members

is compared to the control model–observation error from

TCCON (Figs. 1 and S1). For January, the mean centred

model–observation errors are found to be 1.41 ppm at Cal-

tech and 0.54 ppm at Tsukuba compared to EXP total model

uncertainties (transport, biogenic feedback and monthly an-

thropogenic emission uncertainty) of 0.69 ± 0.52 ppm and

0.27 ± 0.19 ppm, respectively. There are no available TC-

CON data over Paris for January 2015, and the EXP un-

certainty over Paris is 0.16 ± 0.06 ppm. For July, the model–

observation errors are 0.92, 0.90 and 1.84 ppm for Paris, Cal-

tech and Tsukuba, respectively, compared to EXP uncertain-

ties of 0.19±0.07 ppm, 0.60±0.23 ppm and 0.56±0.31 ppm.

This would suggest that, depending on the time and loca-

tion, the uncertainties explored here account for 21 %–65 %

of the total model uncertainty. As previously mentioned, the

monthly uncertainty estimates used here are an underestima-

tion of the uncertainties at the short timescales being inves-

tigated here (hourly or daily). It should also be noted that

additional sources of model–observation variability, such as

observation errors, representation error, numerical errors and

biogenic flux errors relating to both processes and mapping,

are not considered in these values. Our results show that these

additional uncertainties are not negligible and need to be ac-

counted for in addition to the uncertainties derived here.

The vertical error structure for each ensemble configura-

tion at the three TCCON sites over a 24 h period shows col-

umn variability (Fig. 3). For all three sites individual errors

are typically largest near the surface, where the CO2 gra-

dients are the largest. Both components of the transport er-

ror are noticeable in the mid-troposphere, with some model

levels exceeding 1 ppm errors for both initial meteorological

and model physics errors individually at all sites. On average,

the near-surface (∼ 100 m) transport error over Paris is 1.7±

2.7 ppm, with a maximum of 17.6 ppm. Over Caltech notice-

able transport errors are typically found in the lower tropo-

sphere. The average near-surface error is 7.2±6.2 ppm, with

a maximum of 21.8 ppm. Over Tsukuba the initial meteoro-

logical condition error is detectable not only near the surface

but also in the middle to upper troposphere (∼ 300 hPa), with

averages of 0.41 ± 0.21 ppm. Near-surface average transport

errors are 2.2 ± 2.8 ppm, with a maximum of 16.6 ppm.

For the near surface, which is typically used for in situ

based inversions, average signal-to-noise ratios for monthly

anthropogenic uncertainties are 1.4±0.5, 0.8±0.7 and 0.4±

0.2 over Paris, Caltech and Tsukuba, respectively. The ratio

exceeds 11 % for 78 % of the time over Paris but less fre-

quently over Caltech (36 %) and Tsukuba (0 %).

All three sites do not exhibit a diurnal cycle in the near-

surface transport error. For each site the difference in error

between day and night is less than 10 %. This assumes that

the EDA and SPPT accurately represent transport error by

perturbing the boundary layer physics. These results under-

estimate the diurnal cycle in the transport error by not ac-

counting for diurnal variability in emissions.

4.2 Global and regional model uncertainty

The global XCO2 uncertainty resulting from uncertainties in

emissions, biogenic feedback and transport, which includes

both initial conditions and physics, is found to be spatially

and temporally varying (e.g. January 2015 shown by Fig. 4).

As expected, the atmospheric XCO2 signal from monthly

anthropogenic emission uncertainties is largest over emis-

sion hotspots in eastern China, with smaller signals over

North America, Europe and the Middle East (Tables 3 and

4). The global average error for both January and July 2015

is relatively small at 0.01±0.00 ppm, although the error val-

ues are heterogenous, with maximum local instantaneous

XCO2 errors reaching 9.2 ppm. The error is expected to in-

crease further with uncertainties applied at the hourly or daily

timescale, as these currently unavailable values would be

larger than both monthly and annual uncertainties.

The XCO2 biogenic feedback error from atmospheric

model uncertainty is largest over regions with a high net

ecosystem exchange, e.g. the Amazon; (January: 0.16 ±

0.08 ppm, July: 0.06 ± 0.06 ppm) and southern Africa (Jan-

uary: 0.13±0.07 ppm, July: 0.05±0.07 ppm). These are also

areas with large atmospheric gradients. The high values in

Southern Hemisphere summer suggest a seasonal cycle in the

biogenic feedback error. Globally, the average biogenic feed-

back error is smaller (< 0.01 ppm) in January and increases

slightly in July (0.02±0.00 ppm), following the seasonal de-

pendence of biogenic fluxes.

The error in atmospheric XCO2 caused by transport model

uncertainties correlates with the error caused by both the an-

thropogenic uncertainties and biogenic feedback uncertain-

ties, as these are the regions with the largest fluxes and, as

a result, the largest gradients. The globally averaged XCO2

error resulting from the initial model error, model physics er-

ror and combined transport error is 0.06 ± 0.00 ppm, 0.09 ±

0.00 ppm and 0.10 ± 0.01 ppm, respectively. Over regions

with a high biogenic flux the average transport error fur-

ther increases, e.g. the Amazon (January: 0.24 ± 0.18 ppm,

July: 0.20 ± 0.15 ppm) and southern Africa (January: 0.30 ±

0.26 ppm, July: 0.18±0.21 ppm). The transport error in these

regions exhibits a similar seasonal cycle to the biogenic feed-

back error, most likely caused by the increased flux in South-

ern Hemisphere summer. The increase in transport error is

also evident over regions with a high anthropogenic flux (Ta-

bles 3 and 4). The average transport model error over these

hotspots is similar in July (0.32 ± 0.17 ppm) and January

(0.32 ± 0.22 ppm). Considering most of the sites are in the

Northern Hemisphere this would suggest there is little or no

seasonal variability in the average transport error over an-

thropogenic hotspots, although certain hotspots show some
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Figure 2. IFS model XCO2 (ppm) standard error across the 50-member ensemble over three TCCON sites for seven different model config-

urations (a, b, c). The XCO2 signal generated by uncertainties in anthropogenic emissions divided by the noise from remaining model error

over the same TCCON sites (d, e, f). For acronym definitions, see Table 1.

Figure 3. Standard error of IFS model CO2 profiles (ppm) across the 50-member ensemble for 5 January 2015 over three TCCON sites. En-

semble configurations consist of perturbed initial meteorological conditions (top row), perturbed model physics (second row), both perturbed

initial conditions and physics (third row), perturbed biogenic emissions caused by transport uncertainty (fourth row), perturbed emissions

using monthly anthropogenic uncertainties per sector and country (fifth row), perturbations of the combined transport, biogenic feedback,

and anthropogenic emission uncertainties (bottom row). Note that the colour scale is logarithmic.

seasonal variability (e.g. Los Angeles). The maximum trans-

port error for all times and locations is 9.2 ppm, although

globally for individual grid cells and times the error only ex-

ceeds 0.5 ppm for ∼ 1 % of the time.

The signal-to-noise ratio using monthly and annual anthro-

pogenic uncertainties is location and time dependent, shown

in Fig. 5 and for various emission hotspots in Tables 3 and 4.

After the initial 2–3 d this ratio is typically below 1 when us-

ing prior annual anthropogenic uncertainties, with exceptions

over eastern Asia and the Middle East. For prior monthly un-

certainties, large parts of North America, Europe, Asia and

some Southern Hemisphere hotspots consistently exceed 1.
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Figure 4. Global standard error of IFS model XCO2 (ppm) across the 50-member ensemble after 6 h, 24 h and 10 d. Errors shown are from

uncertainties in biogenic emissions caused by meteorological uncertainty (a), monthly anthropogenic emission uncertainties per sector and

country (b), model transport uncertainty (c), and a combination of all uncertainties (d).
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Figure 5. Global signal-to-noise ratio of IFS model XCO2 across the 50-member ensemble after 6 h (a, b), 24 h (c, d) and 10 d (e, f). The

signal is the atmospheric response to annual (a, c, e) and monthly (b, d, f) anthropogenic emission uncertainty, and the noise is the transport

and biogenic feedback error.

Further work is required to investigate more robust daily, or

even hourly, uncertainty estimates for each sector, which is

relevant for posterior error reductions at high temporal fre-

quencies. The increased uncertainty in fluxes at higher tem-

poral resolution will result in a more accurate total error, in-

creasing the signal-to-noise ratio and resulting in increased

posterior error reductions.

4.3 Impact of ensemble size

After 2–3 d the global average transport model error reaches

a steady state at which the model error growth balances with

the atmospheric mixing caused by CO2 gradients (Fig. 6).

Afterwards, the global transport model error remains approx-

imately 0.1 ppm for all ensemble sizes. Globally, as ensemble

size tends toward 50, the error across all ensemble members

converges.

Here, we investigated the required ensemble size to ade-

quately represent the prior XCO2 PDF using multiple sizes

available. The model error is within 5 % of the 50-member

ensemble error for ensemble sizes of 40, 39 and 43 for Paris,

Caltech and Tsukuba, respectively (Fig. 6). Ensemble sizes

< 40 provide model error approximations that may not be

suitable for use in inversions. Computational cost currently

limits the use of larger ensemble sizes, and optimum ensem-

ble size investigations indicated that the 50-member ensem-

ble may provide an adequate sample for meteorological er-

rors (Leutbecher et al., 2017), although CO2 poses more spe-

cific challenges and requirements.

To investigate the suitability of representing the transport

error with a Gaussian PDF, ensemble members were binned

into 0.05 ppm bins and a non-linear least-square fit was ap-

plied to provide an estimated Gaussian fit for a PDF with

three terms: A0, A1 and A3.

f (x) = A0e
−

(

x−A1
A2

)2

2 (1)

Assuming the prior PDF is Gaussian, results show that en-

semble sizes ≤ 50 can fail to represent a suitable distribution

and contain spurious noise. Over Paris and Caltech, a Gaus-

sian distribution is relatively well-captured by a 50-member

ensemble; however, for Tsukuba either more ensemble mem-

bers are required or the PDF is not Gaussian.

4.4 Error correlation

The noise generated by small ensemble sizes creates spurious

spatial and temporal error correlations in the XCO2 trans-

port error (Fig. 7). This localisation problem is typically ad-

dressed by limiting the distance of correlations considered
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Table 3. Average, minimum and maximum total-column model CO2 error statistics for the transport model error and the atmospheric response

to monthly emission uncertainties (signal), as well as the signal-to-noise ratio for various emission hotspots for January 2015. Results are

calculated from the 50-member IFS ensemble.

Transport Transport error Emission Emission signal Signal-to-

location error (ppm) (min–max, ppm) signal (ppm) (min–max, ppm) noise ratio

Johannesburg 0.24 ± 0.08 0.10–0.62 0.19 ± 0.07 0.10–0.40 0.79 ± 0.34

London 0.12 ± 0.03 0.05–0.22 0.05 ± 0.02 0.02–0.15 0.39 ± 0.17

Los Angeles 0.55 ± 0.43 0.06–2.23 0.91 ± 0.43 0.26–1.97 1.66 ± 1.16

Moscow 0.19 ± 0.11 0.05–0.71 0.23 ± 0.09 0.12–0.65 1.23 ± 0.76

New York 0.15 ± 0.08 0.05–0.48 0.19 ± 0.09 0.06–0.47 1.29 ± 0.72

Riyadh 0.14 ± 0.10 0.06–0.81 0.28 ± 0.13 0.11–0.75 2.07 ± 0.77

Seoul 0.19 ± 0.13 0.05–0.86 0.21 ± 0.15 0.03–0.79 1.09 ± 0.49

Shanghai 0.65 ± 0.57 0.15–3.75 1.44 ± 0.63 0.60–4.29 2.20 ± 0.97

Singapore 0.22 ± 0.07 0.12–0.56 0.09 ± 0.03 0.04–0.18 0.39 ± 0.14

Tokyo 0.79 ± 0.95 0.09–5.50 0.28 ± 0.27 0.04–1.38 0.36 ± 0.24

Kendal∗ (RSA) 0.33 ± 0.15 0.08–0.88 0.15 ± 0.05 0.07–0.29 0.44 ± 0.20

Waigaoqiao∗ (CHN) 0.42 ± 0.28 0.14–1.27 0.74 ± 0.63 0.15–2.57 1.77 ± 0.81

Neurath∗ (DEU) 0.14 ± 0.07 0.06–0.59 0.06 ± 0.03 0.02–0.18 0.41 ± 0.22

∗ Denotes large power stations.

Table 4. Average, minimum and maximum total-column model CO2 error statistics for the transport model error and the atmospheric

response to monthly emission uncertainties (signal), as well as the signal-to-noise ratio for various emission hotspots for July 2015. Results

are calculated from the 50-member IFS ensemble.

Transport Transport error Emission Emission signal Signal-to-

location error (ppm) (min–max, ppm) signal (ppm) (min–max, ppm) noise ratio

Johannesburg 0.18 ± 0.11 0.05–0.69 0.26 ± 0.18 0.06–0.87 1.64 ± 0.91

London 0.16 ± 0.06 0.05–0.36 0.05 ± 0.02 0.02–0.11 0.34 ± 0.17

Los Angeles 0.18 ± 0.06 0.05–0.37 0.49 ± 0.29 0.11–1.48 2.78 ± 1.23

Moscow 0.25 ± 0.14 0.08–0.70 0.23 ± 0.12 0.10–0.76 1.01 ± 0.45

New York 0.36 ± 0.13 0.16–0.78 0.38 ± 0.20 0.06–1.11 1.06 ± 0.43

Riyadh 0.14 ± 0.10 0.04–0.59 0.11 ± 0.07 0.04–0.40 0.87 ± 0.33

Seoul 0.39 ± 0.17 0.14–0.85 0.43 ± 0.20 0.07–0.85 1.16 ± 0.40

Shanghai 0.67 ± 0.11 0.05–3.29 1.16 ± 0.18 0.06–3.14 2.32 ± 0.59

Singapore 0.24 ± 0.09 0.11–0.53 0.21 ± 0.06 0.09–0.37 0.96 ± 0.29

Tokyo 0.61 ± 0.38 0.16–2.60 0.48 ± 0.30 0.11–1.49 0.93 ± 0.58

Kendal∗ (RSA) 0.32 ± 0.32 0.06–1.72 0.16 ± 0.09 0.05–0.44 0.74 ± 0.44

Waigaoqiao∗ (CHN) 0.42 ± 0.33 0.09–1.88 0.52 ± 0.50 0.07–2.40 1.19 ± 0.66

Neurath∗ (DEU) 0.23 ± 0.15 0.06–0.98 0.09 ± 0.06 0.02–0.29 0.39 ± 0.18

∗ Denotes large power stations.

within the inversion (e.g. Miyazaki et al., 2011) or by ap-

plying a decay function (e.g. Chatterjee et al., 2012). Here

we propose that temporal filtering, as shown by artificially

creating a 150-member ensemble using neighbouring times

from a 50-member ensemble, could be used to reduce spu-

rious error correlations. This is only applicable with suitably

high-frequency model data. By filtering a small ensemble (10

members) using time smoothing and finding the best fit to a

50-member ensemble, it is typically found that a 2 h smooth-

ing is optimum with our model set-up (T−1, T0, T+1). The

optimum filter length, however, is location and time depen-

dent.

For a given location we assume that non-spurious correla-

tions are represented by surrounding XCO2 error correlation

values, which are both part of the spatial extent of the plume

and greater than the derived e-folding correlation length scale

(R > e−0.5). Here we consider the plume to be represented

by correlation values that continuously remain above e−0.5,

extending out from the given location. The maximum dis-

tance of these correlations from the artificially generated

TME 150-member ensemble can range between maximum

distances of 30 to 520 km over Paris (Fig. 7). Over Caltech

and Tsukuba these range from 0 to 230 km and 30 to 700 km,

respectively. The flow dependency suggests that a predefined
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Figure 6. Global average XCO2 (ppm) standard error from the IFS model over 15 d for a 3- (red), 5- (orange), 10- (green), 15- (turquoise),

25- (blue), 40- (purple) and 50-member (black) ensemble (top). A binned density plot of the change in normalised error relative to the 50-

member ensemble with respect to ensemble size (second row). The normalised error is computed for each ensemble size for 120 different

times (January 2015) before being binned. Histogram showing IFS model XCO2 from a 10-, 25- and 50-member ensemble after 5 d. Note

that all ensembles shown consist of initial meteorological uncertainty and perturbed model physics (TME).

distance for the correlation filter might limit the available

useful information within the inversion system, even when

the filter is spatially varying. The application of the flow-

dependent structure to inverse systems can be computation-

ally expensive; as a result, offline systems should adopt a

simplified approach to represent the errors derived here.

For a given time and location, assuming a Gaussian error

correlation structure may cause an underestimation or over-

estimation of the correlation length scale, depending on di-

rection (Figs. 8 and S3). For most situations, regardless of lo-

cation, the shortest correlation length scale is close to the av-

erage correlation length in all directions; however, the down-

wind correlation length scale is typically around twice as far.

Downwind is defined as the plume direction at model out-

put time.

For January, the time- and direction-averaged error corre-

lation length scale, assuming a Gaussian distribution, varies

across all three sites (Paris 67 ± 24 km, Caltech 17 ± 16 km

and Tsukuba 59±26 km). In July, over Paris and Tsukuba, the

average correlation length scale is reduced to 61±22 km and

35 ± 16 km, respectively, whereas there is a slight increase

over Caltech to 26±14 km. The large decrease in correlation

length scale detected over Tsukuba in summer may be a re-

sult of dominant mesoscale biogenic fluxes in the region dur-

ing summer months masking the plume from anthropogenic

hotspots. The variability in average correlation length scale is

reduced at all three sites during Northern Hemisphere sum-

mer, which is also likely to be the result of a more active

background biogenic flux limiting the maximum spatial ex-

tent of the signal from anthropogenic hotspots. Seasonal vari-

ability in local meteorological systems is also likely to cause

observed changes in the correlation length scales derived. At

all three locations the average error correlation length scale in

all directions varies considerably with time, suggesting that

flow-dependent information is required and no single length

scale should be used (Figs. 8 and S3).

The average error correlation in both time and space simul-

taneously is also considered, again using a simplistic Gaus-

sian assumption (Figs. 8 and S3). This shows that the time

component of the average error correlation varies with loca-

tion, with an average time correlation length scale decreasing

with distance.

For January Paris (80 min) and Tsukuba (150 min) both

show a relatively short average time correlation length scale

but a long spatial length scale, whereas Caltech (260 min)

has a longer time correlation length scale and shorter spatial

length scale. For July the correlation length scale increases

over both Paris (120 min) and Tsukuba (170 min), with de-
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Figure 7. A snapshot of regional XCO2 error correlation structure with respect to Paris XCO2 from the 10-member (a) and 50-member (b)

IFS model ensemble after 4 d, when the ensemble consists of perturbed initial meteorology and model physics (transport error). (c, d) The

same as (a, b) but including the preceding and subsequent model time steps (±1 h), artificially increasing the correlation sample to 30 and

150 members. (e, f) The same correlation calculations as (d) (150 members consisting of ±1 h) but for two different times, highlighting

the flow dependence in error correlation structure. The star denotes the column over Paris, and the black arrows denote the downwind and

across-wind directions used to calculate further and the shortest correlation lengths for a given time (see Fig. 8).

creases over Caltech (160 min). Differences between loca-

tions and seasons are caused by changes in fluxes, meteorol-

ogy and orography. For instance, over Caltech, shorter spa-

tial correlations and longer time correlations result from the

impact of the Los Angeles basin, which reinforces air stagna-

tion during winter. This effect is less pronounced during the

summer due to the presence of stronger sea breezes.

5 Discussion

We have performed multiple ensemble simulations of CO2

using an online NWP model to quantify sources of atmo-

spheric model uncertainty. We have individually diagnosed

the relative contribution of uncertainties from the initial me-

teorological state and model physics to the total transport er-

ror. This work can be used to inform future atmospheric flux

inversion studies on the spatio-temporal variability of model

transport error, which is typically lacking. By utilising the

online capability of the ESM, we have also diagnosed the

biogenic flux feedback error associated with uncertainties in

atmospheric meteorology. We have performed ensemble sim-

ulations using perturbed anthropogenic emissions to investi-

gate the signal-to-noise ratio, which provides a first assess-

ment of the posterior error reductions in an anthropogenic in-

version system. Finally, we have diagnosed error correlations

and correlation length scales at selected sites. To evaluate the

diagnosed error, the results were validated at three TCCON

sites. The ensemble-derived uncertainties found here will be

used to model transport errors in a proposed future opera-

tional global CO2 monitoring system being developed as part

of the CO2 Human Emissions project.

The transport error is shown to be spatio-temporally vary-

ing and is largest near biogenic and anthropogenic flux

hotspots. Transport errors over anthropogenic flux hotspots

are on average 0.1–0.8 ppm and 0.1–0.7 ppm for January and

July, respectively. This transport error is comparable to un-

certainties in the prior monthly anthropogenic emissions pro-

jected onto the observation (XCO2) space over the same re-

gions (January: 0.1–1.4 ppm, July: 0.1–1.2 ppm). However,

since the proposed future monitoring system will be based

on prior flux uncertainties associated with higher temporal

resolutions than those used here (daily and hourly), a signifi-
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Figure 8. A snapshot of XCO2 error correlation with respect to Paris (a, d, g), Caltech (b, e, h) and Tsukuba (c, f, i) as a function of distance

for a 50-member IFS model ensemble after 4 d (a, b, c). These panels show the directionally averaged (black dashed line), downwind (blue

dashed line) and across-wind (red dashed line) correlation values with a Gaussian fit (solid lines) in addition to the derived correlation length,

where R = e−0.5 (vertical solid lines). The directionally averaged derived correlation lengths for 120 sample times for January 2015 are

placed in 10 km bins for all three sites (d, e, f). The directionally averaged and time-averaged error correlation values for the same 120

sample sizes as a function of both time and distance (g, h, i).

cant increase in the signal-to-noise ratio is expected. The es-

timation of high-frequency transport error covariance struc-

tures is essential to ensuring the reliability of the future inver-

sion system. With potential future improvements to bottom-

up flux estimations the signal-to-noise ratio may further de-

crease in the future, decreasing the posterior error reduction

values that could be expected from such a system. The spa-

tial and temporal variability of errors and resulting signal-to-

noise ratios are influenced by neighbouring hotspots, local

orography and meteorological variability. Our findings, on a

global scale, agree well with the regional study of Chen et

al. (2019).

Atmospheric CO2 transport error initially grows and then

plateaus after 2–3 d, depending on the location. After this

time the error growth from uncertainties in transport balances

out with the atmospheric CO2 mixing, resulting in a globally

averaged transport error of ∼ 0.1 ppm.

A noticeable transport error is identified in both the near-

surface model levels and in the total-column CO2. As a re-

sult, it is likely to impact both satellite- and surface-based at-

mospheric inversions. These results highlight the importance

of including detailed transport error within atmospheric CO2

inversions, as most previous studies either ignore it or use a

simplistic representation of model transport error, leading to

overconfidence in results. The near-surface errors found here

at three sites (1.7–7.2 ppm) are comparable to the 3–4 ppm

errors found by Díaz-Isaac et al. (2018).

The atmospheric CO2 error caused by the biogenic feed-

back error as a response to uncertainty in meteorology is

found to be small; however, in regions of high net ecosystem

exchange this value increases to an average of 0.16 ppm and

requires consideration for high-precision atmospheric inver-

sions in those regions. Both the atmospheric response to prior

anthropogenic emission uncertainties and the biogenic feed-

back errors are found to be seasonally dependent for some lo-

cations, caused by seasonal changes in flux and meteorology.

This also results in seasonal variability in the model transport

error over regions of high net ecosystem exchange. The error

associated with biogenic fluxes shown here does not account

for uncertainties in the biogenic model or ancillary informa-

tion (e.g. mapping or plant functional type).

Validation performed with TCCON observations suggests

that the uncertainty derived in model XCO2 from trans-

port uncertainty, anthropogenic flux uncertainty and bio-

genic feedback to meteorological uncertainties accounts for

21 %–65 % of the total model uncertainty, depending on

time and location. An underrepresentation of anthropogenic

flux uncertainty, by using monthly and not higher-temporal-

resolution uncertainties, and other factors including observa-

tion errors, numerical errors, the representation error, miss-

ing biogenic processes and biogenic mapping errors make up

the remaining model uncertainty. These remaining uncertain-

ties are not negligible; for example, a previous study showed

that over the same Caltech site used in this study, the model

representation error is typically 2 ppm for January (Agustí-

Panareda et al., 2019). Future studies should aim to quantify

these additional aspects of model uncertainty.
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The 50-member ensemble used here is shown to provide

a reasonable estimate of the prior PDF; however, for some

regions, ensemble sizes larger than 50 members may be re-

quired. The computational cost of sufficiently large ensemble

sizes to describe the spatial error structures could potentially

be overcome by appropriate filtering techniques of smaller

ensemble sizes (e.g. Lauvaux et al., 2019).

Spurious noise is evident in the transport error correlation

structure of a 50-member ensemble; to address this issue and

prevent further computational costs, we apply a simple time

filtering to artificially increase the member size to 150 mem-

bers. Error correlation structures are shown to be strongly

flow dependent. Using a simplified Gaussian assumption the

average correlation length scale values are found to be be-

tween 0 and 700 km in distance and 0 and 260 min in time,

with a seasonal dependence based on changes in flux and

meteorology.

The transport uncertainty diagnosed here highlights the

importance of accounting for all sources of model error when

performing inversions. Our results are derived using an on-

line NWP system; however, our findings can be used with

various levels of complexity to inform future CO2 offline in-

versions at both the regional and global scale. It should be

noted that whilst these uncertainties can be used in an of-

fline system, several additional errors would also need to

be considered, including interpolation errors and inconsis-

tencies between transport parameterisations. The model er-

ror PDF, although reasonably well-represented by the 50-

member ensemble, requires either additional ensemble mem-

bers or suitable selection techniques (e.g. Díaz-Isaac et al.,

2019), which requires further investigation. For the wider in-

verse modelling community, gridded total errors are available

for the total-column CO2 mixing ratios at 3-hourly intervals

for all of 2015, and hourly gridded transport errors are avail-

able for both the total column and surface for January and

July 2015 at https://doi.org/10.5281/zenodo.3703136.

Code availability. The IFS source code is available subject to

a licence agreement with the ECMWF; see also Leutbecher et

al. (2017) for details on the ensemble model description and spe-

cific details of the code relevant to this study, including the use of

the EDA and SPPT. ECMWF member-state weather services and

their approved partners will be granted access. Components of the

IFS code relevant to this study (e.g. SPPT), without modules for

data assimilation, are also available for educational and academic

purposes as part of the OpenIFS project (https://software.ecmwf.int/

wiki/display/OIFS/OpenIFS+Home, last access: 9 December 2019;

OpenIFS project, 2019). Technical developments specifically re-

lated to the work detailed here are available upon request; please

contact joe.mcnorton@ecmwf.int. The specific code relevant to this

study for emissions perturbations based on given log-normal uncer-

tainties is available at https://doi.org/10.5281/zenodo.3750842 (Mc-

Norton et al., 2020).

Data availability. Model data are available online through

the ECMWF Meteorological Archive and Retrieval System

(MARS) catalogue, but access may be limited. Model output

data are available upon request to joe.mcnorton@ecmwf.int.

Ensemble-based error calculations for 2015 are available at

https://doi.org/10.5281/zenodo.3750842 (McNorton et al., 2020).
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