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Abstract. The popular bag-of-words paradigm for action recognition
tasks is based on building histograms of quantized features, typically at
the cost of discarding all information about relationships between them.
However, although the beneficial nature of including these relationships
seems obvious, in practice finding good representations for feature rela-
tionships in video is difficult. We propose a simple and computationally
efficient method for expressing pairwise relationships between quantized
features that combines the power of discriminative representations with
key aspects of Naive Bayes. We demonstrate how our technique can aug-
ment both appearance- and motion-based features, and that it signifi-
cantly improves performance on both types of features.

1 Introduction

It is well known that classification and recognition problems in general cannot
be solved by using a single type of feature and that, instead, progress lies in
combinations of feature representations. But as there is as vast an array of ways
to combine and augment features as there are features themselves, the develop-
ment of such higher order methods is as difficult (and potentially rewarding) an
endeavor as direct feature construction. These meta-methods span a range of
approaches from those that make absolutely no assumptions on their base fea-
tures, and thus are consigned to black-boxes operating on vectors of numbers, to
those that are so intimately tied to their base features as to be virtually insepa-
rable from them. The former types of methods, such as multiple kernel learning
(MKL) techniques are attractive for their broad applicability, but the latter tend
to be more powerful in specific applications due to their strong coupling with
their underlying features.

However, between those extremes there are still augmentations that com-
promise between generality and power by being applicable to broad classes of
loosely-related base features. The popularity of statistical bag-of-words style
techniques [1,2] for action recognition and related video tasks creates an op-
portunity to take advantage of the broad similarities in these techniques. In
particular, these techniques rely on accumulating histograms of quantized fea-
tures extracted from video, features that are almost always localized in space
and time. Yet these methods typically do not take advantage of the spatial
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Fig. 1. Pairs of features probabilistically vote for action classes; pairs voting for the
correct action class are shown in yellow, with brighter color denoting stronger (more
informative) votes. For “answerPhone”, the relative motion of the hands is particularly
discriminative. These results employ trajectory fragments on the Rochester dataset [3],
but our method works with any localized video feature.

and temporal relationships between features. While it is obvious that in gen-
eral using such relationships should help, the subtleties of designing appropriate
representations have limited their use. Figure 1 shows examples of the types of
informative relationships between features that we are interested in.

Pairwise spatial relationships, in the form of star topologies, fans, constella-
tions, and parts models, have seen frequent use in static image analysis [4-6].
Practical limitations have made transitioning these methods to video difficult.
Sparse pairwise topologies (stars, fans, parts) often suffer from a lack of appro-
priately annotated training data, as they often require annotations that specify
the topology for training [7, 8]. Alternatively, there are structured methods which
can operate without such annotations, but at the cost of significantly more com-
plicated and computationally expensive training or testing [9, 10]. In the special
limited case of a fixed camera, the entire topology can be fixed relative to the
frame by simply using the absolute positions of features [11, 12].

The key contributions of this paper can be summarized as follows: (1) we
propose an efficient method for augmenting quantized local features with relative
spatial-temporal relationships between pairs of features, and (2) we show that
our representation can be applied to a variety of base features and results in
improved recognition accuracy on several standard video datasets.

For the pairwise model, the most direct representation that is compatible
with bag-of-words techniques is to simply generate higher-order features by quan-
tizing the possible spatio-temporal relationships between features. However, this
results in a significantly larger number of possible codewords; for example, 100
codeword labels and 10 possible relationships, would produce 100,000 possible
labels for the pairwise codewords. Attempts to mitigate this have centered on
dimensionality reduction and limiting the number of relationships. In the former
case, Gilbert et al. [13,14] employ data mining techniques to find frequently-
occurring combinations of features. Similarly, Ryoo and Aggarwal [15] use a
sparse representation of the resulting high-dimensional histograms, in addition
to using a relatively small relationship set. Taken to the extreme, Savarese et
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al. [16] consider effectively only one relationship: whether two features occur
within a fixed distance of each other, and likewise Sun et al. [17] also use a
simple proximity relationship.

The subtle difficulty is exposing enough information for discriminative ma-
chinery to gain traction, but not so much as to overwhelm it in the noise. We
strike this balance by selectively organizing estimated pairwise relationships,
thereby exploiting fine spatio-temporal relationships without having to resort to
an unmanageable representation for the classifier. Inspired by recent work on
the max-margin Hough transform [18], we propose accumulating probabilities in
a Naive-Bayes like fashion into a reduced number of bins, and then presenting
these binned probabilities to discriminative machinery. By choosing our bins to
coincide with codeword labels, we produce vectors with size proportional to the
number of codewords while still taking advantage of discriminative techniques.

Since we propose a method for augmenting features with spatio-temporal re-
lationships, we wish to show that this augmentation performs well on a range of
features. To this end, we consider two radically different types of base features.
First, we consider features built from space-time interest points (STIPs) with
associated Histogram of Oriented Gradient (HOG) descriptors, which are sophis-
ticated appearance-based features popularized by Laptev et al. [1]. Second, we
consider a simple form of trajectory based features similar to those proposed by
Matikainen et al. [19] and Messing et al. [3], quantized through a fixed (training
data independent) quantization method. This selection of base features demon-
strates the effectiveness of our method on both appearance- and motion-based
features, as well as on sophisticated and simple feature extraction methods. In
particular, our simplified trajectory method produces a fixed number of features
per frame, and the feature labels are not derived from a clustering of training
data. The method is virtually certain to produce a large number of extraneous
features, and the feature labels are likely to be more sensitive to noise com-
pared to those produced through clustering. In contrast, STIP-HOG produces
relatively few features, which tend to be more stable due to the clustering.

As discussed above, our proposed approach formulates the problem in a Nave
Bayes manner, but rather than independently summing per-feature probabilities
in log space, we pass them through a discriminative classifier. We train this
classifier by estimating all of the cross probabilities for feature labels, that is, for
each pair of labels and each action we build a relative location probability table
(RLPT) of the observed spatial and temporal relationships between features of
those labels under the given action. Then, any feature label can compute its
estimate of the distribution over action probabilities using the trained cross-
probability maps. These estimates are combined for each feature label, and the
final feature vector is presented to a classifier.

2 Base features

The proposed method can augment a variety of common features employed in
video action recognition. To demonstrate our method’s generality, we describe
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how it can be applied to two types of features that represent video in very
different ways, as discussed below.

2.1 Base feature: STIP-HOG

Laptev et al.’s space-time interest points (STIPs) [1], in conjunction with His-
togram of Oriented Gradient (HOG) descriptors have achieved state-of-the-art
performance on a variety of video classification and retrieval tasks. A variable
number of STIPs are discovered in a single video and the local space-time vol-
ume near each interest point is represented using an 72-dimensional descriptor.
These HOG descriptors are quantized using a codebook (typically pre-generated
using k-means clustering on a large collection) to produce a discrete label and a
space-time location (x,y,t) for each STIP.

2.2 Base feature: Quantized trajectories

In previous work [19], we considered trajectory-based features that we coined
trajectons; these features describe video data in a very different manner from
STIP-HOG. First, Harris corner features are tracked in a given video using KLT
to produce a set of trajectories. Each trajectory is first converted from a list of
(x4, y:) position pairs into a list of discrete derivative pairs (dz,dy;) = (xy —
Zi—1,Yt —Yi—1). These trajectories are then broken up into overlapping windows
of fixed duration T, each of which is considered a new feature or trajectory
fragment. Unlike STIP-HOG, trajectory fragments seek to express longer-term
motion in the video. We generally follow our previous work, but substitute a
more straightforward quantization method.

Sequencing code map (SCM) quantization. In our earlier work, we quan-
tize trajectories using k-means. Fragments are clustered to produce a codebook.
Messing et al. [3] also use trajectory features but employ a different quantization
strategy in which trajectories are soft-assigned to Markov mixture components;
their strategy is similar to that of Sun et al. [17] who also consider quantized
transitions within a trajectory.

Both Messing et al.’s and our earlier approach can be computationally ex-
pensive depending on the number of mixture components or k-means centers,
respectively. Taking inspiration from both, we propose quantizing fixed-length
trajectories using a derivative table similar to Messing et al.’s, which we call a
sequencing code map (SCM), examples of which can be seen in Figure 3. How-
ever, rather than using quantized derivatives to look up probabilities, we simply
combine the quantized indices over the fixed length trajectory fragment into a
single label encoding quantized derivatives at specific times with each fragment
(see Figure 2).

In our method, a trajectory fragment is divided into k consecutive stages of
length t frames, such that kt < T, where T is the total length of the fragment.
The total motion, or summed derivative, of each stage is computed as a (dz, dy)x,



Representing Pairwise Spatial and Temporal Relations 5

Fig. 2. Sequencing code map (SCM) quantization breaks a trajectory fragment into a
number of stages (in this case three) that are separately quantized according to a map
(in this case a 6-way angular map). These per-stage labels, called sequence codes, are
combined into a final label for the fragment, which in this case would be 2156 = 8310.
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Fig. 3. Examples of possible sequencing code maps (SCMs) or relative location maps
(RLMs). Our experiments focus on angular maps (second from left) but our method is
completely general.

pair for each stage. This (dx, dy) vector is quantized according to the SCM into
one of n stage labels, or sequence codes; the k sequence codes are combined to
produce a single combined label that can take on k£" values. For example, with
3 stages and an SCM containing 8 bins, there would be 8% or 512 labels total.
Since the time to quantize a stage is a single table lookup regardless of how
the table was produced, this method is extremely computationally efficient (i.e.,
the computation time does not grow with an increasing number of quantization
bins).

Formally, we denote by M (dz,dy) the SCM function, which is implemented
as a two-dimensional lookup table that maps from a dz,dy to an integer label
in the range of 0 to n — 1 inclusive. We denote by (dz, dy) the derivative pair
for stage k. Then the assigned label is given by | = Z?:o n? - M(dxj, dy;).

Besides the convenience of not having to build a codeword dictionary and
the reduced computational cost, our introduction of this quantization method is
meant to demonstrate that our pairwise features do not depend on data-driven
clustering techniques. The quantized labels produced by SCM quantization are
unlikely to correspond nicely to clusters of features in the dataset (e.g., , parts),
yet the improvement produced by our pairwise relationships persists.
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3 Augmenting Features with Pairwise Relationships

In the following subsections we detail our approach for augmenting generic base
features with spatial and temporal relationships. While the previous discussions
focused on STIP and trajectory fragment features, our proposed method for
pairwise spatio-temporal augmentation applies equally well to any type of feature
that can be quantized and localized. In the remainder of this section, a “feature”
is simply the tuple (I, z,y,t): a codeword label in conjunction with its spatio-
temporal position. The set of all observed features is denoted F'.

3.1 Pairwise discrimination with relative location probabilities
(RLPs)

Starting with the observation that Naive Bayes is a linear classifier in log space, in
this section we formulate the pairwise representation first in the familiar terms
of a Naive Bayes classifier, and then demonstrate how to expose more of the
underlying structure to discriminative methods.

We start with the assumption that all pairs are conditionally independent
given the action class. Then, if features are quantized to L labels and the spatial
relationships between features are quantized to S labels, we could represent the
full distribution over pairs of features with a vector of L?S bins. Unfortunately,
for even as few as L = 100 trajectory labels and S = 10 spatial relationships,
there would be (1002)(10) = 100, 000 elements in the computed feature vector,
far too many to support with the merely hundreds of training samples typically
available in video datasets.

This feature vector must be reduced, but the direct approach of combining
bins is just equivalent to using a coarser quantization level. Instead, taking inspi-
ration from the Max-Margin Hough Transform [18] and Naive Bayes, we build
probability maps of the spatial relationships between features, and instead of
summing counts, we accumulate probabilities, allowing pairs to contribute more
information during their aggregation.

Specifically, we produce a feature vector B of length AL, where A is the
number of action classes (e.g., walk, run, jump, etc.), and where each entry B,
corresponds to the combined conditional probability of all pairs containing a
feature with label [ given the action class a. In other words, a bin contains a
feature label’s probabilistic vote for a given action class, and we could compute
a Naive Bayes estimate of the probability of all the observed features given
an action by summing all the votes for that action: log P(Fla) = >, Ba,-
However, instead of summing these in a Naive Bayes fashion, we present the
vector as a whole to discriminative machinery, in our case a linear SVM. We
now describe how we accomplish this feature vector reduction.

Notation. Formally, a video segment has a number of quantized features com-
puted from it. A feature f; € F is associated with a discrete quantized label [; € L
as well as a spatio-temporal position (z;,y;, t;) indicating the frame and location
in the frame where it occurs. For a pair of features within the same frame and a
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given action a € A, there is a probability of the two features occurring together
in a frame P(l;,[;]a) as well as the relative location probability (RLP) for their
particular spatial relationship P(xz;, x;, s, y;|li, lj, a). We make the simplifying
assumption that RLPs depend only on the relative spatial relationship between
the two features, so that P(x;,2;,y:,y;lli,lj,a) = P(dz,dyla,l;,1;), where dx
and dy are slight abuses of notation that should be understood to mean z; — x;
and y; — y; where appropriate. This assumption enforces the property that the
computed relationships are invariant to simple translations of the feature pairs.

Probabilistic formulation. The reduction to a feature vector of length AL
is done by selectively computing parts of the whole Naive Bayes formulation
of the problem. In particular, a full probabilistic formulation would compute
P(Fla) and select the a that maximizes this expression. Since Naive Bayes takes
the form of multiplying a number of features’ probabilities, or in this case pair
probabilities, we can exploit the distributive and commutative properties of mul-
tiplication to pre-multiply groups of pair probabilities together, and then return
those intermediate group probabilities rather than the entire sum. This can be
seen as binning the pair probabilities.

Assuming feature pairs are conditionally independent, we can compute the
probability of a feature set F' given an action a according to the equation

= [[ Pla) ] P, a)P(d, dyla, i, 1;), (1)

fi€F fiEF

which strictly speaking double-counts pairs since each pair is included twice in
the computation; however, since we are only interested in the most likely action,
this is not an issue.

In practice, we employ log probabilities both to avoid issues with numerical
precision from extremely small values and to formulate the problem as a linear
classifier. In this case the log probability expression becomes

log(P(F|a)) Zlog (lila))+ (2)
fieF

> log(P(;]li, a)) + log(P(dx, dyla, 1;, 1))

fi€F

To simplify the expression we assume uniform probabilities for P(l;|a) and
P(l]l;,a). Later we can include nonuniform label probabilities by simply con-
catenating the individual label histogram to the pairwise feature vector when
both are presented to the classifier. Thus, our probability expression becomes

log(P(Fa)) =
S Y log(P(de, dyla, 1)) + C, 3)

fi€F f;eF

which is simply a formal way of stating that the whole log probability is the
sum of all the pairwise log probabilities. Since we are only interested in the
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answerPhone chopBanana dialPhone drinkWater eatBanana
eatSnack lookupInPhonebook peelBanana useSilverware writeOnWhiteboard

Fig. 4. Relative location probabilities (RLPs) for feature labels 25 and 30 over all
actions in the Rochester dataset, using an 8-way angular map. Lighter (yellower) indi-
cates higher probability. We see that for the answerPhone action, features with label 30
tend to occur up and to the right of features with label 25, whereas for useSilverware,
features with label 30 tend to occur down and to the left of those with label 25.

relative probabilities over action classes, we collect the uniform probabilities for
labels into a constant C' which does not depend on the action a, and which is
omitted from the following equations for clarity. We now wish to divide this
expression into a number of sub-sums that can be presented to a classifier, and
this expression leaves us a great deal of flexibility, since we are free to compute
and return sub-sums in an arbitrary manner.

Discriminative Form. We rewrite Equation 3 in such a way as to bin proba-
bilities according to individual feature labels. In particular, we can rewrite it in
log form as
log(P(F|a)) Z log(P(bi]a)), (4)
leL

where

log(P(bi]a)) = Y > log(P(dx,dyla,l,1;)). (5)

fi€l f;

The expression log(P(b;]a)) is the bin probability, which directly corresponds to
an element of the feature vector according to B,; = log(P(b;|a)). Since there
are A actions and L labels, this B vector contains AL elements.

3.2 Estimating relative location probabilities from training data

The previous section assumed that the relative location probabilities (RLPs)
were simply available. However, these probabilities must be estimated from real
data, requiring some care in the representation choice for the relative location
probability tables (RLPTs). An RLPT represents an expression of the form
log(P(dx,dy|a,l;,1;)), where a, l;, and I; are considered fixed. In practice this
means that it must represent a function from a (dz, dy) pair to a log probability,
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Fig. 5. Features with labels 17 and 23 are observed in a frame of a training video of
the class eatBanana. The feature with label 17 has a relative displacement of (dz, dy)
from that with label 23, which maps to bin #2 in an 8-way angular RLM. Thus, we
increment bin #2 in the corresponding table entry; these counts are all converted to
estimated log probabilities after the entire video collection is processed.

and that we must represent one such function for every (a, l;, ;) triplet of discrete
values. While many representations are possible, we use an approach similar to
that used for staged quantization.

We denote by M(dz,dy) a function that maps a (dz,dy) pair to an integer
bin label, allowing n such labels. We refer to this map as the relative location
map (RLM), possible forms of which can be seen in Figure 3. Then the RLPT
for a given (a,l;,1;) triplet is a list of n numbers, denoted T, 1, ;,. An RLP can
then be retrieved according to:

log(P(dx, dyla,l;,1;)) = Ta,1,;[M(dz, dy)]. (6)

For example, with 216 labels, 10 actions, and 8 bins in the RLM, storing all the
RLPs would require (216)(10)(8) = 3,732, 480 entries in 466,560 tables.

Estimating the RLPTs is simply a matter of counting the displacements
falling within each bin (see Figure 5), and finally normalizing by the total counts
in each map. Since some bins may receive zero counts, leading to infinities when
the log probability is computed, we use a prior to seed each bin with a fixed
number of pseudo-counts. Examples of RLPTs found in this way can be seen in
Figure 4.

This method could seemingly generate very sparse probability maps where
most bins receive few or no real counts. However, in practice almost all of the bins
receive counts. A typical situation (in this case our experiments on Rochester’s
Daily Living dataset) might have 10 classes, 216 feature labels, and a probability
map with 8 bins, for a total of (2162)(10)(8) = 3.7 - 10° bins. For Rochester
we have approximately 120 training videos, each of which is approximately 600
frames long. If we track 300 features per frame, and only consider in-frame pairs,
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then across all videos we will have (300%)(600)(120) = 6.5-10° pairwise features.
Thus, on average each bin will receive over a thousand counts.

3.3 Extension to temporal relationships

The method is naturally extended to include temporal relationships. Rather
than representing the relationship between two features as a (dz, dy) pair, it is
represented as a (dz, dy, dt) triple. The RLPT then contains entries of the form
log(P(dx,dy,dt|a,l;,1;)), which are indexed according to a mapping function
M (dzx, dy,dt), so that

log(P(dx, dy,dt|a,l;,1;)) = Tay, 1, [M(dz, dy, dt)]. (7)

Previously, the map M could be stored as a simple image, whereas with
spatial-temporal relationships this map is a volume or series of images. When
counts are accumulated or probabilities evaluated, only pairs of features within
a sliding temporal window are considered, since considering all pairs of features
over the entire video would both result in a prohibitively large number of pairs
and prevent the method from being run online on a video stream. Nevertheless,
the change from considering only pairs within a frame to pairs within a temporal
window vastly increases the number of pairs to consider, and depending on the
number of features generated by a particular feature detector, it may be neces-
sary to randomly sample pairs rather than considering them all. We find that
for STIP-HOG we can consider all pairs, while for SCM-Traj we must sample.

3.4 Classification

We train a linear SVM [20] to classify video clips, which is a straightforward
matter of presenting computed B vectors and corresponding ground truth classes
from training clips. Each bin in B can be interpreted as a particular label’s vote
for an action, in which case the classifier learns the importance of each label’s
vote.

Since, when considered in isolation, pairwise relationships are unlikely to be
as informative as the base features from which they are derived, we present a
simple method for combining the raw base feature histograms with the computed
pairwise log probability vectors. We do not present this combination method as
the canonical way of combining the two sources of information, but rather as
a convincing demonstration that the proposed pairwise relationships provide a
significant additional source of information rather than merely a rearrangement
of the existing data.

Supposing that H represents the histogram for the base features, and B
represents the computed pairwise relationship vector, then one way of combin-
ing the two would be to simply concatenate the two vectors into [H, B], and
present the result to a linear SVM. However this is unlikely to result in the
best performance, since the two vectors represent different quantities. Instead,
we separately scale each part, and then simply cross validate to find the scaling
ratio p that maximizes performance on the validation set, where the combined
vector is [pH, (1 — p)B]. This scaled vector is simply presented to the SVM.
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Table 1. Action recognition accuracy on standard datasets. Adding pairwise features
significantly boosts the accuracy of various base features.

Method UCF-YT Rochester
STIP-HOG (single) (Laptev et al. [1]) 55.0% 56.7%
STIP-HOG (NB-pairwise alone) 16.4% 20.7%
STIP-HOG (D-pairwise alone) 46.6% 46.0%
STIP-HOG (single + D-pairwise) 59.0% 64.0%
STIP-HOG-Norm (single) (Laptev et al. [1])  42.6% 40.6%
SCM-Traj (single) 42.3% 37.3%
SCM-Traj (NB-pairwise alone) 14.3% 70.0%
SCM-Traj (D-pairwise alone) 40.0% 48.0%
SCM-Traj (single + D-pairwise) 47.1% 50.0%

4 Evaluation

We evaluate our pairwise method on a forced choice action classification task
on two standard datasets, the UCF YouTube dataset (UCF-YT) [21] and the
recently-released University of Rochester Activities of Daily Living [3]. To eval-
uate the contribution of our method for generating pairwise relationships, we
consider two different types of base features: the trajectory based features we
introduced earlier, and Laptev et al.’s space-time interest points. We consider
both our discriminative formulation (denoted D-pairwise) and a Naive-Bayes for-
mulation (NB-pairwise) for our pairwise features, where the NB-pairwise results
are primarily intended as a baseline against which to compare.

Table 1 summarizes our results. Our experiments are designed to evaluate the
effect of adding spatial and temporal relations to the features and to understand
in detail the effect of various parameters on the performance of the augmented
features. Clearly, significantly more tuning and additional steps would go into
building a complete, optimized video classification system. In particular, we do
not claim that our performance numbers are the best that can be obtained by
using complete systems optimized for these data sets. We use the evaluation
metric of total accuracy across all classes in an n-way classification task.

On both datasets we use 216 base feature codewords for both trajectories
and STIP-HOG. The number 216 results from the choice of three stages with a
6-way mask for the staged quantization (63 = 216), and we use the same number
for STIP-HOG to make the comparison as even as possible. Likewise, for both
datasets we use an 8-way spatial relationship binning for the RLPTs. Combined
results are produced by cross validating on the scaling ratio.

UCF-YT consists of 1600 videos in 11 categories acquired from YouTube
clips. For evaluation, we randomly split the dataset into a training set of ap-
proximately 1200 videos and a testing set of approximately 400 videos. This
dataset was chosen for its difficulty, in order to evaluate the performance of
pairwise relationships outside of highly controlled environments. In particular,
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this dataset is challenging because the videos contain occlusions, highly variable
viewpoints, significant camera motion, and high amounts of visual clutter.

On UCF-YT we find that discriminative pairwise features are not as infor-
mative as the base features, which is not unexpected since the diversity of the
dataset means there are unlikely to be strong, consistent relationships between
features. Nevertheless, we still find modest gains for combinations of pairwise and
individual features, on the order of 5%. This means that the pairwise features
are providing an additional source of information, rather than just obfuscating
the information already present in the individual feature histograms. The Naive
Bayes pairwise evaluation performs poorly, but better than chance.

Furthermore, we can see that the performance of our simple fixed quantiza-
tion on trajectories performs similarly to normalized STIP-HOG features, but
significantly worse than non-normalized STIP histograms. This suggests that
much of the discriminative power of STIP features might originate from the
variation in the quantity of features found in different videos.

The Rochester dataset consists of 150 videos of five individuals performing
a series of scripted tasks in a kitchen environment, acquired using a stationary
camera. Due to the limited pool of available data, we evaluate using 5-fold cross-
validation, using videos from four individuals for training and the fifth for testing,
in each fold.

On Rochester we observe that the pairwise features for STIP-HOG do not
perform as well as the individual STTP-HOG features, but that the combination
outperforms both, which is consistent with the results for UCF-YT. For tra-
jectory features, the pairwise features alone significantly outperforms the base
features, a reversal from UCF-YT. The combination of the two outperforms both
the individual and pairwise, but adds only a modest gain on top of the pairwise
performance.

For both types of features, the gains with pairwise relationships in combi-
nation are much larger than for UCF-YT, which is explained by the greater
consistency of spatial relationships between codeword labels due to the fixed
viewpoint and highly consistent actions. Qualitatively examining which pairs
contribute to a correct action identification supports this hypothesis: as can be
seen in Figure 1, the pairwise features supporting an action appear to be strongly
tied to that action. For STIP-HOG, the Naive-Bayes pairwise formulation once
again performs poorly, however for trajectories the Nalve-Bayes pairwise is the
strongest performer. This suggests that for some applications, even simple rela-
tionships can give very good performance.

4.1 Effect of Temporal Relationships

The results with using spatial and temporal relationships on UCF-YT are shown
in Table 2 in which X-T-Pairwise denotes the classifier (discriminative or Naive-
Bayes) augmented with temporal relations. For these results, we have used the
same 8-way spatial relationship binning combined with a 5-way temporal bin-
ning, for a total of 40 bins. The pairwise relationships are evaluated over a 30
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Table 2. Action recognition accuracy with temporal relationships on UCF-YT

Method STIP-HOG Traj-SCM
NB-Pairwise (baseline) 16.4% 14.3%
NB-T-Pairwise 22.2% 31.2%
D-Pairwise (baseline) 46.6% 40.0%
D-T-Pairwise 49.2% 39.7%

frame sliding window. For STIP-HOG, all pairs within the window are consid-
ered, but for trajectories we sample 1/20 of the pairs in the interest of tractability.
Note that even with this sampling, a four second UCF-YT clip can produce over
100,000,000 pairs when using trajectory features.

The performance of the discriminative pairwise relationships remains vir-
tually unchanged for Traj-SCM, but there is a modest performance boost for
STTP-HOG. The Naive-Bayes versions continue to perform worse than the dis-
criminative ones, however the temporal relationships have a much larger impact
on their performance. The difference is especially dramatic for NB-Pairwise vs.
NB-T-Pairwise with STIP-HOG, where the temporal relationships have more
than doubled the accuracy from 14.3% to 31.2%.

4.2 RLPT sparsity

Earlier we argued that the relative location probability tables should not be
sparse based on a simple counting argument. Empirically, we find that for the
Rochester dataset 71.6% of the entries receive counts, and that 91.7% of the ta-
bles have at least one count in one of the 8 bins. The number of tables containing
at least 100 counts is 41.1%, and 15.2% of tables have over 1000 counts. These
numbers validate our original claim that the tables are not sparse.

5 Conclusion

We present a simple yet powerful method for representing pairwise spatio-temporal
relationships between features in the popular bag-of-words framework. Unlike
naively expanding codewords to include all possible pairs and relationships be-
tween features, our method produces an output whose size is proportional to
the number of base codewords rather than to its square, which reduces the
likelihood of overfitting and is more computationally efficient. We demonstrate
that our method can be used to improve action classification performance with
dissimilar STIP-HOG (appearance) and trajectory (motion) based features on
two different datasets, and that a discriminative formulation of our pairwise fea-
tures generally outperforms a Nalve-Bayes classification approach. Although our
method takes advantage of spatial relationships, it does not require any addi-
tional annotation in the training data, making it appropriate for a wide range
of datasets and applications.
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As we have only considered simple angular maps, there is potentially still
considerable power to be extracted from this method through the careful se-
lection of relative location maps. Additionally, we have presented a binning of
probabilities based on codeword label, but an interesting question is whether
more intelligent data-driven binnings can be found. We plan to explore these
questions in future work.
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