
1

Abstract

The individual vulnerabilities of hosts on a network can
be combined by an attacker to gain access that would not
be possible if the hosts were not interconnected. Currently
available tools report vulnerabilities in isolation and in
the context of individual hosts in a network. Topological
vulnerability analysis (TVA) extends this by searching for
sequences of interdependent vulnerabilities, distributed
among the various network hosts. Model checking has
been applied to the analysis of this problem with some
interesting initial result. However previous efforts did not
take into account a realistic representation of network
connectivity. These models were enough to demonstrate
the usefulness of the model checking approach but would
not be sufficient to analyze real-world network security
problems. This paper presents a modem of network con-
nectivity at multiple levels of the TCP/IP stack appropri-
ate for use in a model checker. With this enhancement, it is
possible to represent realistic networks including com-
mon network security devices such as firewalls, filtering
routers, and switches.

1. Introduction

A common approach used to analyzing network security is
to focus on individual vulnerabilities on each host that
makes up the network. There are many products designed
to assist in this process, including products that scan for
vulnerabilities on a host from across a network [7] and prod-
ucts that run on the host being analyzed [5]. These tools
can help identify known vulnerabilities on these computers
and can produce reports that help security administrators
identify steps to reduce the vulnerabilities that exist on each
of the scanned systems. This is a reasonable approach as
the reduction in vulnerability for the individual hosts on a
network is bound to have a positive impact on the security
of the network as a whole. However, it does not offer any
insight into vulnerabilities caused by interactions of sys-
tems on a network.

Representing TCP/IP Connectivity For Topological
Analysis of Network Security

Ronald Ritchey 1 Brian O’Berry Steven Noel
ritchey_ronald@bah.com boberry@gmu.edu snoel@gmu.edu

Center For Secure Information Systems
George Mason University

Previous work used a modeling approach to analyze net-
work security based on the interactions of vulnerabilities
within individual hosts and between hosts connected by
the network [8]. This work applied model checking technol-
ogy to analyze a simplified network security model and de-
termine whether the network's security requirements were
met or if there was a method that could be used to invalidate
any of the requirements. The security requirements were
encoded as assertions in the model checker. The model
checker was used to determine whether any of these asser-
tions could be proved false. In this case the model checker
produced a detailed set of steps that it had used to invali-
date the assertion. This set of steps constituted a potential
path an attacker might follow to circumvent the security of
the network.
While this work was useful for validating the model check-
ing approach, substantial improvements are required to make
it a practical tool in analyzing real-world network vulner-
abilities. These include the development of automated tools
to populate the model, the encoding of a large set of exploi-
tation techniques into the model, and refinements in the
model itself to allow it to more accurately represent modern
computer networks. Our research center and others are
actively working on these issues, but most of the work has
concentrated on the first two problems [9]. This paper spe-
cifically addresses enhancements to the model described
in [8] that support a sufficiently rich representation of con-
nectivity for real-world networks.
A sophisticated depiction of network connectivity is es-
sential to model network vulnerability. A primary means of
defending against network attack is the use of firewalls
and filtering routers. For a model to produce useable
results, the effects of these devices must be repre-
sented. In addition, there are certain attacks that op-
erate against the network itself as opposed to target-
ing a particular host on the network. These also must
be represented for the model to be capable of analyz-

1 This effort sponsored in part by Booz Allen Hamilton

2

ing real-world network security problems.
This paper extends the previous model checking approach
by including representations of network connectivity in the
analysis model. It is TCP/IP and Ethernet centric, but the
methods used could easily be extended to support alterna-
tive networking protocols. A layered approach is used to
capture specific vulnerabilities that exist at different layers
of TCP/IP. In addition, careful consideration is given to
efficiency of representation while still maintaining sufficient
fidelity to produce meaningful results on real networks.
In summary, this paper presents extensions to the previous
model checking approach in [9] that provides sophisticated
representation of network connectivity while not excessively
increasing the state-space of the model. This is interesting
because it brings us much closer to the ability to produce a
tool capable of analyzing the impact that interactions of
vulnerabilities have between hosts on real-world networks.

2. The Network Security Model

Our approach, which we call Topological Vulnerabil-
ity Analysis (TVA), uses a state-based model of network
security to discover attack paths. In this section, we pro-
vide a short description of how the model is structured.

2.1 Model Elements

There are four major elements that make up the network
security model.

• A network of hosts, including the network ser-
vices, components and configuration details that
give rise to vulnerabilities

• Connectivity of the hosts
• Exploits, or attacks, that change the state of the

model
• A list of security requirements the model should

attempt to validate

Hosts are described by their network services, components
and configurations, and the current user privileges obtained
by the attacker. Vulnerabilities might arise from obvious
problems, such as running an outdated network service like
Sendmail [4]. They might also depend on general configu-
ration details, such as operating system version, type of
authentication, and password length. Our definition of
vulnerability is broad. In this model, vulnerability is any
system attribute that can be used as a prerequisite for an
exploit. This may seem unbounded, but in reality, because
there is a finite number of known exploits each with a finite
number of prerequisite vulnerabilities, the total set of vul-
nerabilities needed by the model is finite. This is important
because it allows us to bound the total number of system
features we must search for to populate the analysis model.

Connectivity is modeled using a variety of techniques de-
pending upon the TCP/IP layer that is being represented.
This is an extension of the previous connectivity model,
which used a simple Boolean matrix to represent connectiv-
ity. The enhancements presented in the paper allow the

model to more accurately represent real-world networks,
making its results more relevant. More will be said about
this in the following sections.

Exploits are modeled using functions that, given the right
circumstances, can cause changes to the state of the model.
Exploits are used by the model to affect changes to the
security of the hosts under analysis. The quality and quan-
tity of exploits encoded in the model have a direct relation-
ship with the quality of the analysis that can be performed
with the model.

Security requirements are represented by invariant state-
ments made about the security of particular hosts on the
network (e.g. an attacker can not obtain administrative ac-
cess to host A).

2.2 Vulnerabilities and Exploits

Vulnerabilities and the methods necessary to exploit them
form the core of the model. The technique relies on model-
ing the network attributes that give rise to vulnerabilities,
then analyzing whether the exploits encoded into the model
can take advantage of the vulnerabilities to circumvent the
network's security. Vulnerabilities come from many sources
and are difficult to eliminate because of several factors. For
a network to be useful, it must offer services. These ser-
vices are implemented in software and it is difficult to guar-
antee that any complex piece of software does not contain
some flaws [2]. These flaws frequently translate into secu-
rity vulnerabilities. In addition, simple network configura-
tion errors can introduce exploitable security flaws.
To break into a network, it is not sufficient to know about
the vulnerabilities on the network. You must also have an
exploit to take advantage of these vulnerabilities. In addi-
tion, before an exploit can be used, its pre-conditions must
be met. These pre-conditions may include the set of vul-
nerabilities that the exploit relies on, sufficient user rights
on the target, sufficient user rights on the attacking host,
and network connectivity. Results of a successful exploit
could include discovering valuable information about the
network, elevating user rights, defeating filters, and adding
trust relationships among other possible effects. These
post-conditions share a common feature; they reduce the
security of the network. The concept of exploit pre-condi-
tions and post-conditions is illustrated in Figure 1.

Vulnerabilities

User privileges

Increased vulnerabilities

Elevated user privileges

Pre - Conditions Post - Conditions

Connectivity Exploit Increased connectivity

Vulnerabilities Increased vulnerabilities

Pre - Conditions Post - Conditions

Connectivity Exploit Exploit Increased connectivity

Figure 1 - Exploit Model

By successively employing exploits, an increasing number
of vulnerabilities can be added to a host. Given the right set
of circumstances, this may result in the complete compro-
mise of the host. If an attacker gains control of a host, it can

3

be used to attack other hosts on the network. It is in this
fashion that an attacker can move through a network until
they have achieved their final goal. This chaining of ex-
ploits to compromise multiple hosts is shown in Figure 2.

Host 1
Host 2

Host 3 Host 4

Host 1
Host 2

Host 3 Host 4

Figure 2 - A Network of Exploits

2.3 Model Checking

Initial versions of TVA relied upon model checkers to act
as the analysis engine. Model checkers are attractive
because they are designed to handle large state spaces
[3] and they efficiently generate counterexamples that, for
TVA, correspond to attack paths. Thus they provide a
mechanism to avoid custom building the same capabilities
into special purpose tools. They are not particularly well
suited for this application, though, because the TVA
model is monotonic. In it, exploits don't decrease the
vulnerability of the network. They always increase it.
There is never a need for the analysis engine to back
track to come up with a solution. Model checkers on the
other hand, must support non-monotonic and other more
general problems. This requires them to be substantially
more complex than TVA requires. While the work of this
paper is not directly affected by the choice of the analysis
engine, it is worth noting that a custom application has
the potential to substantially outperform a general-
purpose model checker.

3. Modeling Link Layer Security

As stated previously, we use a layered approach to
modeling network connectivity within TVA. These layers
are derived from the structure of the TCP/IP network
protocol stack. The lowest layer of the TCP/IP protocol
stack is the Link layer, which provides and manages
access to the network medium.

At the Link layer, communication can only occur between
hosts located on the same network segment. To deliver a
TCP/IP packet to a host on the segment, the destination
IP address must be resolved into a Link layer address.
The protocol that performs this resolution is the Address
Resolution Protocol (ARP). ARP-resolved addresses

therefore identify hosts that share a common network
segment, and we label such connectivity LINK_ARP.
This type of connectivity is the prerequisite for many
network attacks such as TCP session hijacking.

Another Link layer characteristic relevant to network
security is packet sniffing. Sniffing is an activity through
which a privileged user can eavesdrop on network traffic.
Most network traffic is transmitted unencrypted, and
might include usernames and passwords for protocols
such as telnet, ftp, rlogin, pop3 and others. An attacker
could use this ability to capture the authentication details
for a particular user, then use them to impersonate the
user on the network.

The ability to sniff network traffic is affected by whether a
network is switched or not. Ethernet was developed as a
bus-like medium where all hosts connected to a hub
shared the network bandwidth. Hubs re-broadcast all
received packets to every connected host. With this
scheme, all network traffic is visible to every host's
network interface card (NIC) connected to the same
network segment. Normally, a NIC ignores traffic that is
not specifically addressed to it. However, it is possible
for privileged users to put NICs in promiscuous mode,
allowing them to capture all local traffic. Sniffing on a
non-switched network, then, enables an attacker to
capture all traffic crossing the local network, whether or
not it's addressed to or from the attacker's machine.

Ethernet switches essentially eliminate bandwidth sharing
by directing traffic to those hosts specifically addressed
in the Link layer frames. This filtering process limits the
usefulness of sniffing because the only network traffic
that the attacker will see are packets addressed to or
leaving from the sniffing host. Note that broadcast
packets (packets addressed to all hosts on the same
network segment) will be visible to the attacker regardless
of whether the network is switched or non-switched.

A TVA program must include switched and non-switched
network details to effectively address sniffing attacks. In
addition to filtering support, some switches have addi-
tional capabilities enabling them to be configured into
multiple network segments. Also, mixed environments
where hubs are connected to switch ports are common.
Therefore, the TVA program must track Link layer
connectivity at the host level to distinguish which hosts
have such connectivity with each other, and which hosts
have "sniff" connectivity with each other. The label
LINK_SNIFF is used to designate a host's ability to sniff
the traffic of another host.

Figure 3 depicts a generic ARP exploit (a) and a generic
SNIFF exploit (b). Note that we show only the connectiv-
ity pre-conditions; other pre-conditions, such as the
presence of a sniffer program or the attainment of super

4

user access, would be required for a full TVA model.
Also, the exploit post-conditions are not labeled because
they depend on the exploit specifics (e.g., a password
sniffing exploit would have a post-condition that indi-
cated a password had been obtained).

Other
Preconditions

SNIFF_exploit

LINK_ARP LINK_ARP

LINK_SNIFF

(b)

Other

Preconditions
ARP_exploit

(a)

LINK_ARP

Figure 3 - Generic Link Layer Exploits

The following example shows how these exploits might
map to a real network. In Figure 4, Fred and Helen share a
hub, so they can sniff each other's communications with
Sheila. Because a switch separates Sheila and the hub,
Sheila cannot sniff traffic between Fred and Helen. The
generic ARP exploit shown in Figure 3(a) can trigger for
all three hosts, because all have LINK_ARP connectivity
between them. However, the generic SNIFF exploit in
Figure 3(b) can only apply to Fred and Helen because
Sheila does not have any LINK_SNIFF connectivity.

Switch

HelenFred Sheila

Hub

Figure 4 - Mixed Network (Switched & Non-
Switched)

4. Modeling Network and Transport
Layer Security

The Network layer of TCP/IP provides global addressing
and routing of packets between network segments. The
source and destination IP addresses of the packet are
specified at this layer. The Transport layer controls the
flow of data between different host services, which are
addressed by a local port number. TCP/IP offers two
transport protocols. The Transmission Control Protocol
(TCP) is stream oriented and provides a reliable, byte-
oriented data flow through control functions that are
largely transparent at the Application layer. The User
Datagram Protocol (UDP) is record oriented and simply
offers the ability to send packets between hosts, so the
application must provide control functions if reliable
delivery is required.
Most network services communicate via transport
protocols, so their packets contain both Network layer
(IP) and Transport layer (port) addresses. These address
details are commonly used by firewalls to decide whether
a packet should be allowed between hosts. They may
restrict access based on the IP address and/or port
number of either the source or destination host. Captur-

ing this connectivity-limiting firewall behavior at both the
Network and Transport layers is therefore critical in
analyzing network security.
In [8], connectivity was represented with a simple
Boolean matrix, which is sufficient to characterize firewall
restrictions based solely on IP address. Transport layer
connectivity requires a more complex representation. One
possible method is to simply add dimensions to the
connectivity matrix for the UDP and TCP port numbers.
This may work from an analytical point of view, but it
would drastically increase the size of the model to
account for the 65,536 port numbers associated with each
transport protocol. An easy way to reduce this is to track
only the ports on a network that are actually in use.
Symbolic labels can be created for each of these in-use
ports and the total number of labels would dictate the size
of the matrix. While this would greatly reduce the size of
the connectivity matrix, it does not address an important
requirement of the security analysis problem.
From a security analysis perspective, raw connectivity is
not the only pre-condition necessary for an attack to
succeed. A vulnerability must also exist in the application
that supports the network service. Such a vulnerability is
usually specific to the particular application. For example,
Microsoft's Internet Information Server (IIS) web server is
susceptible to different attacks than the Apache web
server [1, 6]. It is much more important to track the
specific application details associated with the service
than it is to track the port number on which the service
runs. Therefore, we name Transport layer connectivity
variables after the application that supports the network
service (e.g., TRANS_APACHE_1_3_21). Such names
can easily be extended to include patch level and other
information required to delineate between different
exploits' pre-conditions. By avoiding port numbers, this
approach also eliminates complications associated with
running services on non-standard ports. Web servers,
for example, often run on ports other than 80. A port-
based approach would require a table to map port
numbers to application details. Instead, we collapse the
required connectivity information into a single, appropri-
ately named variable as shown in Figure 5.

Other
Preconditions

IIS_4_0_exploit

TRANS_IIS_4_0

Figure 5 - Example Transport Layer Exploit

Figure 6 shows a small but typical network where a
firewall policy limits Transport layer connectivity to some
public services. Specifically, external hosts (represented
by Smithers) are allowed to connect to internal hosts on
ports 80 and 8080 (which would allow Smithers to
communicate with the Apache and IIS servers located on
Homer), but connections to all other ports (including
Sendmail on Marge) are blocked. Homer and Marge, on

5

the other hand, are permitted to any port on Smithers.

Smithers

Firewall

25 Sendmail

Marge

Homer

80

8080 Apache

IIS

X Indicates service
running on TCP port x

Src SPort Dst DPort Action

Smithers Any Any 80,8080 Allow

Any Any Any Any Deny

Any Any Smithers Any Allow

Figure 6 - Example Network with Connectivity-
Limiting Firewall

As discussed earlier, the actual port numbers are irrel-
evant for TVA analysis. Rather, the ability of an attacker
to launch an exploit is based on whether Transport layer
connectivity exists to the service applications them-
selves. An attacker with access to Smithers, for example,
might use exploits against Homer that require TRANS_IIS
or TRANS_APACHE connectivity, but couldn't directly
launch exploits against Marge's Sendmail service because
the firewall blocks access to it. Homer, though, enjoys
unrestricted access to Marge. If the attacker on Smithers
could first gain control of Homer by exploiting one of the
directly accessible services, Marge would be indirectly
reachable. Figure 7 shows a possible exploit path from
Smithers to Marge, where an IIS exploit first yields the
ability to execute programs on Homer. This increase in
access level, combined with Homer's Transport layer
connectivity to Marge, then allows the attacker to apply a
Sendmail exploit against Marge. One of TVA's core
capabilities is it's ability to shift the locus of attack in this
way, just as a real attacker would, to work around
connectivity limiting facilities such as firewall policies.

ACCESS_EXEC

Other
Preconditions

Sendmail_exploit

LINK_ARP TRANS_SENDMAIL_8_10_2

Other
Preconditions

IIS_exploit

TRANS_IIS_4_0

Smithers Homer Marge

Figure 7 - Example Exploit Path

In addition to a symbolic label for each service on the
network, the special symbol TRANS_UNUSED is
included as a standard entry in the Transport layer
definitions. This symbol refers to the collection of all
ports on a system that are not currently being used by a
listening service. Capturing this condition is needed to
model a class of exploit called port forwarding, and results
when connectivity-limiting devices permit connections to
services that aren't actually running on the destination
host. For example, Smithers can send packets to port
8080 on Marge even though a service isn't actually
running on that port.

5. Modeling Application Layer Security

The first three layers of the TCP/IP reference model do
not address all connectivity-related security issues. For
example, an attacker might be able to connect with a
Transport layer service, but might have to authenticate
with a password to actually exploit it. TVA uses a
separate Application layer to address these types of
issues.
Some services such as telnet establish trust relationships
based on password authentication. TVA represents this
with an Application layer connection, e.g.,
APP_PW_AUTH. The sample telnet exploit shown in
Figure 8 includes both the TRANS_TELNET and
APP_PW_AUTH connections required to exploit it. Note
that TVA includes the normal operation of services such
as telnet in its exploit database, and applies them just as a
real attacker would if he had successfully acquired a
user's password.

APP_PW_AUTH TELNET_exploit

TRANS_TELNET

Figure 8 - Example Telnet Exploit

Some services such as the Berkeley `R' commands can be
configured to trust hosts based on their IP addresses.
Although an IP address is a Network layer field, the
application itself applies it from its own configuration
files, so such trust relationships are best represented at
this layer. Figure 9 shows how TVA models the rcp
command, where APP_RHOSTS represents the trust
relationship configured in the system or user's rhosts file.

APP_RHOSTS RCP_exploit

TRANS_RSH

Figure 9 - Example Berkeley rcp Command
Exploit

So far, we've presented several layers of connectivity, as
they pertain to security, in the context of individual
exploits. The real power of TVA, though, is its ability to
chain exploits together into multi-step attack paths. The
next section presents an example that highlights this
capability.

6. An Example

To illustrate the ideas developed in this paper, we present
a small network similar to the example in Section 4. Figure
10 is deceptively simple in terms of the number of hosts
on the network, but offers an exploit path that might not
be obvious to many administrators. The firewall policy is
restrictive, allowing only Secure Shell (port 22) and IIS
(port 80) traffic from the attack machine (i.e., inbound).

6

Secure Shell is allowed to both Maude and Ned, though
you'll note it isn't actually running on Maude. Inbound
IIS traffic is restricted to Maude, and inbound FTP traffic
isn't permitted at all. Outbound traffic to the attack
machine is unrestricted.

attack

Firewall Ned

IIS (TCP/80)

FTP (TCP/21)
SSH (TCP/22)

Maude

Src SPort Dst DPort Action

attack Any Any 22 Allow

Any Any Any Any Deny
Any Any attack Any Allow
attack Any Maude 80 Allow

Figure 10 - Final Example

A simplified TVA connectivity matrix for this configura-
tion is shown in Table 1. The keyword 'ANY' indicates
the source host can connect to any service on the
destination, and is only used to make the matrix more
readable. An actual TVA model would list all connections,
but for simplification we only record those to and from
machines Maude and Ned.

Destination

attack Maude Ned

Source

attack ANY
TRANS_IIS

TRANS_UNUSED TRANS_SSH

Maude ANY ANY TRANS_FTP
TRANS_SSH

Ned ANY TRANS_IIS
TRANS_UNUSED

ANY

Table 1 - Example Connectivity Matrix

Now suppose TVA is configured with the exploits shown
in Figure 11. The input arrows represent pre-conditions
that must exist on the attacking machine to trigger the
exploit, and the output arrows signify post-conditions
that apply to the victim machine. For example, the FTP
exploit shown in (b) requires Transport layer connectivity
to an FTP service and the ability to execute programs on
the attacking machine as pre-conditions, and yields the
ability to execute programs on the victim machine as a
post-condition. Besides the ACCESS_EXEC post-
condition already mentioned, we included another
condition that isn't related to connectivity in exploits (c)
and (d). The PGM_PORT-FWD condition indicates that a
port-forwarding program is installed on the machine.
These conditions hint at other elements required in a full
TVA model, and are included here to illustrate how exploit
post-conditions can satisfy the pre-conditions of other
exploits.

ACCESS_EXEC

(b) (a)

ACCESS_EXEC ACCESS_EXEC ACCESS_EXEC

TRANS_IIS

IIS_exploit
ACCESS_EXEC

TRANS_FTP

FTP_exploit

(d)

TRANS_FTP

ACCESS_EXEC

TRANS_UNUSED

PORT - FWD_exploit

(c)

PGM_PORT-FWD APP_RHOSTS

TRANS_RSH

rcp_exploit

PGM_PORT- FWD

Figure 11 - Example Exploits

We set our attack goal as obtaining execute access on
Ned. Assuming the attacker starts with the ability to
execute programs on her own machine, the reader might
compare the connectivity matrix and exploits to construct
the exploit path shown in Figure 12, which realizes the
goal even though the firewall blocks access from the
attack machine to Ned. The attacker has TRANS_IIS
connectivity to Maude, so she can execute the IIS exploit
(a), which yields execute access on Maude. The new
execute access enables her to copy a port forwarding
program from the attack machine using RCP_exploit (c).
Although we don't show it in the diagram, an rcp client is
required to actually execute RCP_exploit. An rcp client is
included in the default Windows NT installation, on
which the IIS web server runs. Note that all the pre-
conditions for (c) apply to Maude because the locus of
attack has transferred there. Maude is exploiting its
TRANS_RSH and APP_RHOSTS connectivity to hack
the attack machine and download a program! Of course,
it's the attacker that really drives the process, and she
must set up her machine to allow the connections. The
PGM_PORT-FWD download, combined with connectivity
to an unused port, then triggers the port forward exploit
(c), which in turn yields TRANS_FTP connectivity to
Ned. Finally, the attacker takes advantage of the indirect
access to Ned to execute the FTP exploit (b), which gives
her the ability to execute programs on Ned. The goal has
been realized.

TRANS_RSH

APP_RHOSTS

ACCESS_EXEC

PGM_PORT-FWD

attack Maude Ned

TRANS_FTP

ACCESS_EXEC

ACCESS_EXEC

TRANS_IIS

IIS_exploit

FTP_exploit

TRANS_UNUSED

PORT-FWD_exploit

RCP_exploit

Figure 12 - Exploit Path

Manually constructing this exploit path is fairly trivial,
but the complexity of a more realistic network with
hundreds of machines and thousands of exploits is
daunting. Fortunately, TVA automates the process so the
problem becomes one of designing a network model with
the flexibility to address all types of vulnerabilities and
exploits.

7

7. Conclusion

The work presented in this paper substantially improves
the ability for this analysis model to represent real-world
networks. This is important because it allows the model
to more closely represent the type of network connectiv-
ity issues that directly affect network security. These
new enhancements were carefully designed to minimize
their state-space requirements. In the small example
networks that have been encoded so far, state-space
issues are not much of a concern. However, when
representing larger networks, the size of the state-space
becomes a concern. By limiting the impact of the connec-
tivity enhancements, larger networks are able to fit within
the constraints of the current analysis tool.

Acknowledgements

The authors are grateful to several people for assistance
with the creation of this paper. We would like to specifi-
cally thank Dr. Paul Ammann for his encouragement,
Chuck Hutchinson for sharing his good ideas, and Dr.
Sushil Jajodia and the GMU Center For Secure Informa-
tion Systems for supporting the research.

REFERENCES

[1] Apache Web Server information and software on the
web at www.apache.org.

[2] B. Beizer, "Software Testing Techniques, 2nd edition,"
Thomson Computer Press, 1990.

[3] J. Birch, E. Clark, K. McMillan, D. Dill, and L.J. Hwang,
Symbolic Model Checking: 1020 States and Beyond,
Proceedings of the ACM/SIGDA International Workshop
in Formal Methods in VLSI Design, January, 1991.

[4] Coleson, Jay, An Elementary Introduction to Sendmail,
The SANS Institute, 2000. http://www.sans.org/
infosecFAQ/unix/intro_sendmail.htm

[5] Computer Oracle and Password System (COPS)
information and software on the web at ftp.cert.org/pub/
tools/cops.

[6] Internet Information Server information on the web at
www.microsoft.com/iis.

[7] Internet Security Systems, System Scanner informa-
tion on the web at www.iss.net.

[8] Ronald W Ritchey and Paul Ammann, Using Model
Checking To Analyze Network Security, 2000 IEEE
Symposium on Security and Privacy, May 2000.

[9] Oleg Sheyner, Somesh Jha, and Jeannette M. Wing,
Automated Generation and Analysis of Attack Graphs,
Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, May 2002.

8

9

