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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Most Artificial Intelligence programs lack generality 

because they reason with a single domain theory that 

is tailored for a specific task and embodies a host of 

implicit assumptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAContexts have been proposed 

as an effective solution to this problem by providing a 

mechanism for explicitly stating the assumptions un- 

derlying a domain theory. In addition, contexts can 

be used to focus reasoning, allow the representation of 

mutually incoherent domain theories, lift, axioms from 

one context into another, and transcend a context. In 

this paper we develop a simple propositional logic of 

context suitable for representing and reasoning with 

multiple domain theories. We introduce contexts as 

modal operators, and allow different, contexts to have 

different vocabularies. We analyze the computational 

properties of the logic, providing the central compu- 

tational justification for the use of contexts. We show 

how the logic effectively handles the common uses of 

contexts. We also discuss the extensions needed to 

handle first-order logic. 

Introduction 

Artificial Intelligence is founded upon the idea that any 

domain of interest can be described within a formal 

language, and that an artificial agent can draw mean- 

ingful conclusions about the domain purely by reason- 

ing within the formal language. The impressive suc- 

cess of various AI programs is testimony to the power 

of this idea. However, as noted by McCarthy (1987), 

most of these programs lack generality. A key source 

of this lack of generality is that most programs reason 

with a single domain theory. Such a theory is usu- 

ally tailored for a specific task, embodying a host of 

implicit assumptions, making it inapplicable for rea- 

soning about other tasks. For example, typical ax- 

iomatizations of engineered systems do not account for 

the extreme environmental conditions encountered in 

space exploration, e.g., very high or low operating tem- 

peratures, gamma radiation, vacuum conditions. This 

leads to simpler axiomatizations that are adequate for 

a variety of design tasks, but that are inapplicable for 

the the design of a new space probe. 

The specificity of domain theories is neither avoid- 

able nor undesirable. It is unavoidable because any ax- 

iomatization of a real-world domain, however detailed, 

will invariably miss some subtle nuance. It is desirable 

because the specificity often buys us computational ef- 

ficiency in reasoning. The goal, then, is to provide an 

artificial agent with a variety of domain theories, with 

varying generality and computational efficiency, and 

have it automatically select the theories most appro- 

priate to the task at hand. 

Contexts 

McCarthy (1987; 1993) and Guha (1991) have argued 

persuasively that the notion of context is an effective 

solution to the problem of representing and reasoning 

with multiple domain theories. The basic idea is to en- 

capsulate a domain theory within a context, and to ex- 

plicitly state the assumptions underlying this context.’ 

This provides a mechanism for using the simplest, and 

most efficient, applicable domain theory in every situ- 

ation. 

In addition to providing a mechanism for explicat- 

ing the assumptions underlying a domain theory, Mc- 

Carthy and Guha have identified a variety of other 

uses of contexts. Collecting together a set of related 

axioms into a context can be used to focus reasoning. 

Consider SIGMA, a knowledge-base of scientific domain 

knowledge that supports building consistent, coherent, 

and executable domain models (Keller, Rimon, & Das 

1994). SIGMA contains axioms describing two different 

application domains: modeling the atmosphere of Ti- 

tan (a moon of Saturn), and modeling a forest ecosys- 

tem. By separating the axioms of these two domains 

into different contexts, reasoning can be easily focused 

on just the axioms of the domain of interest. 

Encapsulating domain theories within a context sup- 

ports the representation of mutually incoherent do- 

main theories. Domain theories can be mutually in- 

coherent in a number of ways. First, they can use 

the same propositions with entirely different meanings. 

‘Of course, it is often not possible to state &I the as- 

sumptions underlying a context. 
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For example, a “ low temperature”  in the context of Ti- 

tan is quite different from a “ low temperature”  in the 

context of an Earth-based forest ecosystem. Second, 

different theories can can be mutually inconsistent. For 

example, in modeling the gases in Titan’s atmosphere, 

two different, and mutually contradictory, axiomati- 

zations are possible: gases can be modeled as being 

either ideal or non-ideal. Both axiomatizations can co- 

exist peacefully by placing them in different contexts. 

Third, different domain theories are possible depending 

on one’s perspective. Separating these different theo- 

ries into different contexts simplifies knowledge base 

construction. For example, different ecosystem pro- 

cesses are best described at different time scales. The 

growth of trees is best described using a time scale of 

years, while photosynthesis is best described using a 

time scale of hours. Describing processes at inappro- 

priate time scales is both difficult and opaque. Sepa- 

rating such descriptions into different contexts solves 

this problem. 

Another important benefit of contexts stems from 

the ability to lift axioms from one context into another 

context. The simplest form of such lifting involves in- 

heriting all the axioms of one context into another con- 

text. As with other forms of inheritance, this supports 

reuse and facilitates the construction and maintenance 

of large knowledge bases. For example, both the Titan 

modeling context and the ecosystem modeling context 

in SIGMA need axiomatizations of quantities and equa- 

tions. This axiomatization can be placed in its own 

context, and reused in the Titan and the ecosystem 

contexts via inheritance. 

More sophisticated forms of lifting allow axioms in 

one context to be modified before being lifted into an- 

other context. Adapting an example from (McCarthy 

1993), let context Cl be the specialization of context 

Cz to a specific time t. Since time is fixed in Cl, it 

remains implicit. Lifting an axiom from Cl to Cz re- 

quires the time to be made explicit. For example, the 

proposition at(jmc, stanford) in Cl would have to be 

modified to the proposition at(jmc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstun f ord, t) before 

being lifted into C2. Similar modifications are needed 

when a context specializes to a speaker, a hearer, a lo- 

cation, etc. Modifications are also needed when axioms 

are lifted from one context into another context with 

fewer underlying assumptions. The implicit assump- 

tions of the former context need to be made explicit. 

Finally, the most ambitious use of contexts is to al- 

low an AI system to transcend its current context, ei- 

ther by being told how, or by autonomous learning and 

discovery. For example, a system should be able to 

transcend the simpler context of Newtonian mechan- 

ics and move to the more general context of quantum 

mechanics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Logics of context 

Recently, there has been much interest in developing 

logics of context (Guha 1991; BuvaE & Mason 1993). 

Much of this work has focussed on developing new syn- 

tax and semantics for such a logic. However, we feel 

that, for the purposes of representing and reasoning 

with multiple domain theories, most aspects of a logic 

of context are naturally captured by simple extensions 

to traditional modal logic. In this paper, we focus on 

propositional modal logics, and introduce a modal op- 

erator, Ca, for the ith context and allow different con- 

texts to have different vocabularies. We introduce an 

axiomatization for the logic, and analyze its compu- 

tational properties. This analysis provides the central 

computational justification for the use of contexts. We 

introduce important relations between contexts, based 

on the notion of interpretation functions (Enderton 

1972),* and show how these relations can be used to 

implement important properties of contexts. We con- 

clude with a brief discussion of the extensions needed 

to handle first-order logic. 

The decision to represent contexts as modal opera- 

tors, rather than as terms, sharply diverges from ear- 

lier work on logics of context (BuvaE & Mason 1993; 

Guha 1991). The reasons are two-fold. First, in the 

propositional case, our Cid is effectively equivalent to 

ist(Ci,qS) in (B uvac & Mason 1993) (ist(Ci, 4) means 

4 is true in context Ci). Second, while introducing 

contexts as terms in a first-order logic leads to a very 

expressive logic (Guha 1991), it also leads to a very 

complex logic. The advantage of contexts as terms is 

that it allows reasoning about the contexts within the 

logic. However, as we shall see, much of what we want 

to say about contexts, and relations between contexts, 

can be easily stated and used in a meta-theory, and 

communicated to the logic via axiom schemas. Hence, 

it is worthwhile to investigate the properties of a sim- 

pler logic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Propositional logic of contexts 

The propositional logic of contexts is a propositional 

modal logic in which we introduce a modal operator, 

Ci, to represent the ith context. Viewing contexts as 

modal operators immediately provides us with one of 

the important properties of contexts: the wffs in dif- 

ferent contexts can be mutually incoherent. Different 

contexts can use the same propositions with different 

meanings. The wffs in different contexts can be mutu- 

ally inconsistent (though the contexts themselves re- 

main consistent). Different perspectives can be easily 

accommodated using different contexts. 

Syntax 

Given a set P = {PI, . . . , Pm} of propositions and 

c = (Cl,..., Cn} of context operators, the set of all 

wffs of the logic is defined by the usual rules of propo- 

sitional modal logic. However, not all these wffs are 

meaningful because different contexts can use different 

vocabularies. For example, the propositions used to 

describe a forest ecosystem will be quite different from 

the propositions used to describe Titan’s atmosphere; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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any reference to photosynthesis in the latter context is 

meaningless. Note that, in general, a context’s vocab- 

ulary may itself be context dependent. For example, 

a context describing an Eskimo’s beliefs would include 

multiple words for snow, while the vocabulary of the 

same context from the point of view of a person living 

in the tropics would include just one word for snow. Al- 

lowing a context’s vocabulary to be context dependent 

leads to a slightly more complex semantics and axiom- 

atization (cf. (BuvaE & Mason 1993)). As we will 

see, our use of contexts does not need context depen- 

dent context vocabularies. Hence, we have simplified 

the presentation by assuming that context vocabular- 

ies are context independent. 

The vocabulary of a context Ci is the set of propo- 

sitions that can be used immediately within the scope 

of Ci. (A proposition is immediately within the scope 

of Ci when it is within the scope of Ci but not within 

the scope of another context operator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj , which is 

within the scope of Ci.) Formally, the vocabulary of 

the contexts in C is defined by a function voc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: C + 2p 

that maps a context into a subset of P. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlanguage 

of Ci is just the set of propositional wffs that can be 

constructed using the propositions in voc(Ci). A wff 4 

is meaningful with respect to woe if all occurrences of 

propositions in 4 are consistent with VOC, i.e., if pi oc- 

curs immediately within context Ci, then pi E voc(Ci). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Semantics and axiomatization 

The basic semantics of the logic are standard possible 

worlds semantics. A model M of the logic defined by 

(P, C, VOC) is a Kripke structure (IV, R, T), where W 

is the set of possible worlds, R = {RI, . . . , Rn) is a 

set of binary accessibility relations on IV, and 7r : W x 
P --+ {T, F} is the valuation function that assigns truth 

values to the propositions in P at each of the worlds 

in W. Satisfaction at a world w E W for meaningful 

wffs is then defined in the standard way with Ri being 

the accessibility relation for context Ci. 

Let M, denote the class of all Kripke structures for 

n contexts. A meaningful wff 4 is valid in M, iff it is 

satisfied at every world of every structure in M,. The 

basic axiomatization, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, , of the set of valid meaningful 

wffs is the usual axiomatization of propositional modal 

logic (e.g., the axiomatization Kn in (Halpern & Moses 

1992)), appropriately restricted to meaningful wffs as 

follows: 

(Al) All meaningful instances of propositional tau- 

tologies 

(A2) All meaningful wffs of the form 

(Ci4 A Ci(4=+)) * Ci+, 1 I i I n 

(Rl) From l- 4 and I- 4+4 infer l- $ 

(R2) From I- 4 infer l-- Ci4 if Ci 4 is meaningful 

The usual proof of the soundness and completeness of 

this axiomatization with respect to M, (cf. (Halpern 

& Moses 1992)) appl ies here with slight modifications. 

Detailed proofs of all results in this paper can be found 

in (Nayak 1994). 

Multiple domain theories 

The axiomatization Cn is weak in the sense that it does 

not significantly restrict the properties of contexts, or 

their interrelations. Additional axioms are needed to 

tailor the logic to particular applications. We now in- 

troduce an axiomatization, -T,, tailored to reasoning 

about multiple domain theories. 

Axiomat izat ion Fn 

The essential element in reasoning about multiple do- 

main theories is that there is no need to reason about 

nested contexts. Nested contexts are useful when the 

properties of a context are different depending on the 

point of view. We have already seen how the vocabu- 

lary of a context can itself be context dependent. An- 

other important example is belief contexts, where the 

beliefs of an agent differ depending on the point of view 

(my beliefs about your beliefs are almost certainly dif- 

ferent from your beliefs). Nested contexts are useful for 

expressing ignorance about, and for hiding, properties 

of contexts. 

Since our overall goal is to choose amongst multiple 

domain theories, we see no need to hide any informa- 

tion. On the contrary, we want to be able to use all 

available information to make the best possible choice. 

It is due of this that we chose to assume that a con- 

text’s vocabulary is context independent. To ensure 

that the properties of contexts are context indepen- 

dent, we introduce the following two axioms in Fn: 

(A3) Ci4 3 CjCi4 for 1 < i, j < n - 

(A4) -Ci4 3 CjTCi4 for 1 < i-j < n -7 - 

A3 and A4 are generalizations of the positive in- 

trospection (Ci4*CiCi4) and negative introspection 

(-Ci 4=Gi-&‘i4) axioms, respectively. They ensure 

that every context knows about what every other con- 

text does and does not know, i.e., the facts true in 

a context are context independent. To complete the 

axiomatization _Tn., we require all contexts to be con- 

sistent (this axiom is commonly called D): 

(A5) Ci4 =+ -Cil4 for 1 < i < n -  -  

In summary, the axiomatization F;t augments C, 

with axioms A3, A4, and A5. Note that 3;, does not 

include the axiom T (Ci 4 a 4) since we do not require 

a context’s facts to be true. This may seem surprising 

since these contexts are domain theories, and hence 

ought to include only true domain facts. However, 

most useful domain theories are only approximations 

of the domain, and hence include facts that are not 

strictly true. For example, a context may assume that 

all gases are ideal gases. Since gases are not really 

ideal, the predictions of such a context are not strictly 
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true. However, in practice, such contexts are both use- 

ful and common. 

The axiomatization 3n achieves our goal of not hid- 

ing any information in the following sense: any mean- 

ingful wff is equivalent to a wff with no nested contexts. 

Let a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApropositional Ziterul be either a proposition in P 

or its negation, and a propositionall cdause be a disjunc- 

tion of propositional literals. Let a contextual literal be 

a context operator or its negation applied to a proposi- 

tional clause. Let a contextual clause be a disjunction 

of contextual literals, and a general clause be a disjunc- 

tion of propositional and contextual literals. Finally, 

let a wff be in conjunctive normal form (CNF) iff it is 

a conjunction of general clauses. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lemma 1 Every meuningfuZ wfl, 4, of F, is equivu- 

lent to a meaningful wfl, 4’, in CNF, i.e., 3n !- -  4 u 4’. 

Since a wff in CNF has no nested contexts, it follows 

that every meaningful wff is equivalent to a meaningful 

wff without nested contexts. 

Correspondences 

To assist in the complexity analysis of _Tn, we investi- 

gate the correspondences between its axioms and the 

accessibility relations of its models. It is well known 

that the axiom A5 corresponds to the accessibility re- 

lations being serial. (An accessibility relation Ri is 

serial on the set W if for all w E W there is a w’ E W 

such that (w, w’) E Ri.) The correspondences of A3 

and A4 are generalizations of transitive and euclidean 

accessibility relations, respectively. Let us say that the 

set R = (RI,. . ., Rn} of accessibility relations on W is 

hyper-transitive iff for all x, y, z E W and 1 5 i, j 5 n 

we have: 

(x, Y) E Rj A (y, z) E Ri * (x:, 2) E Ri (1) 
R is said to be hyper-euclideun iff for all x, y, z E W 

andl<i,j<nwehave: 

(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY) E Rj A (x, 2) E Ri * (Y, z> E Ri (2) 

One can show that axiom A3 corresponds to a hyper- 

transitive accessibility relation, while A4 corresponds 

to a hyper-euclidean accessibility relation. 

The above correspondence results can be used to 

show that, in the case of 3;,, we can further restrict 

our attention to particularly simple Kripke structures 

with one distinguished world, intuitively describing the 

“ real”  world, and a set of worlds for each context, 

which are the worlds considered possible by that con- 

text in every world. More formally, say that 4 is 3n- 

consistent iff _Tn I+ 74. We have: 

Lemma 2 If a meaningful wfl4 is 3’, -consistent, then 

4 is satisfiable in a structure M = (W , R, V) such that 

W  = {wg} Ul<i<n W i and Ri = W  x W i, 1 < i 5 n. - -  

The world ws is the “ real”  world, and the worlds W i 

are the worlds that context Ci considers possible in 

every world. 

Complexity 

Let us now consider the complexity of the satisfiability 

problem of 3,. Since .;F, contains propositional logic, 

satisfiability is certainly NP-hard. Furthermore, it is 

easy to see that satisfiability is NP-hard both in the 

number of propositions and the number of context op- 

erators. To show that satisfiability is NP-complete, we 

can use Lemma 2 to show that satisfiable 3n wffs are 

satisfiable in Kripke structures with “very few”  states. 

In the following, let 141 denote the length of 4. 

Lemma 3 A meaningful w#, 4, of 3n is satisfiable ifl 

it is sutisfiubde in a Kripke structure with at most 141 
states. 

The following theorem is an immediate consequence: 

Theorem 1 The sutisfiubility problem for 3;t is NP- 

complete. 

The above theorem is interesting because the satis- 

fiability problems of other common modal logics with 

n > 1 modal operators (h’,, Tn, S4,, S5,, KD45,) 

are all PSPACE-complete (Halpern & Moses 1992). 

While the above theorem applies to satisfiability 

of arbitrary wffs, in practice we are often interested 

in wffs of a restricted syntactic form. Say that a 

clause is weakly Horn if it has at most one posi- 

tive propositional or contextual literal. For exam- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ple, 1~11 V X’i(pz V ~3) V Czp~ is a weakly Horn 

clause. Say that a clause is strongdy Horn if it is 

weakly Horn, and each contextual literal in the clause 

is the result of applying a context operator (or its nega- 

tion) to a propositional Horn clause. For example, 

7~1 V %71(lp2 V p3) V Cz(lpr V ~4) is a strongly 

Horn clause. Weak and strong Horn clauses allow us 

to infer facts from one context to another, while re- 

stricting the forms of disjunction that can be stated. 

These restrictions buy us computational efficiency as 

follows: 

Theorem 2 Let C be a set of clauses of_Tn, ICI be the 

number of contexts in C, (‘PI the number of propositions 

in P, and P,,, be the number of propositions in the 

vocabudury of the context with the largest vocabulary. 

1. if the clauses in C are weakly Horn then deciding the 

SatisfiubiZity of C is polynomial in ICI, but remains 

NP-hard in IPI; 

2. in part 1, if the clauses are contextual clauses, then 

satisfiubidity is NP-hard in P,,, (rather than in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PI); md  
3. if the clauses in C are strongZy Horn then the sut- 

isfiability of C can be decided in time podynomiul in 

both ICI and IPI. 

A procedure analogous to bottom-up evaluation in 

deductive databases (Ullman 1988) allows us to prove 

the above theorem. This theorem is the central com- 

putational justification for the use of contexts in par- 

titioning large KBs to focus reasoning. In particular, 

item 2 in the theorem shows the benefits of breaking 
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up a large KB with a single large vocabulary, into a 

number of smaller contexts with smaller vocabularies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Relations between contexts 

To effectively use multiple contexts, it is important 

to represent and reason about relations between con- 

texts and the assumptions underlying contexts, and to 

lift axioms between contexts. Since our logic does not 

treat contexts as terms, the representation and use of 

context properties must be done in a meta-theory, and 

communicated to the logic via axiom schemas. (In the 

following, a context’s theory is just the set of proposi- 

tional wffs true in the context.) 

The simplest relation between contexts is the weaker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
than relation. A context Ci is weaker than a context 

Cj if every fact true in Ci is also true in Cj, i.e., ev- 

ery wff of Ci is lifted into Cj. Naturally, Ci can be 

weaker than Cj only if Ci’s vocabulary is a subset of 

Cj’s vocabulary. We capture this axiomatically using 

the following axiom schema: 

(A6) Ci4 *Cj4 f or all 4 such that Ci4 is meaningful 

We have already seen how lifting all axioms from 

one context into another facilitates the construction 

and maintenance of a large KB. Furthermore, meta- 

theoretic knowledge of the weaker than relation is use- 

ful for focusing reasoning. For example, to prove Cj4, 

it suffices to prove Ci4. This is particular useful if 

the theory of Ci is Horn. Similarly, to prove 7Ci4, it 

suffices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto prove lCj4. 

CompositionaE modeling (Falkenhainer & Forbus 

1991; Nayak, Joskowicz, & Addanki 1992) provides a 

variant of the weaker than relation which involves ex- 

plicitly representing the assumptions underlying a con- 

text. In compositional modeling, a model fragment is 

a piece of knowledge that is applied if the assumptions 

underlying it are true. We can represent this by in- 

troducing a context Ci for each model fragment mi. 

Let Ai denote the conjunction of the assumptions un- 

derlying rni ,2 and let C be a problem solving context, 

representing the domain description composed out of 

the applicable model fragments. The relationship be- 

tween Ai, Ci, and C is represented by the following 

axiom schema: 

Ai+-(Ci4 +-C4) for all 4 s.t. Ci4 is meaningful 

i.e., the axioms of Ci are lifted into the problem solving 

context if the assumptions underlying Ci hold. Ad- 

ditional relations between assumptions are expressed 

using appropriate wffs. To answer a user query in C, 

Falkenhainer and Forbus provide a meta-theoretic al- 

gorithm to compose a “ simplest”  theory for C by se- 

lecting an appropriate set of consistent assumptions. 

By our definition, Ci can be weaker than Cj only if 

Ci’s vocabulary is a subset of Cj’s vocabulary. HOW- 

ever, this is not always the case, and yet one can often 

21n (Falkenhainer & Forbus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1991) an assumption is just 
a proposition. In general, it can be any meaningful wff. 

say that everything expressible in one context is also 

expressible in another, e.g., earlier we saw that the 

proposition at(jmc, Stanford) in Cl is expressible as 

the proposition at(jmc, stanf ord, t) in C2. We capture 

this using an interpretation function, based upon the 

interpretation between theories discussed in (Enderton 

1972) and following the semantic theory of abstractions 

presented in (Nayak & Levy 1994). We say that the 

vocabulary, voc(Ci), of context Ci can be interpreted 

in Cj iff there is an interpretation function f that as- 

signs to each p E ,oc(Ci) a wff f(p) in the language of 

Cj. The interpretation function f is intended to state 

that p in Ci “ expresses the same thing”  as f(p) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj , 

e.g., f(ut(jmc, Stanford)) = ut(jmc, Stanford, t). It 

can be extended to wffs in the language of Ci in the 

natural way: f(4W) = f(4)kf($), f(l4) = Yf(4). 
Using interpretation functions, and following the ter- 

minology in (Giunchiglia & Walsh 1992), we define the- 

orem decreasing (TD), theorem conserving (TC), and 

theorem increasing (TI) abstractions with the follow- 

ing axiom schemas (in all cases Ci is the more abstract 

context and 4 is any wff in the language of Ci): 

(A7) Ci4 + Cjf(4) (TD-abstraction) 

(A8) C;4 e Cjf(4) (TC-abstraction) 

(A9) Ci4 e Cjf(4) (TI-abstraction) 

TD-abstractions are like weaker contexts except that 

they allow vocabulary changes. TC-abstractions are 

the strongest possible TD-abstractions. In these cases, 

f specifies how a wff 4 is to be lifted from Ci to Cj . One 

can see that specializing a context to a particular time, 

location, speaker, or hearer will correspond to a TD or 

a TC abstraction. Other common relations between 

contexts, such as structural or behavioral abstractions 

are also TD/ TC-abstractions. 

Meta-theoretic knowledge of the TD/ TC-abstrac- 

tion relation can be used to control diagnostic reason- 

ing, where the goal is to find a theory (context) that is 

consistent with the observations. The diagnostic strat- 

egy is based on the observation that axioms A7 and A8 

ensure that if Ci is inconsistent with the observations, 

then so is Cj (see (Struss 1992)). 

TI-abstractions are best viewed as TC-abstractions 

under certain simplifying assumptions: adding the sim- 

plifying assumptions to the context Cj increases the 

theorems of Cj and makes Ci a TC-abstraction of Cj. 

In particular, if 1c, is the simplifying assumption un- 

derlying the TI-abstraction, then we can incorporate 

1c, using the following axiom schema: 

(AlO) Ci4 e Cj($ * f(4)) 

i.e., 4 is lifted from C; into Cj as $=>f(4). For 

example, the ideal electrical conductor context is a 

TI-abstraction of the electrical resistor context under 

the assumption that the resistance is zero. As with 

TD/ TC-abstractions, TI-abstractions can also be used 

for meta-theoretic control of diagnosis. The difference 

is that if Ci is inconsistent with the observations, either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Cj is inconsistent or the simplifying assumption + does 

not hold (see (Struss 1992)). (Giunchiglia & Walsh 

1992) contains a survey of the uses of TI-abstractions 

in diverse areas including planning, theorem proving, 

and common sense reasoning. 

The logic itself does not provide a means for tran- 

scending its current context (nor, for that matter, can 

any other logic). However, the process of transcending 

a context Cj to a context Ci is equivalent to construct- 

ing the interpretation function f and the simplifying 

assumption $ in axiom AlO. For example, in tran- 

scending the context of Newtonian mechanics, we need 

to specify how Newtonian mechanics is interpreted in 

quantum mechanics ( f), and under what simplifying 

assumptions it holds ($J). 

The potential benefits of using the above relations, 

and thereby having to introduce the above axiom 

schemas, does not increase the worst-case complex- 

ity of satisfiability. This is a consequence of cor- 

respondences between the above axiom schemas and 

a model’s accessibility relations. Say that a world 

2~2 is an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf-abstraction of a world 2~1 (denoted by 

f-abs(ml, UJ~)) iff for every proposition p E uoc(Ci), p 

is true at w2 iff f(p) is true at WI. We have the follow- 

ing correspondences (w, wi, w2 are worlds; Ri and Rj 

are accessibility relations corresponding to Ci and Cj, 

respectively): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 3 A6 is a sound and complete axiomatiza- 

tion of the class of Kripke structures in which Rj C Ri. 

A7 is a sound and complete axiomatixation of the class 

of Kripke structures in which forall w, w1 

(W TW I) E Rj * (3~2 ( W ,W Z) E Ri A f-abs(wl,w2) 

A9 is a sound and complete axiomatization of the class 

of Kripke structures in which for all w, w2 

(w, ~2) E Ri * (3~1 (w, WI) E Rj A f-abs(wl, 202) 

The correspondence for A8 is the combination of the 

ones for A7 and A9. The correspondence for A10 is like 

the one for A8, except that only those Rj accessible 

worlds in which $ is satisfied are considered. Since the 

above properties can be checked in polynomial time, 

satisfiability remains in NP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

First-order logic of context 

In this section we briefly discuss the extensions needed 

for a first-order logic of contexts. The syntax is similar 

to traditional first-order modal logics, appropriately re- 

stricted to handle different context vocabularies. The 

vocabulary of a context now includes constants, func- 

tions, and relations. Functions and relations can have 

different arities in different contexts; occurrences of 

the same relation (function) with different arities just 

correspond to different relations (functions). The se- 

mantics of first-order modal logics are essentially possi- 

ble worlds semantics, where each world is a first-order 

model. The primary difficulty with choosing a satisfac- 

tory semantics is related to deciding how the first-order 

models at each world relate to each other. In partic- 

ular, two decisions need to be made: (a) how are the 

domains at the worlds related; and (b) how are the 

term interpretations at the worlds related. 

The simplest first-order modal logic is obtained by 

assuming that (a) domains at all worlds are identical; 

and (b) terms are rigid, i.e., term denotations are the 

same at every world. This semantics is easily axioma- 

tized by adding the principles of first-order logic to the 

principles of a propositional modal logic (e.g., Cn or 

-T,) and the Barcan formula (\d~Ci~+CiV’z$) (Gar- 

son 1984). However, this is inadequate as a seman- 

tics for contexts. First, this semantics requires that all 

contexts have the same domain, which is clearly inad- 

equate, e.g., the domain of forest ecosystems is clearly 

different from the domain of Titan’s atmosphere. Sec- 

ond, since this semantics allows only rigid terms, it 

precludes the satisfactory treatment of indexicals, i.e., 

terms like “ I,”  and “now”  whose denotations are clearly 

context dependent. 

We address these shortcomings as follows. First, we 

let different worlds have different domains, so that dif- 

ferent contexts can have different domains. Second, 

we allow the denotation of terms to be context de- 

pendent. Note that this differs from many traditional 

first-order modal logics where the denotations of terms 

are world dependent (Garson 1984). There is no need 

to make term denotations world dependent since it is 

perfectly natural to have rigid term denotations within 

each context (i.e., in all worlds considered possible by 

the context); it is just that we don’t want rigid term 

denotations across contexts. 

Space restrictions preclude a detailed description of 

the resulting logic (see (Nayak 1994)). However, it 

is worth noting that any sentence, 4, of this logic is 

equivalent to a sentence, $‘, of the simpler logic with 

fixed domains and rigid terms, where 4’ is the result 

of (a) replacing every occurrence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVx . . . in 4 with 

VxE(z)=I> . . .) where E is a special predicate denoting 

the existents at a world; and (b) every constant d and 

function f occurring immediately within context C is 

replaced by a constant dC and function f c, respec- 

tively, in 4’. This equivalence is useful because when 

we extend F, to a first-order logic, $’  can be converted 

into a canonical form similar to the one in Lemma 1. 

Furthermore, we can define and use abstractions as 

discussed in (Nayak & Levy 1994). 

elated work 

McCarthy first noted the importance of contexts to 

common sense reasoning (McCarthy 1987; 1993). He 

argues that any axiom has limited generality since it is 

true only in a certain context, but that overly general 

axiomatizations are often inconvenient. He suggests 

that formalizing the notion of context is a way out 

of this dilemma. Guha built upon McCarthy’s ideas 

and developed a first-order logic of contexts in which 

contexts are incorporated as terms (Guha 1991). Im- 
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portant contributions of his work include the devel- 

opment of default lifting axioms and the presentation 

of a large array of examples of the use of contexts in 

CYC (Lenat & Guha 1990). The primary difference 

between this work and ours is that we represent con- 

texts as modal operators rather than as terms, leading 

to a simpler, albeit less expressive, logic. However, as 

we have shown, important relations between contexts 

can still be expressed using axiom schemas. 

BuvaE and Mason develop a propositional logic of 

context, and provide soundness and completeness re- 

sults (BuvaE & Mason 1993). Following Guha, they 

introduce contexts as arguments to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAist: ist(Ci, 45) says 

that 4 is true in context Ci. As mentioned earlier, in 

the propositional case, this is effectively equivalent to 

introducing Ci as a modal operator. They allow con- 

text vocabularies to be context dependent, and hence 

need to define satisfaction and provability with respect 

to context sequences. While we could have done the 

same, our main interest (the logic _Tn) does not re- 

quire context dependent context vocabularies, and so 

we chose a simpler formalism. 

Shoham discusses the ubiquity of contexts with a 

series of examples drawn from a variety of domains 

(Shoham 199 1). He discusses various relations between 

contexts, and introduces a set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 benchmark sen- 

tences against which one may evaluate different seman- 

tics for contexts. He does not try and pin down “ the 

right semantics”  for contexts, but does suggest intro- 

ducing contexts as propositions, and representing “p is 

true in context q”  with the (material, intuitionistic, or 

relevant) implication Q -+ p. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conclusions 

In this paper we have developed a simple logic of con- 

text that is well suited for representing and reasoning 

with multiple domain theories. A key feature of this 

logic it that we introduce contexts as modal opera- 

tors, rather than as terms. Our analysis of the com- 

putational properties of the resulting logic provided us 

with the central computational justification for the use 

of contexts. We showed that, for the purposes of repre- 

senting and reasoning with multiple theories, this logic 

is able to effectively handle common uses of contexts. 

This seems to suggest that the difficulties in under- 

standing contexts lie not so much with their logical 

properties, but with their heuristic properties. What 

are the useful and common types of contexts? How 

does one decide which context to use in a particular 

situation? How does one detect that the current con- 

text is inadequate. 7 How does one transcend the cur- 

rent context? To investigate these heuristic questions, 

we have augmented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASIGMA’s frame representation lan- 

guage with contexts, and are currently evaluating the 

utility of using contexts in SIGMA. We are also eval- 

uating the utility of contexts in developing practical 

diagnostic engines for complex physical systems. 
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