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Abstract

A growing number of social scientists have turned to differential equations as a tool for capturing 

the dynamic interdependence among a system of variables. Current tools for fitting differential 

equation models do not provide a straightforward mechanism for diagnosing evidence for 

qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible 

determinants of such shifts. In this paper, we discuss regime-switching differential equation 

models, a novel modeling framework for representing abrupt changes in a system of differential 

equation models. Estimation was performed by combining the Kim filter (Kim and Nelson, 1999) 

and a numerical differential equation solver that can handle both ordinary as well as stochastic 

differential equations. The proposed approach was motivated by the need to represent discrete 

shifts in the movement dynamics of n = 29 mother-infant dyads during the Strange Situation 

Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the 

mother twice. We illustrate the utility of a novel regime-switching differential equation model in 

representing children’s tendency to exhibit shifts between the goal of staying close to their 

mothers and intermittent interest in moving away from their mothers to explore the room during 

the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation 

study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.

Differential equation (DE) models have been one of the most dominant tools for 

representing change phenomena in disciplines such as the physical sciences, econometrics, 

engineering, and ecology. In parallel, the statistical and engineering literature has evidenced 

tremendous growth in methodologies for fitting DE models (Jones, 1993; Mbalawata et al., 

2013; Beskos et al., 2009; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014; 

Ramsay et al., 2007; Särkkä, 2013). Although uptake in the social and behavioral sciences 

has been slow, some notable advances have been made in fitting linear ordinary and 

stochastic differential equation (ODE and SDE, respectively) models using approaches such 

as exact discrete-time (Oud and Jansen, 2000; Oud and Singer, 2008; Singer, 2010, 2012; 
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Voelkle et al., 2012), structural equation modeling (Boker et al., 2008), Bayesian (Oravecz et 

al., 2011), and two-stage derivative estimation/modeling approaches (Boker and Graham, 

1998; Boker et al., 2010; Deboeck, 2010; Chow et al., 2016a; Trail et al., 2013). 

Developments in fitting nonlinear DEs and those that evidence discontinuities in dynamics 

are still nascent (e.g., Singer, 2002, 2003; Chow et al., 2007, 2016b; Lu et al., 2015), but 

have begun to garner some support in modeling particular empirical phenomena (Chow and 

Zhang, 2013; Chow et al., 2016a; Molenaar and Newell, 2003).

In the present article, we propose adding to the repertoire of dynamic modeling tools a class 

of models termed regime-switching differential equation (RS-DE) models. These models 

represent change processes that undergo discontinuous changes through distinct, categorical 

phases, but are otherwise characterized by continuous dynamics within each phase that can 

be represented by means of a set of linear or nonlinear ODEs/SDEs. ODEs can be viewed as 

special cases of SDEs wherein the dynamic processes of interest evolve over time in 

completely deterministic (predictable) ways – namely, as exempt from the influence of 

process noises — provided that complete knowledge of the system is known. The phase or 

“regime” that governs the nature of the operating DEs is unobserved, but is allowed to vary 

as contingent on a series of person- (or dyad-, family-) specific and time-varying covariates 

of interest.

The proposed approach was motivated by the need to represent discrete shifts in the 

movement dynamics of n = 29 mother-infant dyads during the Strange Situation Procedure 

(SSP), a behavioral assessment where the infant is separated from and reunited with the 

mother twice. Attachment theory posits that attachment security provides a secure physical 

and psychological basis for exploration of the environment (Bowlby, 1973, 1982). Thus, 

during the SSP, most secure children are expected to manifest shifts between a desire to stay 

close to their caregivers (e.g., mothers), and intermittent interest in moving away from their 

caregivers to explore the room. Moreover, even though mothers’ interactive behaviors with 

their infants during the SSP play a central role in influencing the infants’ subsequent 

behavior (Behrens et al., 2011), previous studies have rarely analyzed mothers’ interactive 

dynamics with their children as a dynamic and interdependent system. Our motivating 

problem thus requires the development and estimation of a multivariate DE model that can 

describe the interactive dynamics between mothers and their children during the SSP, while 

allowing for sufficient flexibility for some but not all dyads to show intermittent shifts in 

their interactive dynamics.

The discrete shifts in the children’s behavior observed during the SSP are not unlike 

properties of systems that undergo stagewise changes (e.g., Piaget and Inhelder, 1969; van 

der Maas and Molenaar, 1992; Fukuda and Ishihara, 1997; Van Geert, 2000). However, 

unlike stagewise theories which posit a unidirectional or irreversible progression through a 

sequence of stages, the transition across phases is reversible and individuals are allowed to 

switch between regimes over time (Hamilton, 1989; Kim and Nelson, 1999). The operating 

regime at any particular time point is unknown but can be estimated from the data; the 

operating regime may also vary across individuals and over time, thus giving rise to intra- 

and inter-individual differences in dynamics. In this sense, the role of regimes as a latent 

determinant of systematic individual differences is similar to the role of latent classes in 
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mixture models, except that individuals can transition across different regimes over time; in 

other words, class membership may change over time (Dolan, 2009). In light of this, we use 

the terms regime and class interchangeably throughout the paper.

The proposed RS-DE framework extends the work of Chow and Zhang (2013) from a 

discrete-time to a continuous-time framework, and is characterized by several unique 

advantages. First, in contrast to standard linear regime-switching state-space (Kim and 

Nelson, 1999) models and linear covariance structure models with regime switching 

properties (Dolan et al., 2005; Dolan, 2009; Schmittmann et al., 2005), we capitalize on the 

use of numerical solvers of differential equations to allow the change processes within each 

regime to evolve in continuous time as linear and/or nonlinear functions of the latent 

variables and other covariates in the system. Continuous-time functions provide renewed 

ways of portraying the ongoing interdependencies between multivariate processes at any 

particular time point, and they have been shown to be useful in representing myriad 

empirical phenomena elsewhere (Chow et al., 2007, 2016a,b; Lu et al., 2015; Oravecz et al., 

2009; Oud and Jansen, 2000; Voelkle et al., 2012). Second, aside from their theoretical 

appeal, DEs also offer several practical advantages in handling data that are irregularly 

spaced. Irregularly spaced longitudinal survey data have arisen in studies of circadian 

rhythms (Sherwood et al., 2001), finance (Vecchiato, 1997), physiological data (Pincus et 

al., 1991), and numerous other studies involving ecological momentary assessments, 

experience sampling and daily diary designs (Bolger et al., 2003; Schwartz and Stone, 

1998).

Third, the proposed RS-DE framework extends conventional DE modeling by allowing the 

inclusion of multiple regimes and DE functions within regimes. The inclusion of a DE 

model within each regime also renders RS-DE models different from another class of well-

known longitudinal models of discrete changes—the hidden Markov models (Elliott et al., 

1995), or the related latent transition models (which emphasize categorical indicators; 

Collins and Wugalter, 1992; Lanza and Collins, 2008). In particular, the specification of a 

continuous-time model of change within each regime allows the dynamics within regimes to 

unfold in a continuous fashion, even though the shifts between regimes or classes are 

discrete. Thus, the proposed modeling framework is suited for representing processes whose 

changes within regimes are smooth and evolve continuously over time — except at 

particular, unknown transition points. This feature is distinct from hidden Markov models, 

which target primarily systems that undergo discontinuous shifts between conceptually 

disparate phases that could have very different mean levels, covariance structures, item 

measurement characteristics, and so on.

The remainder of the article is organized as follows. We first describe in more detail the 

empirical example that motivated us to develop the RS-DE model and associated estimation 

technique described in the present article. We then present the broader modeling framework 

that can handle other modeling extensions similar to the model considered in our motivating 

example and briefly review an R package, dynr (Ou et al., 2016), that offers an R interface 

for implementing and fitting these models. We provide an overview of the associated 

estimation procedures, followed by a summary of the results from empirical model fitting, as 

well as a targeted Monte Carlo simulation study designed to test the feasibility of using well-
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known information criterion (IC) measures to compare the fit of models positing different 

numbers of regimes. We conclude with some remarks on the strengths and limitations of the 

proposed technique.

Motivating Example

One important developmental milestone in a secure infant’s first year of life is to be able to 

alternate periods of close contacts with their mothers (e.g., being held, cuddling) and actions 

to explore the environment (e.g., learning to walk). This does not only underscore the 

importance of studying the temporal structure of an infant’s behaviors, but also the 

variability in a mother-infant dyad’s interactive dynamics over time. In the motivating data 

set, observable behaviors of n = 29 dyads during the SSP (Ainsworth et al., 1978) from a 

larger study were recorded with four synchronized Microsoft Kinect sensors (Sivalingam et 

al., 2012) when the infants were 12 months of age. The Kinect is an economical, widely-

available sensor that incorporates both depth and high-definition video cameras. The depth 

camera captured continuous 3-dimensional (3D) information about the position and 

orientation of each infant’s and mother’s head movements, and high-definition video 

cameras were used to capture the infant’s facial expression. Audio was recorded with a 

LENA (Language ENvironment Analysis) system that includes a two-ounce digital recorder 

that the infant wore in a specially-constructed vest. After removing participants with 

excessive missingness (e.g., due to technical difficulties in capturing the head movements 

and in the recording of other covariates, as well as insufficient variability in the 

corresponding variables), a total of n = 29 dyads were used for modeling purposes.

The SSP consisted of eight 3-minute episodes including two separations from the mother, 

each followed by a reunion. Separations (but not reunions) were curtailed if an infant was 

extremely distressed (e.g., 60 seconds of crying Waters, 2002). Frame-by-frame data from 

the two reunion sessions were down-sampled, aggregated, and synchronized with the LENA 

audio recordings to yield a range of 112 to 1418 (mean = 1055.77, SD = 220) total number 

of time points within each dyad and reunion session, with adjacent time points separated 

by .003 minutes (0.18 second). Based on the Kinect measurements of the x-, y-, and z- 

Cartesian coordinates of the each dyad member’s head position in the room in a 3-D space at 

time ti,j, we computed the relative locations of the dyad members in the room as the 

Euclidean distance (specifically, norm) of each individual’s distance (in meters) from a 

common point in the room – a chair for the mother to sit, at which x = y = z = 0, as 

(x − 0)2 + (y − 0)2 + (z − 0)2, for each person and time point. The key idea behind how the 

x-, y- and z- coordinates of each dyad member indicated the location of that dyad member in 

a 3-D space (i.e., the experimental room), and how the equation for the Euclidean norm 

revealed the distance between the two dyad members, are shown in Figure 1. As opposed to 

computing the Euclidean distances of the dyad members from each other and using that as 

the sole dependent variable in a univariate dynamic model, we used the dyad members’ 

respective distances from the chair to yield two dependent variables (relative locations of the 

mother and the infant, respectively) for fitting a series of bivariate dynamic models. Doing 

so allows us to represent distinct dynamic behaviors manifested by each dyad member, 
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including the disentanglement of mother-initiated proximity-seeking behavior from infant-

initiated proximity-seeking behavior.

The resultant mother and infant-specific Eucliean measures are shown in Figure 2. Plots of 

the infants’ as well as mothers’ distances from the chair (at 0) in meters are shown in Figure 

2 over minutes. As seen in Figures 2(C) and (D), most mothers in the study, upon entering 

the room, progressed to the chair at different speeds after different degrees of interaction 

with the infants. Some infants alternated between being close to the mother sitting at the 

chair and spending time away from her, whereas other infants remained close to their mother 

throughout the reunion session. Distances of less than 1 meter between an infant and the 

mother reflect instances where the mother and the infant were physically close to each other.

In the present dataset, there was insufficient variability in infant attachment to warrant 

examination of individual differences in interactive dynamics due to differences in infant 

attachment style. Thus, we focus on evaluating the dynamics of infant and mother within the 

reunion sessions, as well as differences in dynamics between the first and second reunion 

sessions. In the SSP, the infants were exposed — not once but twice — to a potentially 

stressful and anxiety-provoking social situation, namely, being separated from the mother. 

The cumulation of stress from the first to the second reunion session is purported to trigger 

proximity-seeking behavior, particularly among infants with high risk factors (e.g., those 

with insecure attachment). However, previous data from the SSP procedure have simply 

been used to code infants into those with secure vs. other insecure attachment styles. In other 

words, the rich information that defines the very essence of secure vs. insecure behavior — 

including intra- and inter-dyad dynamics manifested by the mothers and infants, and the 

corresponding between-session differences — are all reduced to a single, categorical rating 

of security for each infant.

Our first proposed model was motivated by our intention to “return to the roots” of modeling 

attachment dynamics. In particular, we were interested in examining differences in infant- 

and mother-initiated proximity-seeking behaviors both within and between the reunion 

sessions, and changes in the dyads’ probabilities of transitioning between the proximity-

seeking and exploration regimes from the first to the second reunion session. Based on 

Figures 2(A)-(D), it can be seen that from the first to the second reunion session, more 

infants (see panels (A) and (B)) as well as mothers (see panels (C) and (D)) tended to stay 

close to the chair in the second as compared to the first reunion session. In Figures 3 (A) - 

(D), we show the time series plots of the Euclidean distances of two dyads with low (less 

than 5% of the reunion episodes) and high (more than 95% of the reunion episodes) 

proportions of infant vocalizations, respectively, as measured by the LENA. At 12 months, 

infant vocalizations during the SSP mostly index fussing and crying, with some occasional 

babbling. The plots indicate that the infant with a low overall proportion of infant 

vocalizations (i.e., low distress; depicted in panels (A) and (B)) was more likely to alternate 

between exploration and proximity-seeking than the infant with a high overall proportion of 

infant vocalizations (i.e., high distress; see panels (C) and (D)), who essentially trailed 

behind the mother wherever she went. Furthermore, there is an increased tendency for the 

first dyad to engage in more proximity-seeking behavior in the second than in the first 

reunion session. The extent to which the proximity-seeking behavior was initiated 
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predominantly by the mother or the infant was unclear, but could be clarified with results 

from our proposed model.

Our first proposed model posits that the ith mother-infant dyad during reunion session g 

would transition between two regimes as dictated by a person- and time-varying but 

unobserved regime indicator, Sig(t). Here, (t) may be any real- or interger-valued number 

indexing time at any arbitrary point. The two regimes are denoted respectively as the 

Exploration regime (Sig (t) = 1) and the Proximity-Seeking regime (Sig (t) = 2), within which 

the dynamics were postulated as:

dMomig(t)
dt

= − r1, Sig(t)Momig(t) + a12, Sig(t)[Infantig(t)

− Momig(t)]

dInfantig(t)
dt

= − r2, Sig(t)[Infantig(t) − setpointi] + a21, Sig(t)[Momig(t)

− Infantig(t)]

r1, Sig(t), r2, Sig(t)
≥ 0 if Sig(t) = 1 Exploration

= 0 if Sig(t) = 2 Proximity‐Seeking

a12, Sig(t), a21, Sig(t)
= 0 if Sig(t) = 1 Exploration

≥ 0 if Sig(t) = 2 Proximity‐Seeking.

(1)

That is, we hypothesized that when the dyads were in the exploration regime (Sig(t) = 1), the 

parameters r1,1 and r2,1 represent the average rates at which the mothers and the infants 

approached their respective set-points. For the mother, the set-point corresponded to the 

location of the chair, which was located at the value of zero; for the infant, this was captured 

by the person-specific term, setpointi, corresponding to the location at which the infant 

lingered to play with toys in the room while being away from the mother. Thus, the 

parameters r1,1 and r2,1 may be regarded as the mothers’ and infants’ overall divergence 

rates from each other during the exploration regime. These divergence parameters were 

constrained to be non-negative (≥ 0) in the Exploration Regime on theoretical grounds1. 

Specifically, when r1,1 is positive, a positive distance from zero for mother (i.e., Momig (t)) 

leads to a negative rate of change, 
dMomig(t)

dt
. Such negative rate of change, in turn, leads to a 

decline in the mother’s Euclidean distance from the chair at the next time point. Similarly, 

when r2,1 is positive and an infant’s relative location is above his/her set-point (i.e., the 

infant is further away from the chair than his/her set-point), this entails a negative rate of 

change, 
dInfantig(t)

dt
, and in turn, a subsequent decline in the infant’s relative location to 

move closer to the set-point. A negative distance from the set-point, in contrast, indicates 

that the infant’s relative location is lower than his/her set-point. This yields a positive rate of 

1This was accomplished by optimizing the log transformations of these parameters on an unconstrained scale, and upon convergence, 
obtaining the standard error estimates of the final, transformed (constrained) parameters via the delta method (Casella and Berger, 
2001).
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change in infant that leads to an increase in the infant’s relative location to get closer to the 

set-point. Thus , when r1,1 and r2,1 are positive, they dictate the rates at which mothers and 

infants approach their respective set-points (the chair and the location of setpoint); or in 

other words, the rates at which they diverge from each other. Negative values of these 

parameters would lead to explosive dynamics (specifically, exponential divergence of each 

dyad member from his/her set-point), which we did not expect to see based on the nature of 

the empirical data and the task (participants were in a room – a constrained space). The 

changes in location would stop when the rates of change are zero, which occur when the 

child is at the set-point, setpoint, and the mother is at the chair (0).

The corresponding divergence rates during the proximity-seeking regime, r1,2 and r2,2, were 

set to zero to define the nature of the proximity-seeking regime as a within-dyad phase 

during which the dyads were not “exploring” the room but rather were seeking the proximity 

of (or were “coupled to”) the other dyad member. The parameters a12,m and a21,m reflect the 

extent to which the mothers and the infants were coupled to each other, respectively, during 

regime m. As such, they are denoted herein as the proximity-seeking or coupling strengths 

of the dyads during regime m. These parameters were set to zero in the exploration regime 

(m = 1), and were specified to be non-negative but freely estimated in the proximity-seeking 

regime (m = 2) on theoretical grounds. Specifically, when these parameters are positive, a 

positive distance from the other dyad member leads to a positive rate of change for a dyad 

member and subsequently, movements away from the chair to approach the other dyad 

member. This occurs, for example, when Infantig(t) − Momig(t) > 0 in the Equation for the 

mother in (1), corresponding to the scenario where the infant is further away from the chair, 

and the mother’s subsequent movements from a position that is closer to the chair to 

approach the infant. Movements in the reverse direction would occur when there is a 

negative distance between a dyad member and the other dyad member, leading the two dyad 

members to get closer to each other again. The changes in location would stop when the 

rates of change are zero: occurring when the distance between the two dyad members is 

zero, namely, when Infantig(t) − Momig(t) = Momig(t) − Infantig(t) = 0, and r1,m = r2,m = 0. 

Negative values of a12,m and a21,m, in contrast, would dictate that the two members move 

further away from each other when there is any distance between them. This contradicts the 

fundamental definition of the proximity-seeking regime and would lead to estimation 

difficulties in distinguishing the exploration regime from the proximity-seeking regime. In 

addition, by representing the mother-infant dyad as a bivariate system of equations, we were 

able to use the parameters a12,2, and a21,2 while the dyads were in the proximity-seeking 

regime to distinguish between the rates of mother-initiated (as reflected by a12,2) and infant-

initiated (as revealed by a21,2) proximity-seeking behavior. Here, we conceptualized and 

represented the dynamics of the dyads from the two sessions as a two-group model. Selected 

dynamic parameters, such as a12,2, and a21,2, could be constrained to be invariant across 

reunion sessions as shown in Equation (1), or allowed to vary between the two reunion 

sessions (i.e., between “groups”) to test targeted hypotheses concerning the within-dyad 

deviations in dynamics across sessions.

The true scores in dyad i’s mother and infant head positions, denoted in the equations above 

as Momig(t) and Infantig(t), respectively, are each indicated by the observed Euclidean 
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measure derived from the Kinect measurements to yield a measurement equation at each 

observed time point ti,j in reunion session g, as

yMom, ig(ti, j) = Momig(ti, j) + eMom, ig(ti, j), and
yInfant, ig(ti, j) = Infantig(ti, j) + eInfant, ig(ti, j),

(2)

where yMom,ig(ti,j) and yInfant,ig(ti,j) are empirically observed Euclidean measures of mother 

and child positions relative to the chair, respectively, and eMom,i(ti,j) and eInfant,i(ti,j) are their 

respective independent and uncorrelated measurement errors with variances σe, Mom
2  and 

= σe, Infant
2 .

A 2 × 2 transition probability matrix is then used to specify the probability that an individual 

is in a certain regime conditional on the previous regime. We estimate the transition 

probability functions using person- and session-specific covariates as:

π11 = Pr[Explorationi(ti, j) ∣ Explorationi(ti, j − 1), meanInfantVocali, isReuinon2ig]

=
exp(c1 + cΔ, 11 + d11, 1meanInfantVocali + d11, 2isReuinon2ig)

∑k = 1
2 exp(ck + cΔ, 1k + d1k, 1meanInfantVocali + d1k, 2isReuinon2ig)

=
exp(c1 + cΔ, 11 + d11, 1meanInfantVocali + d11, 2isReuinon2ig)

1 + exp(c1 + cΔ, 11 + d11, 1meanInfantVocali + d11, 2isReuinon2ig)
π21 = Pr[Explorationi(ti, j) ∣ Proximity‐Seekingi(ti, j − 1), meanInfantVocali,
isMomVocali(ti, j)]

=
exp(c1 + d21, 1meanInfantVocali + d21, 2isReuinon2ig)

1 + exp(c1 + d21, 1meanInfantVocali + d21, 2isReunion2ig)
.

(3)

where meanInfantVocali is the average proportion of infant vocalization in dyad i across 

both reunion sessions; whereas isReunion2ig is a binary indicator of whether session g for 

dyad i is the first (= 0) or second (= 1) reunion session. The two equations above depict, 

from time ti,j−1 to ti,j, the probability of staying within the Exploration regime, as well as the 

probability of switching from the Proximity-Seeking regime to the Exploration regime. 

Designating the second regime (the proximity-seeking regime) as the reference regime, the 

parameter c1 is an intercept parameter that governs the log odds (LO) for the dyads to switch 

into the Exploration regime from the proximity-seeking (reference) regime during the first 

reunion session when meanInfantVocali = 0. The deviation parameter, cΔ,11, which appears 

in the π11 function, represents the first reunion session’s deviation in LO of switching into 

the Exploration regime from the Exploration regime relative to c1 (i.e., the LO of switching 

into it from the reference regime) when meanInfantVocali = 0. The corresponding deviation 

in LO for the second reunion session is given by cΔ,11 + d11,2. Finally, the coefficients d11,1 

and d21,1 show the effects of meanInfantVocal on the LO of staying within the exploration 

regime (and thus, π11), and the LO of switching from the proximity-seeking regime to the 

exploration regime (and correspondingly, π21), controlling for meanInfantVocali.

The simplifications of the denominators of these transition probability equations from the 

first to the second step arise because of the constraints c2 = cΔ,12 = d12,1 = d12,2 = d22,1 = 

d22,2 = 0 needed to ensure that the remaining parameters can be uniquely identified. 

Imposing these constraints is one of the many possible parameterizations to ensure that the 

sum of each row of the transition probability matrix, including π11 + π12 as well as π21 + 
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π22, is equal to 1. Here, π12 is the probability of transitioning from regime 1 to regime 2, 

and π22 is the probability of staying within regime 2. Because π11 + π12 = π21 + π22 = 1, 

we can also obtain π12 and π22 as 1-π11 and 1 − π21, respectively.

We also considered several adaptations and extensions of the model shown in (1) as 

motivated by several theoretical and data-driven reasons. For instance, we also compared the 

model in (1) to an alternative one-regime model, modeling variations to test targeted changes 

in dynamics between reunion sessions, and several other practical but admittedly, ad-hoc 

adaptations of the model due to properties of the data. These adaptations are described in the 

simulation study and empirical illustration where appropriate.

RS-DE Modeling Framework

In this section, we discuss the broader regime-switching DE (RS-DE) modeling framework, 

of which the model shown in the motivating example can be viewed as a special case. 

Formally, we assume that the dynamic model within a particular regime takes on the form of 

an SDE model as

dηi(t) = fSi(t) (ηi(t), t, xi(t)) dt + dwi(t), (4)

where i indexes the smallest independent unit of analysis (e.g., person, or dyad in the 

empirical example), t indexes time, and the notation “(t)” is a continuous index of time that 

may take on any real or integer value. Si(t) is a latent regime indicator of the operating 

regime at any arbitrary time t. fSi(t)(.) is a vector of regime-dependent, differentiable linear or 

possibly nonlinear drift functions that may depend on t, ηi(t), a w × 1 vector of latent 

variables of interest at time t, and xi(t), a vector of person- and time-varying covariates at 

time t. 
dηi(t)

dt
 denotes the corresponding w×1 vector of first derivatives of ηi(t), and the latter 

may include latent derivative variables needed to define higher-order SDEs, namely, SDEs 

involving higher-order derivatives than first derivatives. w(t) is a vector of Wiener processes 

(process noises or continuous-time counterpart of Brownian processes) with regime-specific 

diffusion matrix QS(t) and dwi(t) denotes differences in the Wiener processes over dt.2 The 

proposed model for the motivating example is a regime-switching linear ODE wherein QS(t) 

is equal to a null matrix for each of the hypothesized regimes.

The latent variables in ηi(ti,j) at discrete time point ti,j are indicated by a p × 1 vector of 

manifest observations, yi(ti,j), assumed to be measured at individual- (or dyad-) specific and 

possibly irregularly spaced time points t = ti,j, j = 1, …, Ti, as are the vector of person- and 

time-varying covariates, xi(ti,j), and the latent regime indicator, Si(ti,j). The initial conditions 

for the SDEs are defined explicitly to be the latent variables at an initial time point, t1 (e.g., 

the first observed time point), denoted as ηi(ti,1), and are specified to be normally distributed 

2An alternative form of Equation 4 that may be easier to understand is one where all components of the equation are divided by dt, 

yielding the first derivatives of elements in ηi(t), namely, 
dηi(t)

dt
, on the left-hand side of Equation (4). The expression shown in 4 is in 

the so-called Ito form, often adopted to highlight explicitly that the Wiener process is not differentiable with respect to time (i.e., 
dwi(t)

dt
 is not defined as dt approaches zero; Arnold, 1974; Molenaar and Newell, 2003).
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with means µη1 and covariance matrix, Ση1. The time interval between time ti,j and ti,j+1 is 

denoted as Δi,j = ti,j+1 − ti,j.

The vector of manifest observations is linked to the latent variables as

yi(ti, j) = τSi(ti, j) + ΛSi(ti, j)ηi(ti, j) + ASi(ti, j)xi(ti, j) + ϵi(ti, j),

ϵi(ti, j) ∼ N 0, RSi(ti, j) ,
(5)

where τSi(ti,j) is p × 1 vector of intercepts, ASi(ti,j) is a matrix of regression weights for the 

covariates in xi(ti,j) observed at time ti,j, and ΛSi(ti,j) is a p × w factor loading matrix that 

links the observed variables to the latent variables. Adopting the modeling tradition in the 

state-space literature (see e.g., Durbin and Koopman, 2001), we assume that all sources of 

time dependencies of interest are specified as part of the dynamic model in (4) and 

consequently, ϵi(ti,j) is a p × 1 vector of measurement errors assumed to be serially 

uncorrelated over time and normally distributed with a mean vector of zeros and regime-

dependent covariance matrix, RSi(ti,j).

Equations 4 and 5 are the dynamic model and measurement model that defines a dynamic 

system, respectively. The former describes the ways in which the latent variables change 

over time whereas the latter portrays the relationships between a set of observed variables 

and a set of latent variables over time. The subscript Si(ti,j) associated with τSi(ti,j), ΛSi(ti,j), 

ASi(ti,j), and RSi(ti,j) indicates that the values of some of the parameters in them may depend 

on Si(ti,j), the operating regime for individual (dyad) i at a particular observed time ti,j. In 

practice, not all of these elements are free to vary by regime. Our motivating example 

illustrated one example of such constrained models. Other than allowing some parameters to 

differ in values as conditional on changes in Si(ti,j), the model is used to describe the 

dynamics of multiple subjects (dyads) at the group level. Thus, when there is only one 

regime, these parameters do not differ in values over individuals (dyads) or time, unless the 

hypothesized variations in parameters are explicitly integrated into the dynamic model, for 

example, as random effects characterizing between-individual (or between-dyad) 

differences.

When there is no regime dependency, Equations 4 and 5 can be conceived as a linear/

nonlinear SDE model with Gaussian distributed measurement errors. To make inferences on 

Si(ti,j), it is essential to specify a model or mechanism through which Si(ti,j) changes over 

individuals and time. Here, the initial regime probabilities for Si(ti,1) are represented using a 

multinomial regression model as

Pr (Si(ti, 1) = m ∣ xi(ti, 1)) ≜ πm, i1 =
exp(am + bm

T
xi(ti, 1))

∑k = 1
M exp(ak + bk

T
xi(ti, 1))

, (6)

where M denotes the total number of regimes, am denotes the logit intercept for the mth 

regime and bm is a vector of regression slopes linked to xi(ti,1) the vector of covariates that 

also appears in Equations (4-5), but is now restricted to include covariates at ti,1 only to 

explain possible interindividual or between-dyad differences in initial conditions. For 
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identification purposes, we set aM and all elements in bM to 0 for the reference (last) regime 

to ensure that the initial regime probabilities across the M regimes sum to 1.0.

In a similar vein, a first-order Markov process conforming to a multinomial logistic 

regression equation is assumed to govern the probabilities of transitioning between regimes:

Pr (Si(ti, j) = m ∣ Si(ti, j − 1) = l, xi(ti, j)) ≜ πlm, it

=
exp(cm + cΔ, lm + dlm

T
xi(ti, j)

∑k = 1
M exp(ck + cΔ, lk + dlk

T
xi(ti, j))

,
(7)

where πlm,it denotes individual (dyad) i’s probability of transitioning from regime l at time 

ti,j−1 to regime m at time ti,j, cm denotes the logit intercept for the mth regime, cΔ,lm denotes 

the deviation in LO of switching into latent regime m at time ti,j from latent regime l (i.e., 

from Si(ti,j−1) = l to Si(ti,j) = m), as compared to switching into latent regime m from the 

reference regime, i.e., Si(ti,j−1) = M; dlm is a vector of logit slopes summarizing the effects 

of the covariates in xi(ti,j) on the deviations in LO of switching into regime m from regime l 

as opposed to from the reference regime M. For identification purposes, we impose the 

constraints that cM = cΔ,lM = 0 and dlM = 0 for l = 1, … , M to ensure that ∑m = 1
M

πlm = 1.

To summarize, the parameters in Equations 6-7, including am, cm, cΔ,lm and those in bm and 

dlm for l = 1, …, M and m = 1, … , M are regarded as model parameters that are to be 

estimated with other parameters that appear in τSi(ti,j), ΛSi(ti,j), bSi(ti,j), ASi(ti,j), and RSi(ti,j) in 

Equations 4 and 5. The procedures for estimating these parameters, collected into the vector 

θ, are outlined next.

Estimation Procedures

We use the continuous-discrete time extended Kim filter (CDEKimF) algorithm, provided as 

part of the R package, Dynamic Modeling in R (dynr; Ou et al., 2016), to estimate the 

unknown components of the model summarized in Equations (4) - (5). The CDEKimF 

essentially combines the continuous-discrete extended Kalman filter (CDEKF; Bar-Shalom 

et al., 2001; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014), which can be used 

to estimate the latent variables that appear in Equations (4) - (5) when there is only a single 

regime, and the Kim filter (Kim and Nelson, 1999), which includes procedures for handling 

the estimation of Si(ti,j).

Before we elaborate further on features of the CDEKimF, some clarifications of notation and 

links to relevant work in the literature are in order. Let Yi(ti,j) denote all the manifest 

observations from ti, 1, … , up to ti,j; ηi(ti, j ∣ ti, j − 1) = E(ηi(ti, j) ∣ Yi(ti, j − 1)) and Pi(ti,j∣ti,j−1 = 

Cov[ηi(ti,j)∣Yi(ti,j−1)] denote the predicted mean and covariance matrix of the latent 

variables, respectively, at time ti,j conditional on Yi(ti,j−1), all the prior observations up to 

time ti,j−1. In addition, we define ηi(ti, j ∣ ti, j) = E(ηi(ti, j) ∣ Yi(ti, j)) and Pi(ti,j∣ti,j) = Cov[ηi(ti,j)

∣Yi(ti,j)] as the filtered or updated mean and covariance matrix of the latent variables, 

respectively, at time ti,j conditional on Yi(ti,j), all the observations up to time ti,j. Finally, if 

data from all measurement occasions are available for estimation purposes, then all 
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observations from each person (dyad) across all time points, Yi(Ti) can be used to perform 

smoothing on the latent variable estimates to yield estimates of the means and covariance 

matrix of ηi(ti,j) conditional on all observations in Yi(Ti), namely, E(ηi(ti,j)∣Yi(Ti)) and 

Pi(ti,j∣Ti) = Cov[ηi(ti,j)∣Yi(Ti)]. Estimates of ηi(ti,j) obtained for time ti,j using observations 

from up to time ti,j−1, up to time ti,j, and up to time Ti are referred to respectively as the 

predicted, filtered (or updated), and smoothed latent variable estimates.

Overall, the implementation of the CDEKimF can be summarized into 4 basic steps (see 

Table 1), which we describe briefly below. Further technical details are summarized in the 

Supplementary Material section.

Step 1. CDEKF with prediction and update stages by regime.

Even though the procedures that constitute the novel CDEKimF algorithm may be 

unfamiliar to most psychometricians, Step 1 of the CDEKimF algorithm can essentially be 

regarded as a latent variable (factor) score estimator whose linear and discrete-time analogue 

has some known parallels to well-known factor score estimators in the psychometric 

literature (Chow et al., 2010; Dolan and Molenaar, 1991; Lawley and Maxwell, 1971; Oud et 

al., 1990). In the presence of multiple regimes, the purported latent variable estimation 

procedures — consisting of a series of prediction and update steps for all time points and 

individuals — now have to be performed as conditional on the current and previous 

operating regimes of a system. Thus, execution of the prediction and update procedures in 

Step 1 generally yields the output summarized in Table 1 under “Step 1” as conditional on 

Si(ti,j) = m and Si(ti,j−1) = l. For now, we assume that Step 1 is run conditional on a set of 

fixed and known parameter values, θ. After describing Steps 1–3, we will briefly summarize 

how these steps collectively yield by-products that may be used to construct a log-likelihood 

function that can be optimized for estimating θ.

In the continuous-discrete time context, the prediction step in the CDEKimF serves to 

compute ηi(ti, j ∣ ti, j − 1) and Pi(ti,j∣ti,j−1) by solving the ODEs (Kalman and Bucy, 1961; 

Jazwinski, 1970; Bar-Shalom et al., 2001; Kulikov and Kulikova, 2014; Kulikova and 

Kulikov, 2014):

dηi(t)
dt

= fSi(t) (ηi(t), t, xi(t)), and (8)

dPi(t)
dt

=
∂fSi(t) (ηi(t), t, xi(t))

∂ηi(t)
P(t) + P(t)

∂fSi(t) (ηi(t), t, xi(t))

∂ηi(t)

T

+ QSi(t)
(9)

with initial conditions ηi(ti, j − 1) = ηi(ti, j − 1 ∣ ti, j − 1) and Pi(ti,j−1) = Pi(ti,j−1∣ti,j−1), the 

updated latent variable estimates and the associated covariance matrix at time ti,j−1. The 

Jacobian matrix 
∂fm(ηi(t), t, xi(t))

∂ηi(t)
, is based on differentiating the dynamic functions from the 

mth regime evaluated at ηi(t) = ηi(ti, j − 1 ∣ ti, j − 1) and with the time-varying covariates in 

xi(t) fixed at their observed values, x(ti,j). We use the fourth-order Runge-Kutta (Press et al., 
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2002) method to derive numerical solutions to Equations 8 and 9. Other numerical solvers, 

such as the adaptive ODE solvers, may also be used (Kulikov and Kulikova, 2014; Kulikova 

and Kulikov, 2014).

During the update step, the prediction errors, 

vi(ti, j) = yi(ti, j) − τSi(ti, j) + ΛSi(ti, j)ηi(ti, j) + ASi(ti, j)xi(ti, j)  and its associate prediction error 

covariance matrix, Vi(ti, j) = ΛSi(ti, j)Pi(ti, j ∣ ti, j − 1)ΛSi(ti, j)
T + RSi(ti, j), are computed and used 

to update the latent variable estimates to yield ηi(ti, j ∣ ti, j) and Pi(ti,j∣ti,j).

Step 2. The Hamilton filter.

Following Step 1, a procedure known as the Hamilton filter is executed in Step 2 to yield 

estimates of each individual’s probabilities of being in each of the hypothesized regimes 

conditional on the data, namely, Pr[Si(ti,j) = m∣Yi(ti,j)] for all ti,j. This procedure is 

summarized in Equations (S.5) - (S.9) in the Supplementary Material section. Such regime 

probability estimates convey information concerning the general unfolding of the different 

phases/regimes, including each individual’ likelihood of staying within or transitioning 

between particular regimes, and the relative prevalence of the hypothesized regimes across 

time and individuals.

Step 3. The collapsing procedure.

Step 1 of the CDEKimF generates M2 new values of ηi(ti, j ∣ ti, j)
l, m and Pi(ti,j∣ti,j)l,m and their 

associated by-products at each time point for each individual. Storing all of these conditional 

estimates (e.g., for the purpose of computing loglikelihood values) can be computationally 

prohibitive in the presence of intensive longitudinal data. One way to circumvent this 

difficulty, as proposed by Kim and Nelson (1999), is to introduce a collapsing procedure to 

average over regime information from time ti,j−1, yielding the estimates, ηi(ti, j ∣ ti, j)
m (i.e., 

E[ηi(ti,j)∣Si(ti,j) = m, Yi(ti,j)]), and the associated covariance matrix, Pi(ti,j∣ti,j)m, by taking 

weighted averages of the M × M sets of latent variable estimates ηi(ti, j ∣ ti, j)
l, m and their 

associated covariance matrices, Pi(ti,j∣ti,j)l,m (with l = 1, … , M, m = 1, … M). Thus, Step 3 

is generally a convenience step to reduce the computational burden of the algorithm and 

does not typically yield output that is of direct interest from an inferential standpoint.

Optional: Parameter estimation.

Under the constraint of a linear measurement model, Chow and colleagues (2007; 2013) 

noted that the log-likelihood function, log[f(Y; θ)], can be computed using the prediction 

errors as

log[f(Y; θ)] = −
1
2 ∑

i = 1

n

∑
j = 1

Ti

[p log(2π) + log ∣ Vi(ti, j) ∣ + vi(ti, j)
T
Vi(ti, j)

−1
vi

(ti, j)],

(10)

where log[f(Y; θ)] is often referred to as the prediction error decomposition function 

(Schweppe, 1965) and it can be maximized using an optimization procedure of choice (e.g., 
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Newton Raphson) to obtain estimates of θ. Standard errors associated with θ can be 

obtained by taking the square root of the diagonal elements of I−1 at the convergence point, 

where I is the observed information matrix, obtained by computing the negative numerical 

Hessian matrix of log[f(Y∣θ)] – namely, a matrix of numerical second derivatives of 

log[f(Y∣θ)] with respective to the parameters. IC measures such as the AIC (Akaike, 1973) 

and BIC (Schwarz, 1978) can also be computed using log[f(Y∣θ)] as (see p. 80, Harvey, 

2001):

AIC = − 2 log[f(Y ∣ θ)] + 2q

BIC = − 2 log[f(Y ∣ θ)] + q log(∑
i

n

Ti),

where q is the number of parameters in a model.

As explained in Kim and Nelson (1999), the collapsing procedure only yields an 

approximation of ηi(ti, j ∣ ti, j)
m and Pi(ti,j∣ti,j)m due to the averaging of distant regime history 

beyond ti,j−1 (i.e., ti,1, … , ti,j−2). Thus, because of the truncation errors in the collapsing 

procedure and also the truncation of higher-order terms in the Taylor series expansion that 

resulted in the ODEs in (8)-(9), optimizing the log-likelihood function in (10) results only in 

“approximate” maximum likelihood (ML) as opposed to ML estimates.

Step 4. Smoothing.

In the social and behavioral sciences, the entire time series of observations has often been 

collected prior to model fitting, thus negating the need to perform real-time filtering. In such 

cases, one can refine the latent variable estimates for ηi(ti,j) and the probability of the 

unobserved regime indicator, Si(ti,j), based on all the observed information in the sample, 

yielding the smoothed latent variable estimates, ηi(ti, j ∣ Ti) = E(ηi(ti, j) ∣ Yi(Ti)), and the 

smoothed regime probabilities, Pr[Si(ti,j) = m∣Yi(Ti)].

Overall, aside from the use of the CDEKF in step 1 to accommodate a continuous-time 

dynamic process at the latent level coupled with a discrete-time measurement model, Steps 

2–4 of the proposed CDEKimF algorithm are identical to those described in Chow and 

Zhang (2013), and are described in detail in the Supplementary Material section. Further, for 

diagnostic purposes, it may be of interest to further collapse the conditional estimates of the 

current regime m to yield the elements labeled as “optional” in Table 1, including 

ηi(ti, j ∣ ti, j), Pi(ti,j∣ti,j), vi(ti,j) and Vi(ti,j). The proposed estimation procedures have been 

implemented in the R package, dynr (Ou et al., 2016), available for download from the 

Comprehensive R Archive Network (CRAN).

Empirical Illustration Results

The model depicted in Equations 1-3 is a theoretically-inspired model designed to describe 

specific patterns of change in mother-infant dynamics during the SSP procedure. It was used 
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as the basis to evaluate the performance of IC measures in our simulation study. For the 

analysis of our empirical model, we considered several adaptations/extensions of the model. 

One of them was a one-regime model with dyad- and session-specific random effects in the 

infant set-point, denoted below as model 1 (abbreviated as model M1), expressed as:

dMomig(t)
dt

= − r1
(M1)

Momig(t) + (a120
(M1) + a121

(M1)
isReunion2ig)[Infantig(t

) − Momig(t)]

dInfantig(t)
dt

= − r2
(M1)[Infantig(t) − setpointig

(M1)(t)]

+ (a210
(M1) + a211

(M1)
isReunion2ig)[Momig(t) − Infantig(t)]

dsetpointig
(M1)(t)

dt
= 0,

(11)

where the superscript (M1) is used to distinguish the parameters unique to this model from 

parameters that appear in other similar but non-equivalent models adapted from Equation 1. 

In this one-regime model, r1 and r2 were still constrained to be non-negative to reflect their 

role as the dyad members’ rates of approaching their respective set-points. However, the 

mother- and infant-initiated approach rates were allowed to be session-specific (taking on 

the values of a120 and a210, respectively, in the first reunion session; and the values of a120 + 

a121 and a210 + a211, respectively, in the second reunion session). We did not explicitly 

impose constraints on any of a120, a121, a210 and a211 because, unlike the two-regime model 

described earlier, there was no need to concretely define a proximity-seeking regime in the 

one-regime context. In addition, an ODE was added for the set-point parameter to represent 

this parameter as one of the latent variables, to be handled the same way as Momig(t) and 

Infantig(t). Person-and session specific deviations in set-point can be specified in the initial 

condition structure of the latent variables as:

Momig(ti, 1)

Infantig(ti, 1)

setpointig(ti, 1)

∼ N

ȳMom(ti, 1)

ȳInfant(ti, 1)

μsetpoint
(M1)

, diag

Var yMom(ti, 1)

Var yInfant(ti, 1)

σsetpoint
2(M1)

, (12)

where the empirical observed sample means (i.e., ȳMom(ti, 1) and ȳInfant(ti, 1)) and variances 

(i.e., Var(yMom(ti,1)) and Var(yInfant(ti,1))) of the mother and infant Euclidean measures at the 

first observed time point were used to set the latent initial means and variances of 

Momig(ti,1) and Infantig(ti,1.3 In contrast, the group and across-session average set-point for 

the infant, μsetpoint
(M1) , and the corresponding random effect variance in set-point, σsetpoint

2(M1) , were 

specified as parameters to be estimated.

3These means and variance parameters could also be estimated as modeling parameters (see e.g., Chow et al., 2016b). However, 
because these parameters were not of great substantive interest and with the large numbers of time points within participants in the 
current data set, slight misspecifications of the values and structures of these specific initial conditions were likely to have minimal 
impact on the overall estimation. Thus, they were fixed at heuristic, empirically determined values.
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Model M1 was compared to a two-regime model adapted from the model in Equations 

(1)-(3). One of the adaptations we made was motivated by difficulties in estimating all the 

infant-related set-point parameters due to the relatively brief periods of time most infants 

stayed at a “set-point” away from the mothers (if at all), particularly in the second reunion 

session. Many infants’ set-points also varied in exact location over time. Thus, in model M2 

we omitted the random effect for the infant’s set while in the exploration regime (in which 

Sig(t) = 1) and set the set-point parameter to be invariant across infants. The ODE for the 

mother in the exploration remains unchanged compared to (1). The ODE equations for the 

proximity-seeking regime (in which Sig (t) = 1) were adapted slightly to allow more 

convenient and straightforward testing of possible between-session deviations in proximity-

seeking behaviors as:

dMomig(t)
dt

= exp(a120, 2
(M2) + a121, 2

(M2)
isReunion2ig)[Infantig(t) − Momig(t)]

dInfantig(t)
dt

= exp(a210, 2
(M2) + a211, 2

(M2)
isReunion2ig)[Momig(t) − Infantig(t)],

(13)

where the incorporation of the exponential constraints ensure that the proximity-seeking 

rates for the mother and the infant, a12, 2
(M2) = exp(a120, 2

(M2) + a121, 2
(M2)

isReunion2ig) and 

a21, 2
(M2) = exp(a210, 2

(M2) + a212, 2
(M2)

isReunion2ig), respectively, were non-negative across both reunion 

sessions. Note that the same model can also be specified by rewriting the proximity rates in 

Equation 13 as a12, 2
(M2) = exp(a120, 2

(M2) ) exp(a121, 2
(M2) )isReunion2ig and 

a21, 2
(M2) = exp(a210, 2

(M2) ) exp(a211, 2
(M2) )isReunion2ig. The linearization procedures built into the general 

RS-ODE estimation framework allow such nonlinearities and the testing of the hypotheses 

of exp(a121, 2
(M2) ) = 0 and exp(a211, 2

(M2) ) = 0 to be handled directly using the proposed estimation 

approach. Such constraints ensure that the proximity-seeking rates remain non-negative for 

the identifiability reasons detailed earlier. Moreover, doing so results in proximity-seeking 

parameters in the second reunion session that are multiplicative functions of the proximity-

seeking parameters in the first reunion session.

In total, two models were fit to the empirical data. Although the models used to compare the 

performance of the IC measures for model selection purposes in a simulation study are 

simpler adaptations of Models 1 – 2 to keep the computational costs manageable, we 

conducted preliminary simulations to verify that the proposed estimation procedures were 

able to recover the parameters in these models well. In addition, as one possible measure of 

effect size, we computed a “pseudo-R2” value as:

Rq
2 = 1 −

SSeq

SSyq
= 1 −

∑g = 1
2 ∑i = 1

n ∑j = 1
Ti [vq, ig(ti, j)]

∑g = 1
2 ∑i = 1

n ∑j = 1
Ti [yq, ig(ti, j) − ȳq, ig]

, (14)

where vq, ig(ti, j) = yq, ig(ti, j) − yq, ig(ti, j) is the one-step-ahead prediction error defined under 

Step 1 of the proposed estimation procedures, with yq, ig(ti, j) being the model-implied true 

distance from the chair (true score) for the qth member in dyad i in renion session g at time 
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ti, j; ȳq, ig is the mean of that dyad member during session g. Note that this R2 value is only a 

crude measure because it could, at times, take on negative values in cases where the sum of 

squared deviations of the model-implied true scores from the observed data exceeds the 

corresponding sum of squared deviations based on the observed, person- and session-

specific means. Furthermore, computation of vq,ig(ti,j) utilizes as the initial condition the 

filtered estimates of true scores from time ti,j−1 — namely, estimates of latent variable scores 

derived from a linear combination of model predictions and observed data up to time ti,j−1. 

Thus the R2 estimates may overestimate the extent of good fit.

The models considered in this empirical illustration are more complicated than those 

evaluated in the simulation study. Thus, before proceeding with model comparisons, we 

performed preliminary simulations to ensure model identifiability and underwent several 

iterations of fitting Models M1–M2 to the empirical data with different starting values. In 

addition, we performed targeted sensitivity analysis on the results from fitting Model M2 by 

imposing minor changes on the initial condition specifications of the model. For instance, 

we compared the modeling results obtained when the initial LO of the exploration regime 

relative to the proximity-seeking regime, a1 (see Equation 6), was freely estimated as 

compared to being fixed it at the values of 10, −10 and 1. We noticed that the results with 

respect to the covariates in the RS functions were sensitive to such modeling changes. 

However, fixing the process noise variances at a small constant (e.g., we tried 0.01 and 

0.0001) — a practice adopted at times in fitting single-regime, deterministic dynamic 

models (i.e., models with no dynamic noise) to reduce instances of false convergence to 

local solutions (e.g., Molenaar and Newell, 2003) — led to results that were stable and 

robust to such minor changes. In contrast, freeing up the process noise variances to be 

estimated as parameters led to numerical problems in the estimation process. Thus, we fixed 

the process noise variances at 0.01 in both the one- as well as two-regime models.

We further observed that the estimated value of μsetpoint
(M2)  was sensitive to changes in starting 

values and boundary constraints imposed during the optimization process. However, 

estimates involving other parameters remained largely unaltered by changes in the estimated 

value of μsetpoint
(M2) , provided that this value was adequately larger than 0 (i.e., the position of 

the mother’s chair) to adequately distinguish the exploration regime from the proximity-

seeking regime. This suggested that this parameter may not be empirically identifiable based 

on information in this particular data set. Thus, we fixed the value of μsetpoint
(M2)  to 6.0 to mirror 

the largest (rounded) observed distance from the chair across all values of yInfant(ti,j) and 

yMom(ti,j).

Based on the IC measures, the two-regime model (AIC = 19119.54; BIC = 19255.13 with 15 

parameters; pseudo-R2 = .95 and .91 for mother and baby, respectively) was preferred over 

the one-regime model (AIC = 127272.75; BIC = 127363.15 with 10 parameters; pseudo-R2 

= .81 and .86 for mother and baby, respectively). The estimated error variances for mothers 

and infants in the two regime-switching models were also smaller and close to zero 

compared to the estimate from the one-regime model σe, Mom
2 = 0.03 and σe, Infant

2 = 0.04 in 

the two-regime model compared to σe, Mom
2 = 0.13 and σe, Infant

2 = 0.06 in the one-regime 
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model). Next, we summarize results from model M2 (see the parameter estimates obtained 

from this model in Table 2), followed by elaborations on potential sources of model misfit.

Results from model fitting (see Table 2) indicated that as distinct from the estimated value of 

divergence rates for the mothers, the estimated value of divergence rate for the infants was 

much smaller in magnitude compared to that associated with the mothers r2, 1
(M2) = 4.08, SE = 

0.06 for the infants; as compared to r1, 1
(M2) = 158.72, SE = 0.55 for the mothers). This 

indicated that infants, even when they were estimated to be in the exploration regime, were 

slow in moving away from their mothers. The two members’ relative differences in 

divergence dynamics from each other are shown in the simulated trajectories in Figure 4(A), 

generated using estimated parameter values from fitting model M2 to data from the second 

reunion session. In contrast, the infant’s proximity-seeking strengths were strong in 

comparison to the mothers’ proximity seeking strengths. For instance, in the first reunion 

session, the proximity-seeking strengths for mothers and infants were given, respectively, by 

a120, 2
(M2) = exp( − 1.35) = 0.26; and a210, 2

(M2) = exp( − 0.81) = 0.44. The proximity-seeking strength 

was found to strengthen for the infants during the second reunion session (as given by 

exp(a210, 2
(M2) + a211, 2

(M2) ) = exp( − 0.81 + 0.38) = 0.65 for the infants) but weakened – though not in 

a statistically reliable way – for the mothers. We set a121, 2
(M2)  to 0 in generating the simulated 

trajectories in Figure 4(A). These modeling results reflected the distinct changes in the 

movement dynamics of the infants and mothers with the progress of the SSP procedure, 

namely, the mothers’ desire to instill some autonomy in the infants on the one hand, and the 

infants’ growing desire to approach and stay close to their mothers after being separated 

from them for the second time. Collectively, these parameter estimates yielded relatively 

abrupt shifts in the predicted movement trajectories of both dyad members, but during 

different regimes.

The estimated value of cΔ,11 = 3.00 (SE = 0.05), indicating the deviation in LO of staying 

within the exploration regime, when compared to c1 = −2.60 (SE = 0.03), the LO of 

switching from the proximity seeking to the exploration regime, suggested that in reunion 

session 1, for infants who did not evidence any vocalizations (i.e., meanInfantVocali = 

isReunion2ig = 0), the probability of staying within the exploration regime, as given by 

exp(3.00 − 2.60)
exp(0) + exp(3.00 − 2.60)

= .60, was not very high. Further, with each unit of increase in 

proportion of infant vocalizations, there was a decrease in the LO for the dyads to stay 

within the exploration regime (d11,1 = −0.57, SE = 0.15), as well as a decrease in LO for the 

dyads to switch from the proximity-seeking to the exploration regime (d21,1 = −1.32, SE = 

0.11). There was also a shift in the second reunion session in comparison to the first reunion 

session toward lower LO of staying within the exploration regime (d11,2 = −0.49, SE = 0.07) 

as well as decrease in the LO for the dyads to transition from the proximity-seeking to the 

exploration regime in the second than in the first reunion session (d21,2 = −0.36, SE = 0.04). 

These findings suggested that overall infant vocalizations indexed a tendency to maintain 

proximity-seeking, while the second reunion session was associated with simultaneous 

decline in the desire to transition out of the proximity-seeking regime and to stay within the 

exploration regime for an extended period of time. Combining all these effects, the overall 
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frequency counts of the more probable regimes across all individuals and time points (based 

on the highest smoothed regime probability) suggested that the proximity-seeking regime 

was substantially more prevalent than the exploration regime (see Figure 4(B)).

Figures 4(C)-(D) show the predicted (smoothed latent variable) estimates and actual 

observed data from the two dyads depicted earlier in Figures 3(A)-(B) for reunion session 1. 

The shaded regions of the plots identify portions of the data where the dyads were predicted 

to have a higher likelihood of being in the exploration regime than in the proximity-seeking 

regime (based on Pr(Si(ti,j) = 1∣Yi(ti,j)) ≥ .5). These shaded regions concurred with the 

measurement occasions on which the members of the dyad were observed to diverge from 

each other. In particular, dyad 37 was predicted to spend sporadic portions of reunion 

session 1 in the exploration regime, whereas the reverse was true for dyad 53. In the same 

plots, we overlaid the predicted trajectories generated for each of these dyads based on the 

session-specific one-regime model to help shed light on the ways in which the RS model 

with covariates was/was not able to enhance the predictions from the one-regime model. 

Based on the plots, we found that the estimated trajectories from the two-regime model were 

able to better tailor to differences in the dyads’ dynamics while engaging in distinct 

interactive behaviors, and were able to capture abrupt shifts in dynamics (e.g., in dyad 37 in 

the first 1.5 minutes during which the infant was observed to show ongoing movements 

away and toward the mother). In contrast, the one-regime model tended to predict that the 

dyads settled into and stayed at some set-points that may deviate relatively substantially 

from the observed locations toward which the dyads settled.

Inspection of the predicted trajectories plotted in Figures 4(C)-(D) revealed several sources 

of misfit as reflected in the discrepancies between the smoothed latent variable estimates 

from model M2 and the observed data. One notable discrepancy resided in deviations of the 

set-point for the mother from 0, due presumably to imprecision either in our estimates of the 

location of the chair – which could vary slightly from dyad to dyad and even within a 

session, or some mothers’ decision to stay at a set-point away from the chair (e.g., by 

observing the infant from a distance, but not necessarily from the chair). Based on our post-

hoc evaluations of the regime classification results, fixing the set-point for all infants 

arbitrarily at the value of 6.0 led to misclassification of some of the data as being in the 

proximity-seeking regime even though the dyads’ dynamics would be more appropriately 

classified as being in the exploration regime. This, in turn, might have led to potential 

underestimation in the dyads’ LO of staying within the exploration regime. Finally, it is 

important to note that the two regimes become indistinguishable when 

r1, 1
(M2) = r2, 1

(M2) = exp(a120, 2
(M2) + a121, 2

(M2) ) = exp(a210, 2
(M2) + a211, 2

(M2) ) = 0. This might arise in cases 

where all mothers and infants stayed exactly at their initial positions and did not show any 

movements at all. We did not observe this characteristic in this particular data set. That is, 

most participants did at least show some movements throughout the two reunion sessions; 

but there were likely reductions in the distinctions between the two regimes with the 

progress of each reunion session as dyad members settled into specific areas within the room 

and stopped moving (whether close to, or away from each other). This issue has certainly led 

to added challenges in isolating the two regimes.
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Overall, while the proposed RS-ODE functions offered some improvements over the one-

regime models in capturing more abrupt and distinct shifts in dynamics, some unmodeled 

sources of between- and within-dyad heterogeneities in dynamics not accounted for by the 

group-based ODE and RS functions remained. Some possible modeling extensions that can 

help circumvent these inadequacies and improve the robustness of these models are 

highlighted in the Discussion section. Despite the potential inadequacies in the dyad-specific 

regime classification results, the group-based parameter estimates from the RS still help 

confirm propositions from attachment theory in the preeminent measure of attachment 

security, the SSP (Ainsworth et al., 1978; Bowlby, 1982), in several important ways. First, 

they provide overall evidence for interaction with the Strange Situation. Second, they 

suggest that some children in the SSP vary in time between proximity-seeking and 

exploration regimes. This is an empirical confirmation of an essential proposition — 

heretofore lacking in quantitative evidence — first articulated in Bowlby’s theory, and given 

empirical form in Ainsworth’s field notes from observing infants and caregivers first in 

Uganda and then in Baltimore.

Third, they provide evidence that the infant attachment system becomes increasingly 

activated from the first to the second reunion as evidenced by a decrease in exploration 

between these Strange Situation episodes and an increase in infant’s predilection to 

approach mother in the second reunion. Fourth, we found that the accumulation of stress due 

to the separation across reunion sessions did not lead to uniform increase in all aspects of 

proximity-seeking dynamics (as reflected e.g., in infants’ but not mothers’ increase in 

proximity-seeking strength from the first to the second reunion session). Although not 

highlighted in relevant manuals, cross-partner coupling parameters indicate that infants tend 

to approach their mothers while mothers, following instructions, tend to retreat to their 

chairs. Finally, they suggest that infant fussy/cry vocalizations function as an attachment 

behavior or signal, such that infants who exhibit more vocal distress are less likely to 

transition into and remain in the exploration regime.

Simulation Study

Simulation Design

The purpose of the simulation study was two-fold. We sought to (1) evaluate the 

performance of the proposed methodological approach in recovering the true values of the 

parameters and their associated standard error (SE) estimates; and (2) investigate the 

performance and limitations of model comparison criteria such as the AIC and BIC 

computed using by-products of the CDEKimF algorithm in detecting model misspecification 

in RS-DE models. Two configurations of sample size and time series lengths were 

considered to mirror the sample size of the empirical application, namely, with (1) Ti = 500 

for all i, n = 40; and (2) Ti = 1000, n = 20. The first condition was characterized by fewer 

observation points than our empirical example but twice the number of dyads; the second 

condition was similar in sample size configuration to our empirical study. Even though the 

corresponding total numbers of time points considered in the two conditions may still be 

regarded as high by the standards of behavioral sciences, such large-T-small-n 

configurations are not uncommon with the advent of modern technologies such as smart 
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phones and other mobile devices for collecting ecological momentary assessment data in 

real time. In addition, the relative differences in aspects of the simulation results can still be 

contrasted between the two sample size configurations.

The model in Equations 1-3 described in the Motivating Example section was used as our 

simulation model. To reduce computational costs, we only considered simulation set-up 

involving a single session, and no random effect in the infant set-point parameter. The 

population values of all the time-invariant parameters were chosen to mirror most of the 

parameters obtained from empirical model fitting, except that we modified the divergence 

and approach rates to allow more time for the system to settle into its equilibrium within 

each regime, and we set the movement metric in terms of centimeters, as opposed to meters 

as in the empirical example. Specifically, we set the parameters in the dynamic model in 

Equation 1 to r1,1 = 0.2, r2,1 = 0.1, a12,2 = 0.3, a21,2 = .2, setpoint = 100, 

σe, Mom
2 = σe, Infant

2 = 9. We simulated two time-varying covariates to be used in the RS 

functions. The first covariate, denoted herein as x1i(ti,j), was simulated to be a binary 

covariate which itself has a probability of staying at the values of 0 and 1 of .8 and .8, 

respectively. The second covariate, denoted herein as x2i(ti,j), was set to be a continuous 

variable following an autoregressive process of order 1 (i.e., an AR(1) process) as x1i(ti,j) 

= .9x1i(ti,j−1) + ζ1i(ti,j), where ζ1i(ti,j) is normally distributed process noise with mean zero 

and variance of 0.25.

We assumed that the vector of latent variables at the first time point were normally 

distributed with means of 70 and 40, and variances of 225 and 100, respectively. We set the 

initial means and covariance matrix to their true values in the model fitting process. 

Alternatively, these mean and variances could also be estimated as part of the modeling 

parameters, but we did not pursue that extension here.

To evaluate the tenability of using AIC and BIC for model comparison purposes in the 

context of linear RS-DEs, we used these model comparison indices to evaluate the three 

models considered in our empirical illustration: (1) Model 1, a model with no covariate in 

the RS function (i.e., d11,1, d11,2, d21,1 and d21,2 were all set to 0); (2) Model 2, in which we 

set the true LO parameters governing the transition between regimes to the values of c1 = 

−4, cΔ,11 = 8.5, d11,1 = −2, d21,1 = −1, d11,2 = 1, and d21,2 = −1; and (3) Model 3, a one-

regime model in which the dynamic parameters were set to the values of r1,1 = 0.2,r2,1 = 0.1, 

a12,2 = 0.3, a21,2 = .2, setpoint = 100, with other regime-invariant parameters assuming 

values that were identical to those in Model 1.

In sum, we considered two sample size configurations × three possible data generating 

models to yield a total of six conditions. Within each of these conditions, all three possible 

models were fit to each set of generated data and the AIC as well as BIC were calculated. 

The “best-fitting” model under each model comparison criterion was determined as the 

model with the lowest AIC and BIC. Five hundred Monte Carlo replications were performed 

for each condition and the performance of the AIC and BIC was compared across 

conditions. In addition, the root mean squared error (RMSE) and relative bias were used to 

quantify the performance of the approximate ML point estimator only when the correctly 

specified models were fit to the data. The empirical SE of a parameter (i.e., the standard 
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deviation of the estimates of a particular parameter across all Monte Carlo runs) was used as 

the “true” standard error. As a measure of the relative performance of the SE estimates, we 

also included the average relative deviance of a SE (aRDSE) estimate of an estimator, 

namely, the difference between an SE estimate and the true SE over the true SE, averaged 

across Monte Carlo runs.

Ninety five percent confidence intervals were constructed for each of the Monte Carlo 

replications in each condition by adding and subtracting 1.96*SE estimate in each 

replication to the parameter estimate from the replication. The coverage performance of a 

confidence interval was assessed with its empirical coverage rate, namely, the proportion of 

95% CIs covering θ across the Monte Carlo replications. Power was computed as the 

proportion of 95% CIs excluding 0 across the Monte Carlo replications. Finally, we 

monitored the convergence rates of the different models across sample size conditions by 

calculating the proportion of convergent Monte Carlo replications.

Simulation Results

Estimation Quality When Fitting Correctly Specified Models.—Statistical 

properties of the approximate ML estimator across all conditions are summarized in Tables 

3-4. Due to space constraints, we only present in these tables detailed summary statistics 

from fitting Model 2 – the model with covariates in the RS functions. For comparisons 

across models and sample size configurations, we plotted the RMSEs and relative biases of 

the point estimates, aRDSEs of the estimated SEs in comparison to the empirical SEs, 

95%coverage rates and convergence rates in Figures 5 A-E, as grouped by the type of 

parameters, model, and sample size configuration. That is, we averaged the outcome 

measures within each model and sample size condition as grouped by three types of 

parameters:(1) dynamic parameters that appear in the ODE functions, including r1,1, r2,1, 

a12,2, a21,2 and setpoint; (2) LO parameters that appear in the RS functions, including c1 to 

d21,1; and (3) measurement error variances in R, including σe, Mom
2  and σe, Infant

2 .

In general, when the correctly specified models were fit, the point estimates associated with 

all the parameters displayed small relative biases across all sample size conditions. RMSEs 

were slightly elevated for the RS-related parameters (see Figure 5A), due possibly to the 

truncations of the full regime history in estimating the latent variables and all modeling 

parameters (see the Supplementary Material section). There was a slight tendency for most 

dynamic (ODE) and RS parameters to show lower RMSEs and relative biases in point 

estimates in the larger compared to smaller n condition. This finding was largely consistent 

with previous findings involving similar dynamic models (e.g., discrete-time regime-

switching models and ODE models without regime switching; Chow and Zhang, 2013; 

Chow et al., 2016a; Yang and Chow, 2010), except that previous studies have reported 

greater improvements in the accuracy and precision of the dynamic parameters with 

increases in T as opposed to n. Inspection of Tables 3-4 revealed that the more noticeable 

differences in RMSE and relative bias in point estimates stemmed primarily from the gain in 

accuracy as well as precision in estimating the parameter setpoint with larger than smaller n. 

In addition, inspection of Figure 5A-B revealed that the quality of the point estimates for the 

ODE parameters in Model 3 was slightly better with larger T and smaller n, as opposed to 
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smaller T and larger n. This shows that increasing T is instrumental in helping to improve 

the accuracy of point estimates of ODE parameters in models with more complex dynamic 

functions. That is, even though Models 1 and 2 were arguably more “complex” (i.e., were 

characterized by more freely estimated parameters), the ODE functions within each regime 

were actually simpler in Models 1 and 2 than in Model 3, which required simultaneous 

estimation of the functionally correlated parameters, r1,1 −a21,2, within the one hypothesized 

regime. In contrast, increasing n has more notable effects in improving the accuracy of the 

point estimates of most other parameters, including the RS parameters, the measurement 

error variance parameters, and selected dynamic parameters, such as setpoint.

The sample size condition with larger n and smaller T, compared to the condition with 

smaller n and larger T, were observed to exhibit slightly greater efficiency (in the sense of 

smaller average SE estimates and relatedly, smaller true SEs), as well as smaller biases in the 

SE estimates, particularly in the RS-related parameters, and the parameter setpoint. The 

negative values of RDSE observed for most of the RS-related parameters in Tables 3-4 

suggested that there was a tendency for the SE estimator to underestimate the true variability 

in these parameters. Figure 5(C) further clarified that on average, the underestimation was 

observed in both Models 1 and 2; slight overestimation in SEs (as evidenced by the positive 

aRDSEs) was observed for the ODE-related parameters in Models 1 and 2, but not Model 3. 

Thus, underestimation of SE appeared to be more salient in situations involving more 

functionally related dynamic parameters with lower T (i.e., in Model 3 and under T = 500, 

but not under T = 1000).

The aRDSEs and biases in SE estimates were particularly pronounced in d21,1, the 

regression slope of the binary covariate, x1i(ti,j), on the LO of switching from regime 2 

(proximity-seeking) to regime 1 (exploration). This parameter was also observed to show 

large Monte Carlo SD across replications compared to other parameters. The lower precision 

and efficiency associated with estimating this parameter, particularly in the smaller n 

condition, may be related to the fact that for a binary covariate, limited information is 

available to estimate the corresponding shift in transition LO unless a categorical shift in 

value occurs. In this particular simulation study, the time-varying covariate was generated 

such that a shift in value occurred probabilistically as governed by a first-order Markov 

chain process (i.e., with a transition probability matrix that specified the probabilities of the 

current value of the covariate given its value at the previous time point). Thus, in smaller-n 

conditions, there may not be enough independent instances of such shifts over time. This 

was in contrast to larger-n conditions in which information from distinct subjects can be 

more effectively pooled to improve estimation precision.

For all conditions, when the correctly specified models were fit, the coverage rates of the 

95% CIs were relatively close to the .95 nominal rate for most of the modeling parameters. 

Slightly lower coverage values were observed for some RS parameters (more notably in 

Model 1 than in Model 2), and the ODE parameters in Model 3 (see Figure 5(D)). Overall, 

coverage rates remained largely similar between the two sample size conditions. Across all 

models, there was a slight tendency for coverage properties to improve from the smaller-n to 

the larger-n condition, except in conditions involving Model 3, as consonant with the finding 

of greater underestimation in SE in this model in the larger-n condition. In addition, due in 
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part to the higher RMSEs observed for the RS-related parameters and the higher aRDSEs for 

the ODE parameters in the simpler RS model with no covariate (Model 1), the more 

complex Model 2 with RS-related covariates was found to have slightly better coverage 

properties than Model 1. Thus, there may be some advantages in including covariates to 

capture potential regime shifts in the system if good covariates are indeed available.

Model Evaluation Results Using AIC and BIC—Model evaluation results based on 

the AIC and the BIC are summarized in Table 5, in which we show the proportions of Monte 

Carlo trials in which the AIC and BIC correctly selected the true model out of the three 

models considered (Models 1-3), as well as the proportions of convergent trials for which 

valid log-likelihood values were available at the time of convergence for the computation of 

the IC measures. Results indicated that out of all the valid trials, the BIC selected the 

correctly specified model greater than or equal to 93% of the time regardless of whether the 

true model was Model 1, 2 or 3. Consistent with past findings in the literature, the AIC 

demonstrated a slight tendency to select overly complex models. Specifically, when the true 

model was Model 1, the AIC tended to select the overly complex Model 2 as the preferred 

model a small percentage of the time – a tendency that was slightly more severe in the 

larger-T than in the smaller-T condition. The AIC still selected the correct Model 1 greater 

than or equal to 83% of the time, but with slightly less consistency than the BIC.

One other finding to note was the low number of converged trials from which the IC 

measures could be computed when mis-specified models were fit to the simulated data. 

When the correctly specified models were fit, we were able to use close to 100% of the 

convergent trials for model comparison purposes. When incorrectly specified models were 

fit, many Monte Carlo trials that had to be excluded due to non-positive definite Hessian and 

other matrices that require inversion in the estimation process (e.g., the prediction error 

covariance matrix, Vi(ti,j); see Equation 10). It was observed, for instance, that when Model 

3 was the true data generation model, fitting the highly over-parameterized Model 2 to the 

corresponding data yielded only 64% and 56% of valid cases for the computation of IC 

measures in the T = 1000 and T = 500 conditions, respectively. Despite the general issue of 

non-convergence when mis-specified models were considered, we found that the AIC and 

especially the BIC – when they could be computed – selected the correctly specified RS-DE 

models with high accuracy at the sample sizes considered.

Discussion

In the present article, we demonstrated the utility of a special subclass of RS-DE models in 

representing discrete shifts in dyadic dynamics and make available the estimation algorithms 

for dealing with these models through the R package, dynr. The proposed linear RS-DE 

model was motivated by an empirical dataset in which infant-mother dyads showed evidence 

of intermittent transitions between an exploration and a proximity-seeking regime. The 

dynamics of the dyad members were distinct during different portions or phases of the data; 

the precise time points at which each dyad may transition between the regimes –if at all – 

were unknown, but might be explained in part with known covariates or predictors.
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Results from our simulation study showed that the proposed estimation procedures 

performed well under the sample size configurations considered in the present study. The 

point and SE estimates generally exhibited good accuracy, and the AIC and especially the 

BIC – when they could be computed – selected the correctly specified RS-DE models with 

high accuracy at the sample sizes considered. A number of areas are still in need of 

improvement, however. First, our simulation study was designed to mirror several key 

features of our empirical data. Thus, our simulation results may be limited in generalizability 

to other conditions and models of change. Second, we only used the AIC and BIC to 

evaluate specific aspects of the model (e.g., comparison between variations of the proposed 

one- and two-regime models). It may be helpful to consider alternative fit indices and model 

comparison criteria such as the sample size-adjusted BIC, bootstrap likelihood ratio tests, 

and other alternative measures (e.g., Nylund et al., 2007; Enders and Tofighi, 2008; Tofghi 

and Enders, 2007).

Third, we did not consider other more complex models involving more than two regimes, 

nor did we evaluate the tenability of using these IC measures to compare models with and 

without random effects. Computational cost was a key consideration. We used an R package, 

dynr, which uses C as the language for the computational backbone while providing an 

interface in R for model specification. For the simulation study, each Monte Carlo 

replication for the T = 1000 and n = 20 condition took approximately 15 minutes of 

processing time on an Intel(R) Core(TM) i7-4770 3.40 Gigahertz (GHz) Central Processing 

Unit (CPU) with 8.00 Gigabytes of RAM. However, the computational time increased 

notably to about 2-3 hours for fitting the more complicated two-regime models in the 

empirical application because it involved twice as much data within dyads (in terms of time 

points) as the simulation study. Aside from dynr, other statistical programs that can handle 

matrix operations, such as R (R Development Core Team, 2009), SAS/IML (SAS Institute 

Inc., 2008), GAUSS (Aptech Systems Inc., 2009), and OxMetrics (Doornik, 1998) may also 

be used. Other standard structural equation modeling programs such as Mplus (Muthén and 

Muthén, 2001) and Open-Mx (Boker et al., 2011), the msm (Jackson, 2011) and depmix 

(Visser, 2007) packages in R, and the PROC LTA procedure in SAS (Lanza and Collins, 

2008) can be used to fit hidden Markov models and/or latent transition models. However, 

these programs currently do not allow for the specification of ODEs, particularly ODEs with 

regime-switching properties. Future studies should compare the relative performance of 

different estimation approaches under overlapping subsets of models, and also the 

performance of the CDEKimF under a broader range of models.

Fourth, the mathematical and empirical identifiability (e.g., inability to estimate parameters 

such as the set-point parameter with high accuracy due to insufficient time spent at the 

equilibrium) of the modeling parameters is a critical issue that determines the performance 

of the estimation (Miao et al., 2011). Researchers such as Shapiro (1985; 1986) and Dijkstra 

(1992) have discussed regularity conditions required for an estimator to show desirable 

asymptotic properties. The proposed one-regime model satisfies these regularity conditions, 

but as noted earlier, the two-regime model does have the potential to be located on the 

boundary of the parameter space (e.g., when both the divergence and proximity-seeking 

rates are at zero), which renders regime separation challenging or even impossible. This is 

an issue that often arises in the fitting, for instance, of mixture and latent class models. Even 
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if the model is mathematically identifiable, the data may not provide sufficient information 

to identify the different regimes implicated in the model (e.g., individual differences in the 

set-point parameter in our empirical application). Although some post-hoc diagnostic 

information (e.g., the positive definiteness of the negative Hessian matrix at the point of 

convergence) may be gleaned from the estimation process to inform modelers of the 

presence and severity of this issue, subsequent model refinements and modifications may 

still prove to be a challenging process.

Fifth, in the present study, we had to impose additional boundary constraints on the dynamic 

parameters and particular RS parameters to enable the extraction of confirmatory, 

theoretically meaningful regimes In practice, however, confirmatory constraints motivated 

by theoretical models may not apply to all dyads’ data and inevitably require some 

modifications when applied to real data. Future work to guide the process of model 

developments and refinements would be an important contribution to the literature.

Finally, as noted earlier, the collapsing procedure used in the proposed CDEKimF involves 

an approximation procedure to make the computational process feasible when used with 

intensive longitudinal data. As a result, the log-likelihood function optimized in the process 

of fitting the RS-DE models is also an approximation to the exact log-likelihood function 

used in RS structural equation models involving relatively few numbers of time points 

(Dolan et al., 2005; Dolan, 2009; Nylund-Gibson et al., 2013; Schmittmann et al., 2005). 

This limits, to some extent, the complexity of the RS functions permissible unless, of course, 

the numbers of time points and individuals are large enough to overcome the approximation 

errors that arise from the collapsing procedure. The point and SE estimates from the 

simulation study appeared satisfactorily despite the truncation errors, but this may not be the 

case in situations involving fewer time points.

Results from our empirical application suggested that some of the subtle differences in 

dyadic dynamics would likely be bypassed if the data were analyzed as if they conformed to 

only one single regime. Other modeling alternatives and extensions are, of course, possible. 

For instance, we found through post-hoc evaluations that the mothers’ set-points actually 

deviated to various degrees from 0 – our estimated location of their set-point based on the 

location of the chair in the experimental room. A preferred approach may be to estimate the 

mothers’ individualized set-points as random effects in the models. In addition, rather than 

allowing the divergence rates and coupling strengths of the dyad members to show discrete 

shifts contingent on differences between regimes, it may be possible to use ODE/SDE 

functions or other dynamic models with time-varying parameters (e.g., Chow et al., 2011) to 

detect and represent other possible patterns of change in these parameters. Formalizing how 

the proposed ODE models may be extended as SDEs with freely estimated process noise 

variances (e.g., Oud and Jansen, 2000; Oravecz et al., 2009; Voelkle et al., 2012) is another 

natural extension. Frequentist extensions that accommodate categorical and non-normal data 

would also be an important extension (Fahrmeir and Tutz, 2001).

We incorporated limited, very targeted forms of nonlinearities into model M2 in our 

empirical example to ensure that the proximity-seeking parameters were non-negative across 

both dyad members and reunion sessions. One interesting extension is to allow the 
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divergence rates and coupling strengths of the dyad members to depend on the dynamics of 

the other dyad members to further captilize on the ability of the proposed CDEKimF 

algorithm to handle nonlinear DE models. Another extension includes allowing the current 

regime indicator, Si(ti,j), to not only depend on the regime at a previous time point, namely, 

Si(ti,j−1), but also on other earlier regimes. The latter extension is motivated by the general 

framework implemented in SEM-based programs such as Mplus (Muthén and Asparouhov, 

2011) and it extends the transition probability model from a first-order Markov process to 

higher-order Markov processes. The feasibility of adopting higher-order Markov 

specifications in a DE modeling framework with the use of the collapsing procedures is yet 

to be investigated, however.

Other extensions to the work presented in the current study may be considered. Sensitivity of 

the modeling results to parameter starting values, initial condition specification, choices of 

ODE solvers, integration time steps, and model complexity are all important issues that 

warrant further attention. In addition, we assumed that all individuals were characterized by 

the same set of ODE functions. This assumption may not be tenable in other applications 

(Molenaar, 2004). Our general modeling and estimation framework can still be used with 

single-subject data in cases involving adequate number of time points from each individual. 

In our preliminary simulations, we found that the estimation results were greatly improved 

and much more stable within the context of the proposed model – particularly among the 

RS-related LO parameters – if information was pooled across n ≥ 10 subjects. Beyond the 

group-based solution utilized in this study, mixed effects variations of the proposed models 

(Oravecz et al., 2009; Lu et al., 2015) and alternative formulations that combine features of 

exploratory procedures for identifying idiosyncratic individual deviations from a group-

based confirmatory model may be other viable alternatives (e.g., Gates and Molenaar, 2012).
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Appendix

Sample dynr Code

The R package, dynr can be downloaded from CRAN. Here, we include some sample codes 

for fitting the empirically motivated model in Equations 1-3 to simulated data.

rm(list=ls())

require(dynr)

thedata = read.table(‘Model2simData.txt’,
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col.names=c("ID","deltaT","DV1","DV2","cov1","cov2"))

# ---- Model with covariates in RS functions ----

data2 <- dynr.data(thedata, id="ID", time="deltaT",observed=c("DV1","DV2"),

                          covariates=c("cov1", "cov2"))

# Measurement model

meas <- prep.measurement(

  values.load=diag(c(1,1)), #Matrix of factor loading values

  # Diagonal elements are fixed at the values shown in

  #values.load

  params.load = diag(c("fixed","fixed"),2),

  obs.names = c("DV1","DV2,"), #Labels for observed variables

  state.names=c(‘Mom’,‘Infant’)) #Labels for latent variables

mean0 = c(70,40)

var0 = c(225,100)

# Initial conditions on the latent variales: means, covariance and

#initial probability structures (if applicable)

initial <- prep.initial(

  values.inistate=mean0,

  params.inistate=c("fixed", "fixed"),

  values.inicov=diag(var0),

  params.inicov=diag("fixed",2),

  values.regimep=c(1, 0),

  params.regimep=c("fixed", "fixed")

)

#Specify ODE formula

formula=list(

  list(Mom~ −r1 * Mom,

       Infant~ −r2*(Infant-base1)),

  list(Mom~ a12 * (Infant – Mom),

       Infant~ a21 * (Mom – Infant)))

dynm<-prep.formulaDynamics(formula=formula,

                                  startval=c(r1=.1,r2=.1, a12=.1,a21=.1, 

base1 = 95),

                  isContinuousTime=TRUE)

#Regime-switching functions

regimes <- prep.regimes(
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  values=matrix(c(6,−1.5,−1,rep(0,3),

           −3,.5,−.3,rep(0,3)),

           nrow=2, ncol=6,byrow=T),

  # nrow=numRegimes, ncol=numRegimes*(numCovariates+1)

  params=matrix(c("a_11","d_111","d_112",rep("fixed",3), 

"a_21","d_211","d_212",rep("fixed",3)),

               nrow=2, ncol=6,byrow=T), 

covariates=c("cov1","cov2"),deviation=TRUE)

#measurement and dynamic noise covariance structures

mdcov <- prep.noise(

  values.latent=diag(0, 2),

  params.latent=diag(c("fixed","fixed"), 2),

  values.observed=diag(c(10,10)),

  params.observed=diag(c("sigmasq_e1","sigmasq_e2"),2))

#Impose additional parameter constraints

#Constraining the r1 and r2 parameters to be positive by imposing the 

exponential

#transformation functions (through formula.trans). The reverse 

transformation,

#formula.inv, also needs to be provided.

trans<-prep.tfun(formula.trans=list(r1~exp(r1),

                                           r2~exp(r2)),

                        formula.inv=list(r1~log(r1),

                                         r2~log(r2)))

#Put together all the model recipes and data

model2R.2cov <- dynr.model(dynamics=dynm, measurement=meas,

noise=mdcov, initial=initial,

regimes=regimes, transform=trans,

data=data2,outfile="temp2.c")

#Impose some upper and lower parameter boundary constraints

model2R.2cov$ub=c(rep(exp(1.5), 4), 200, exp(5), exp(5), rep(30, 6))

model2R.2cov$lb=c(rep(exp(−20), 4), 50, exp(−10), exp(−10), rep(−30, 6))

#Cook it!

res2R.2cov <- dynr.cook(model2R.2cov)

summary(res2R.2cov)

#Check model by printing out LaTeX code

printex(model2R.2cov,ParameterAs= model2R.2cov$param.names,

        printInit = TRUE, printRS=TRUE,outFile="RSLinearODE.tex")
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#Compare to true parameter values

truePar = c(.2, .1, .3, .2 ,100,9,9,8.5,−4,1,−1,−1,−2)

#Extract other useful information

coef(res2R.2cov)

AIC(res2R.2cov); BIC(res2R.2cov)

#Some plotting functions available as part of dynr

p1 = dynr.ggplot(res2R.2cov, dynrModel=model2R.2cov,

                 names.regime=c("Exploration",

                                "Proximity-seeking"),

             names.state=c("Mom","Infant"),

         title="Results from final RS-linear ODE model",

         numSubjDemo=2,

                 text=element_text(size=14),style=2)

print(p1)

plot(res2R.2cov,dynrModel=model2R.2cov)
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Figure 1. 
Let points I and M represent the respective locations of the infant and mom in a 3-

dimensional space (e.g., the experimental room in the SSP) defined by the x-, y-, and z- 

Cartesian coordinates, each perpendicular to another. If the position of I is at (x1, y1, z1), and 

that of M is at (x2, y2, z2), then the distance d between I and M can be calculated as the 

Euclidean distance, (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. To consolidate the x, y, and z 

coordinates into a single measure indicating the relative location of each dyad member in the 

room, we computed the Euclidean distance of each of I and M from the origin (the chair’s 

position in the context of the motivating example, at which x = y = z = 0.)
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Figure 2. 
(A)-(D): Plots of the infants’ and mothers’ Euclidean distances (in meters) from a chair 

positioned in the room for the mothers to sit during the two reunion sessions of the SSP. The 

time scale depicted here represents time in minutes.
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Figure 3. 
(A)-(D): Illustrative time series plots of the relative locations of two mother-infant dyads 

with low and high proportions of infant vocalizations over time, respectively, during the two 

reunion sessions.
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Figure 4. 
(A) Simulated trajectories obtained using parameter estimates from empirical model fitting; 

(B) frequencies of instances across all time points and dyads wherein the two regimes 

showed higher smoothed regime probabilities than the other regime; (C) & (D): the observed 

and smoothed latent variable trajectories obtained from the RS model with covariates and 

the one-regime model for the two dyads shown in Figures 3(A) and (B). 2-R = 2-regime 

model; 1-R = one-regime model.
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Figure 5. 
As grouped by model and parameter type, the plots show: (A-B) plots of the average RMSEs 

and relative biases of the point estimates, (C) relative deviances of the SE estimates 

(aRDSEs); (D) coverage rates; and (E) convergence rates. ODE = parameters in the ODE 

functions; RS LO = parameters in the regime-switching functions; Error var = measurement 

error variances.
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Table 1

A Summary of the Products from Running the Four Steps of Proposed CDEKimF Procedures with Smoothing.

Products Meanings

Yi(ti,j) {yi1, yi2, … , Yi(ti,j)}

Steps 1–3 are performed for all of ti,j, i = 1, … , n; j = 1, … , Ti

Step 1: The CDEKF with prediction and update stages by regime for

ηi(ti, j ∣ ti, j − 1)l, m E[ηi(ti,j)∣Si(ti,j−1) = l, Si(ti,j) = m, Yi(ti,j−1)]

ηi(ti, j ∣ ti, j)
l, m E[ηi(ti,j)∣Si(ti,j−1) = l, Si(ti,j) = m, Yi(ti,j)]

Pi(ti,j∣ti,j−1)l,m Cov[ηi(ti,j)∣Si(ti,j−1) = l, Si(ti,j) = m, Yi(ti,j−1)]

Pi(ti,j∣ti,j)l,m Cov[ηi(ti,j)∣Si(ti,j−1) = l, Si(ti,j) = m, Yi(ti,j)]

ηi(ti, j ∣ ti, j)
m E[ηi(ti,j)∣Si(ti,j) = m, Yi(ti,j)]

Pi(ti,j∣ti,j)m Cov[ηi(ti,j)∣Si(ti,j) = m, Yi(ti,j)]

vi(ti,j)
l,m Yi(ti,j) − E[Yi(ti,j)∣Si(ti,j−1) = l, Si(ti,j) = m, Yi(ti,j−1), x(ti,j)]

Vi(ti,j)
l,m Cov(Yi(ti,j) − E[Yi(ti,j)∣Si(ti,j−1) = l, Si(ti,j) = m, Yi(ti,j−1)])

Step 2: The Hamiton filter

Pr(Si(ti,j)∣Yi(ti,j)) Filtered regime probability for person (dyad) i at time ti,j

Step 3: The collapsing procedure

ηi(ti, j ∣ ti, j)
m E[ηi(ti,j)∣Si(ti,j) = m, Yi(ti,j)]

Pi(ti,j∣ti,j)m Cov[ηi(ti,j)∣Si(ti,j) = m, Yi(ti,j)]

vi(ti,j)
m yi(ti,j) − E[yi(ti,j)∣Si(ti,j) = m, Yi(ti,j−1), x(ti,j)]

Vi(ti,j)
m Cov(yi(ti,j) − E[Yi(ti,j)∣Si(ti,j) = m, Yi(ti,j−1)])

Optional but needed for parameter estimation:

ηi(ti, j ∣ ti, j) E[ηi(ti,j)∣Yi(ti,j)]

Pi(ti,j∣ti,j) Cov[ηi(ti,j)∣Yi(ti,j)]

ηi(ti, j ∣ ti, j − 1) E[ηi(ti,j)∣Yi(ti,j−1)]

Pi(ti,j∣ti,j−1) Cov[ηi(ti,j)∣Yi(ti,j−1)]

vi(ti,j) yi(ti,j) − E[yi(ti,j)∣Yi(ti,j−1), x(ti,j)]

Vi(ti,j) Cov(yi(ti,j) − E[yi(ti,j)∣Yi(ti,j−1), x(ti,j)])

Step 4: The smoothing procedure

Pr(Si(ti,j)∣Yi(Ti)) Smoothed regime probability for person (dyad) i at time ti,j

ηi(ti, j ∣ Ti) E[ηi(ti,j)∣Yi(Ti)]

Pi(ti,j∣Ti) Cov[ηi(ti,j)∣Yi(Ti)]
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Table 3

Summary Statistics of Parameter Estimates for Model 2, T = 1000 and n = 20 across 500 Monte Carlo 

Replications.

True θ Mean θ RMSE rBias SD aSE Bias SE aRDSE Power 95%
Coverage

r1,1 0.20 0.20 0.000 −0.001 0.001 0.001 0.039 0.000 1.00 0.96

r2,1 0.10 0.10 0.000 −0.003 0.001 0.001 −0.014 −0.000 1.00 0.94

a12,2 0.30 0.30 0.000 −0.001 0.002 0.002 0.087 0.000 1.00 0.97

a21,2 0.20 0.20 0.000 −0.001 0.001 0.002 0.110 0.000 1.00 0.97

setpoint 100.00 100.08 0.080 0.001 0.473 0.474 0.003 0.001 1.00 0.95

σe, Mom
2 9.00 8.98 0.017 −0.002 0.083 0.091 0.097 0.008 1.00 0.96

σe, Cℎild
2 9.00 8.99 0.008 −0.001 0.091 0.090 −0.004 −0.000 1.00 0.95

c1 −4.00 −4.07 0.070 0.018 0.123 0.120 −0.023 −0.003 1.00 0.92

cΔ,11 8.50 8.66 0.160 0.019 0.254 0.242 −0.048 −0.012 1.00 0.88

d11,1 −1.00 −1.03 0.029 0.029 0.243 0.233 −0.039 −0.010 0.97 0.92

d21,1 −2.00 −2.11 0.108 0.054 0.454 0.376 −0.172 −0.078 1.00 0.93

d11,2 −1.00 −1.00 0.003 0.003 0.085 0.086 0.019 0.002 1.00 0.95

d21,2 −1.00 −1.03 0.029 0.029 0.243 0.233 −0.039 −0.010 0.97 0.92

True θ = true value of a parameter; Mean θ = 1
H

∑ℎ = 1
H

θℎ, where θℎ = estimate of θ from the hth MC replication; RMSE 

1
H

∑ℎ = 1
H (θℎ − true θ)2; RB = relative bias = 

1
H

∑ℎ
H (θℎ − true θ) ∕ true θ; SD = standard deviation of θ  across Monte Carlo runs; 

aSE = average standard error estimate across Monte Carlo runs; Bias SE = aSE − SE; aRDSE = average relative deviance of 

SE = (aSE − SD) ∕ SD; Power = the proportion of 95% confidence intervals (CIs) that do not contain 0 across the MC replications; 95% 

Coverage = the proportion of 95% confidence intervals (CIs) that contain the true parameter value across the MC replications.
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Table 4

Summary Statistics of Parameter Estimates for Model 2, T = 500 and n = 40 across 500 Monte Carlo 

Replications.

True θ Mean θ RMSE rBias SD aSE Bias SE aRDSE Power 95%
Coverage

r1,1 0.20 0.20 0.000 0.001 0.001 0.001 0.118 0.000 1.00 0.96

r2,1 0.10 0.10 0.000 0.001 0.001 0.001 0.050 0.000 1.00 0.96

a12,2 0.30 0.30 0.000 0.001 0.002 0.002 0.005 0.000 1.00 0.95

a21,2 0.20 0.20 0.000 0.001 0.001 0.001 −0.013 −0.000 1.00 0.94

setpoint 100.00 100.03 0.028 0.000 0.254 0.261 0.026 0.007 1.00 0.96

σe, Mom
2 9.00 9.00 0.001 −0.000 0.091 0.091 0.002 0.000 1.00 0.95

σe, Cℎild
2 9.00 8.99 0.007 −0.001 0.095 0.091 −0.050 −0.005 1.00 0.94

c1 −4.00 −4.03 0.034 0.008 0.120 0.114 −0.056 −0.007 1.00 0.94

cΔ,11 8.50 8.60 0.098 0.012 0.221 0.204 −0.076 −0.017 1.00 0.91

d11,1 −1.00 −1.03 0.031 0.031 0.202 0.184 −0.093 −0.019 1.00 0.92

d21,1 −2.00 −2.08 0.083 0.042 0.328 0.294 −0.102 −0.033 1.00 0.94

d11,2 −1.00 −0.99 0.005 −0.005 0.083 0.078 −0.062 −0.005 1.00 0.94

d21,2 −1.00 −1.03 0.031 0.031 0.202 0.184 −0.093 −0.019 1.00 0.92

True θ = true value of a parameter; Mean θ = 1
H

∑ℎ = 1
H

θℎ, where θℎ = estimate of θ from the hth MC replication; RMSE 

1
H

∑ℎ = 1
H (θℎ − true θ)2; RB = relative bias = 

1
H

∑ℎ
H

θℎ − true θ) ∕ true θ; SD = standard deviation of θ  across Monte Carlo runs; 

aSE = average standard error estimate across Monte Carlo runs; Bias SE = aSE − SE; aRDSE = average relative deviance of 

SE = (aSE − SD) ∕ SD; Power = the proportion of 95% confidence intervals (CIs) that do not contain 0 across the MC replications; 95% 

Coverage = the proportion of 95% confidence intervals (CIs) that contain the true parameter value across the MC replications.
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