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ABSTRACT

The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is
described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation,
wet-day frequency, mean temperature, diurnal temperature range, vapor pressure, sunshine, cloud cover, ground
frost frequency, and wind speed. The climate surfaces have been constructed from a new dataset of station
1961–90 climatological normals, numbering between 19 800 (precipitation) and 3615 (wind speed). The station
data were interpolated as a function of latitude, longitude, and elevation using thin-plate splines. The accuracy
of the interpolations are assessed using cross validation and by comparison with other climatologies.

This new climatology represents an advance over earlier published global terrestrial climatologies in that it
is strictly constrained to the period 1961–90, describes an extended suite of surface climate variables, explicitly
incorporates elevation as a predictor variable, and contains an evaluation of regional errors associated with this
and other commonly used climatologies. The climatology is already being used by researchers in the areas of
ecosystem modelling, climate model evaluation, and climate change impact assessment.

The data are available from the Climatic Research Unit and images of all the monthly fields can be accessed
via the World Wide Web.

1. Introduction

Concern about anthropogenic climate change has
stimulated much research into the likely response of the
ocean–atmosphere system to greenhouse gas forcing and
the impacts of resultant climate change on the earth
surface environment (IPCC 1996). Accurate represen-
tation of the mean state and variability of the present
climate is important for a number of purposes in global
change research. These include monitoring and detec-
tion of climate change (Jones 1994); evaluation of Gen-
eral Circulation Models (GCMs) (Hulme 1994a; Airey
et al. 1996) and regional climate simulations (Christen-
sen et al. 1997); ground truthing, calibration, or merging
with satellite climatologies (Huffman et al. 1995); un-
derstanding the role of climate in biogeochemical cy-
cling (Sellers et al. 1997; Cao and Woodward 1998);
and construction of climate change scenarios (Carter et
al. 1994).

These applications have historically had differing but
converging priorities in terms of spatio-temporal reso-
lution and accuracy. Coarse resolution datasets such as
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those of Jones (1994) for temperature and Hulme
(1992a, 1994a) for precipitation have been adequate for
monitoring and detection of climate change and GCM
evaluation, where capturing temporal variability is as
important as the representation of spatial detail. The
development of higher resolution GCMs and regional
climate models has, however, meant that the spatial res-
olution required for model evaluation has increased, and
is likely to continue to do so. Biophysical modelers and
the climate impacts community have favored finer spa-
tial resolution (commonly 0.58 lat 3 0.58 long) and a
wider range of surface climate variables. Consequently
they have tended to use long-term mean climatologies
such as that of Leemans and Cramer (1991; W. Cramer
1997, personal communication). Yet, as these climate
studies impact progress from equilibrium to transient
simulations, researchers are increasingly requiring data
that accurately represent climate variability continuous-
ly in space and time (Cramer and Fischer 1996; Piper
and Stewart 1996). Similarly, there has been a growing
demand for the representation of temporal variability in
climate change scenarios (Hulme and Brown 1998).

Although these data requirements are converging to-
ward high-resolution representation of climate in both
space and time, there are few datasets that satisfy this
demand. Notable exceptions are the monthly time step
Global Precipitation Climatology Project (GPCP) da-
taset (Xie and Arkin 1996; Xie et al. 1996), the monthly
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TABLE 1. List of the number of normals obtained from each source.

NMA WMO CRU CIAT a Müllerb FAOc Other Total

Precipitation
Wet days . 0.1 mm
Wet days . 1.0 mm
Mean temperature
Diurnal temperature range
Vapor pressure
Relative humidity
Sunshine
Cloud cover
Ground frost days
Air frost days
Wind speed

8916
6038
3055
7210
7059
2446
2593
2536
1618
1108
3698
2297

331
236
613
612
467
516
449
339
426

24
205
230

5878
132
140

2006
1464
134
97

201
167
40

111
194

3162
1174

0
1599
940
287

1011
573
140

0
0

169

52
91

5
56
67

0
125

57
0
0
0

84

132
0
0

155
189
209

0
277

0
0
0

332

824
700
531
454
541
295

67
57

327
0

786
309

19 295
8371
4344

12 092
10 727

3887
4342
4040
2678
1172
4800
3615

a Centro Internacional de Agricultura Tropical (1997); b Müller (1982); c Food and Agriculture Organisation (1984).

1900–88, 2.58 lat 3 2.58 long precipitation dataset of
Dai et al. (1997, hereafter Dai), and the 0.58 lat 3 0.58
long daily time step dataset being developed by Piper
and Stewart (1996, henceforth PS). However these prod-
ucts either cover relatively short periods (1970s to pres-
ent; GPCP, PS), are limited to precipitation (GPCP, PS,
Dai) and minimum and maximum temperature (PS), do
not include an elevation dependence in their interpo-
lation schemes, or are coarse resolution (Dai). A further
limitation is that GPCP and PS interpolate directly from
station time series and are therefore restricted in the
number of stations they can use.

An alternative approach to direct interpolation of sta-
tion time series is to separate the time and space com-
ponents by first constructing a high-resolution (0.58 3
0.58) mean climatology for the climate variables of in-
terest, subsequently deriving gridded monthly anoma-
lies relative to the period for which the mean climate
is defined. The anomaly and mean fields are then com-
bined to arrive at gridded time series of each variable.
The advantage of this approach is that the number of
archived and easily obtainable station normals is far
greater than that of station time series. This is partic-
ularly so in the case of variables other than precipitation
and temperature, and for all variables as one goes back
in time. Using as many stations as possible to generate
the mean fields, together with an explicit treatment of
elevation dependency, maximizes the representation of
spatial variability in mean climate. Monthly anomalies,
on the other hand, tend to be more a function of large-
scale circulation patterns and relatively independent of
physiographic control. Therefore, a comparatively less
extensive network is sufficient to describe the month-
to-month departures from the mean climate.

In this, the first of two papers, we describe the con-
struction of a new 0.58 3 0.58 mean monthly terrestrial
climatology, strictly constrained to the period 1961–90,
for a suite of climate variables: precipitation, wet-day
frequency, mean temperature, diurnal temperature
range, vapor pressure, cloud cover, sunshine duration,
ground frost frequency, and wind speed. In a companion
paper, we describe the construction of monthly anomaly

grids and their merging with this baseline climatology
to produce 1901–present-day monthly time step climate
fields (New et al. 1999). The present paper is structured
as follows. In section 2 the new Climatic Research Unit
(CRU) dataset of 1961–90 climate normals is described.
Section 3 describes the interpolation methodology and
construction of the mean climatology fields. In section
4, interpolation errors are assessed, and our new cli-
matology is compared with some existing climatologies.
Finally, section 5 contains some concluding remarks.

2. Observational dataset

a. Sources

The 1961–90 station normals used to construct the
climatology were collated from a number of sources.
Although the World Meteorological Organisation
(WMO) 1961–90 global standard normals were released
in May 1997 through the National Climate Data Center
(NCDC), we began our own data collection in 1994
through direct contact with national meteorological
agencies (NMAs), personal contacts, and other pub-
lished sources. Initially, this endeavor was confined to
European and neighboring countries (Hulme 1994b;
Hulme et al. 1995), but was subsequently extended to
obtain global coverage, excluding Antarctica. In many
countries we have gained access to more stations and
variables than were made available to NCDC. The
NCDC dataset has, however, complimented ours in
countries where we were unable to obtain data. The main
data sources are described below and summarized in
Table 1.

In some cases, published sources did not provide in-
formation on the normal period (e.g., CIAT, see below)
or the normals represented a period other than 1961–
90 (e.g., Müller 1982; FAO 1984). These stations were
used in areas where no other data were available as it
has been shown that, in the absence of marked inter-
decadal variability, the improvement in interpolation ac-
curacy gained by including additional stations out-
weighs any penalty associated with relaxing temporal
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fidelity (Willmott et al. 1996; Hulme and New 1997).
These normals were assigned a low weight during the
interpolation so that they did not unduly bias the true
1961–90 normals (see section 3).

1) NATIONAL METEOROLOGICAL AGENCIES

Data supplied by NMAs in direct response to our
request for 1961–90 normals comprise by far the largest
single data source, ranging between 75% (wet days) and
44% (precipitation) of the total. Most of these data were
supplied on diskette, but about 25% were supplied either
as published volumes of 1961–90 normals or on NMA
paper copies. Data on the latter two media were scanned
or keyed in, with independent checks against the orig-
inals.

2) WMO 1961–90 GLOBAL STANDARD NORMALS

The WMO recently published the 1961–90 climato-
logical normals (WMO 1996). These data, for about
4000 stations, were purchased and merged with the CRU
dataset. This resulted in an additional 690 stations that
had data for at least one variable not previously in the
CRU dataset.

3) CRU GLOBAL DATASETS OF STATION

TIME SERIES

Global datasets of monthly time series of precipitation
(Eischeid et al. 1991, updated), mean temperature (Jones
1994, updated), and maximum and minimum temper-
ature (Easterling et al. 1997, with additions) for several
thousand stations worldwide were searched for addi-
tional stations. CRU also holds smaller datasets of
monthly time series of the other variables. These data
have been quality controlled and checked for inhomo-
geneities. Station means for 1961–90 were derived from
these time series and added to the global normals da-
tasets.

4) CIAT SOUTH AMERICAN DATABASE

The Centro Internacional de Agricultura Tropical
(CIAT) has collated several thousand climatological
means for South and Central America (CIAT 1997).
Unfortunately, the period each mean represents is un-
specified, although the number of years of record con-
tributing to the mean is usually supplied. These were
assigned a low priority during the interpolation.

5) PUBLISHED SOURCES

Several countries in Africa (e.g., Zaire and Angola)
and Southeast Asia (e.g., Cambodia) provided few or
no 1961–1990 normals to either CRU or the WMO. In
these cases data were extracted from one of two sources:
Müller (1982) or FAO (1984). Generally, these means

were calculated using data from the period 1931–60 and,
in the case of the FAO publications, the number of years
contributing to a mean was unknown. These data were
also assigned a low weighting during the interpolation.

6) OTHER SOURCES

A small number of stations from several other sources
were used. These included the U.S. Air Force Clima-
tological Data Volume (USAF 1987) and a number of
personal contacts where data for between one and sev-
eral tens of stations were obtained.

b. Quality control

Data from the WMO collection were subjected to a
fairly comprehensive series of quality control (QC)
checks by the National Climatic Data Center (NCDC
1997). All WMO data that failed the QC were flagged
as such by NCDC. We excluded all WMO stations that
failed the NCDC QC tests from our analysis. Data ob-
tained directly from NMAs were assumed to have been
quality checked at source. Nonetheless, all data were
subjected to a two-stage quality control process. In the
first stage, prior to interpolation, a standard series of
automated tests were performed on individual station
normals. These tests were essentially the same as those
used by the NCDC during the collation of the WMO
1961–90 climatological normals, namely:

R internal consistency checks, for example, ensuring
that the monthly means follow a consistent seasonal
cycle and that predefined absolute limits are not ex-
ceeded; and

R between-variable consistency tests, for example, en-
suring that monthly minimum, mean, and maximum
temperatures are consistent and that months with zero
precipitation have zero wet days.

The second stage of QC occurred during the inter-
polation of station data, where the interpolation diag-
nostics enabled identification of station-months with
large residuals (see section 3b).

As a general rule, data that failed these QC tests were
removed from the interpolation. In some cases, however,
the data could be compared and replaced with normals
calculated from the CRU monthly station time series
described above.

c. Variables

The final numbers of stations used in the interpolation
are listed in Table 2. Five variables [wet day frequency,
humidity (relative humidity and vapor pressure), sun-
shine, cloud cover, and frost days] had more than one
definition and required standardization to a common
unit. The procedures used to standardize these variables
are described in the sections that follow.

The remaining variables (mean temperature, diurnal
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TABLE 2. Number of station normals used in the construction of
the climatology.

Before
standardi-

zation

After
standardi-

zation

Precipitation
Wet days greater than 0.1 mm
Mean temperature
Diurnal temperature range
Vapor pressure
Sunshine percent
Cloud cover
Ground frost days
Wind speed

19 295
8371

12 092
10 727

3887
4040
2678
1172
3615

9237

5940
5181
4839

10 644

FIG. 1. Location of stations with precipitation normals. Geographic tiles used in the interpolation are shown and
N signifies the total number of stations used. Note that (i) for all variables, oceanic stations were used during the
interpolation of a global ‘‘background’’ tile and (ii) tile numbers and sizes differ between variables.

temperature range, precipitation, and wind speed) were
not modified and the spatial distributions of the available
stations are shown in Figs. 1–4. Although the way the
variables are measured both between and within coun-
tries differ, it was felt such problems were neither pos-
sible nor important enough to correct for. Precipitation
measurements can be influenced by several factors, most
notably gauge type, the ratio of solid to liquid precip-
itation, and wind conditions/turbulence. Various at-
tempts have been made to correct such biases in pre-
cipitation (e.g., Groisman et al. 1991; Legates and
DeLiberty 1993), but we made no attempt to correct our
precipitation data; in most cases there was insufficient
information to attempt this. Differences in temperature
measurement times have been shown to induce dispar-
ities of several tenths of a degree Celsius (Karl et al.
1986; Andersson and Mattison 1991) and different

countries calculate mean temperature in various ways
(Jones et al. 1985; Jones et al. 1986a; Jones et al. 1986b).
Where possible, mean temperature was defined as the
average of mean maximum and minimum temperature,
which are measured more uniformly across the world.
At the 1607 stations where only mean temperature was
available, these values were used, despite the uncer-
tainty about their derivation. Wind speed is measured
at heights above the surface of between 2 and 20 m.
Measurement height varies both within and between
countries, and in many cases the heights were not spec-
ified. Consequently, no corrections were made to wind
data. The large majority of known heights was 10 m,
and the interpolated wind field should be assumed to
represent speed at this height.

1) WET DAYS

These data were generally expressed as number of
days per month with precipitation greater than 0.1 mm
or 1.0 mm. The number of 0.1-mm normals exceeded
1.0-mm normals by a factor of two; consequently nor-
mals with a 1.0-mm threshold were converted to a 0.1-
mm threshold. A small number of normals (e.g., United
Kingdom and Australia) used some other threshold, typ-
ically 0.2 mm, and no adjustment was made for these
more moderate differences.

Normals for both 0.1-mm and 1.0-mm thresholds
were available for stations in a number of countries and
these were used to derive an empirical conversion for-
mula. The dataset of common normals was divided into
two sections comprising stations in (roughly) temper-
ate–polar (458–908 south–north) and tropical–subtropi-

Unauthenticated | Downloaded 08/24/22 05:42 AM UTC



MARCH 1999 833N E W E T A L .

FIG. 2. Location of stations with mean temperature normals. Geographic tiles used in the interpolation are also
shown, as are the total number of stations (N) used in the construction of the mean temperature fields.

FIG. 3. Location of stations with diurnal temperature range normals. Geographic tiles used in the interpolation
are also shown, as are the total number of stations (N) used in the construction of the diurnal temperature range
fields.

cal (458S–458N) zones. Relationships between the two
thresholds differed somewhat in the two domains, par-
ticularly during high-latitude winters. At low latitudes,
monthly correlations between the two variables ranged
from 0.86 in December–February (DJF) to 0.96 in June–
August (JJA) (vice versa in the Southern Hemisphere),
whereas in high latitudes, the correlation ranged be-
tween 0.65 in DJF and 0.94 in JJA (vice versa for South-
ern Hemisphere data). In each domain, the data were

randomly split into equally sized calibration and vali-
dation datasets. The calibration datasets were used to
derive linear regressions between the two thresholds on
a month-by-month basis (Fig. 5). In the case of high-
latitude stations, it was found that by including mini-
mum temperature as a second predictor, the multiple
correlation in winter months was improved to around
0.93. This temperature dependence in winter is probably
related to the poor gauge catch during snowfall being
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FIG. 4. Location of stations with wind speed normals. Geographic tiles used in the interpolation are also shown,
as are the total number of stations (N) used in the construction of the monthly wind speed fields. No interpolation
was done over tile 18, as there were insufficient data; however, the normals within this tile were used to interpolate
the global background tile.

FIG. 5. Validation statistics for the .1.0 mm to .0.1 mm wet-day frequency conversion for high, i.e.,
.458, (top) and low, i.e., ,458, (bottom) latitudes. Box and whisker plots show the distribution of residuals:
median, interquartile range, 10th and 90th percentiles, and extremes. Line plots show mean observed and
predicted wet-day frequency (solid and dotted), mean absolute and rms error in wet days (long dash and
dash–3 dots) and these same errors expressed as the percentage of the observed mean (short dash and dash–
dot).

exaggerated when the fall is extremely light. In the sum-
mer half-year, the use of minimum temperature at high
latitudes did not improve the regression. The final dis-
tribution of wet-day normals is shown in Fig. 6.

2) SUNSHINE AND CLOUD COVER

The distribution of cloud cover and sunshine normals
is shown in Fig. 7 and Fig. 8, respectively. Sunshine
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FIG. 6. Location of stations with wet-day frequency normals. Dots represent stations where the threshold was
0.1 mm and plus signs represent stations where frequencies were converted from the 1.0-mm threshold (e.g.,
northern Russia). Geographic tiles used in the interpolation are also shown, whereas N1 and N2 are the numbers
of stations in the correct units and requiring transformation, respectively.

FIG. 7. Location of stations with cloud cover normals (dots, N1) and those derived from sunshine (plus signs,
N2). Geographic tiles used in the interpolation are also shown.

normals were supplied as either mean hours per month
or percent of maximum possible bright sunshine. Total
cloud cover normals were mostly provided in oktas and
sometimes in tenths. Normals in units of sunshine hours
were converted to percent of possible, and cloud cover
normals were standardized to oktas. For some countries
both cloud cover and sunshine data were available, but
in most instances either one or the other was provided

and it was necessary to convert cloud cover to sunshine
(and vice versa) to obtain more complete coverage. Al-
though this is elementary in principle, the method can
produce only approximate results in practice due to fun-
damental problems in accurately measuring cloud cover
and, in certain cases, sunshine (UKMO 1969). For ex-
ample, Hulme et al. (1995) found that, at high latitudes,
bright sunshine predicted from cloud was grossly over-
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FIG. 8. Location of stations with sunshine percent normals (dots, N1) and those derived from cloud cover (plus
signs, N2). Geographic tiles used in the interpolation are also shown.

FIG. 9. Residuals (predicted minus observed) from the Doorenbos–Pruit uncorrected sunshine to cloud
conversion.

estimated using standard conversion procedures such as
those of Doorenbos and Pruit (1984); this is most likely
due to weak sunshine at low sun angle not being re-
corded by sunshine instruments. Similarly, cloud cover
estimated from sunshine would be overestimated. Con-
versely, reported cloud cover at low latitudes is fre-
quently too high (B. Weare 1997, personal communi-
cation) because observers tend not to look vertically
upward and, particularly in the presence of deep cu-
mulus clouds, overestimate the amount of cloud cover.
The cloud–sunshine conversion is further complicated
by the fact that cloud cover is often a 24-h average,
whereas sunshine relates only to daylight hours. To con-
vert between the two, we therefore assumed that there
was no diurnal cycle in cloud cover.

Following the approach of Hulme et al. (1995), the
Doorenbos–Pruit procedures were used to estimate sun-
shine from cloud cover at the 1088 stations where both
sunshine and cloud cover were available, and vice versa.

The predicted values were then compared to observed
normals and an empirical adjustment was derived to
correct for the high-latitude and tropical biases de-
scribed earlier (Fig. 9). The adjustments reduced the
mean absolute prediction error in winter by 55% and
47% for cloud and sunshine, respectively (Fig. 10). The
Doorenbos–Pruit cloud–sunshine and sunshine–cloud
conversions, plus empirical adjustments, were then ap-
plied to those stations that had only one of the variables.
This produced an additional 1141 and 2161 estimated
sunshine and cloud cover normals, respectively. Nor-
mals estimated in this way were accorded a low weight
during the interpolation (see section 3)

3) VAPOR PRESSURE

Humidity normals in the CRU dataset comprised
roughly equal numbers of relative humidity (RH) and
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FIG. 10. (top) Validation statistics for the sunshine to cloud and (bottom) cloud to sunshine conversion,
both with empirical correction. See Fig. 5 for explanation.

FIG. 11. Validation statistics for the RH to vapor pressure conversion. See Fig. 5 for explanation.

vapor pressure (e). The RH was converted to vapor pres-
sure using the relationship

e 5 (RH/100)esat ,

where, after Shuttleworth (1992, 4.3),

17.27T
e 5 6.108 exp hPa,sat 1 2(237.3 1 T )

where esat is the saturated vapor pressure at the mean
air temperature T.

This estimation is reliable provided that temperature
and RH are measured simultaneously. In some cases the
mean temperatures at the times of measurement were
available and the estimated vapor pressure can be con-
sidered reliable. However, in most cases only the mean,
or minimum and maximum, temperature were available,
whereas RH was the mean of one or several daily mea-
surements. Vapor pressure derived from RH and mean
temperature must be considered approximate, particu-

larly at stations with a large diurnal temperature range.
The RH to vapor pressure conversion was validated on
978 stations, which had normals for both stations (Fig.
11). Vapor pressure at nearly all stations in the validation
dataset was predicted to within 1 hPa of the observed
value. Figure 12 shows the final distribution of vapor
pressure normals used in the interpolation.

4) GROUND FROST DAY FREQUENCY

Most ground frost normals were defined as the fre-
quency of grass minimum temperatures below 08C.
Some normals, however, were defined as the frequency
of minimum air temperatures below 08C and these had
to be converted to ground frost frequency. As there was
no straightforward theoretical basis for this conversion,
the empirical formula derived by Hulme et al. (1995)
was used:
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FIG. 12. Location of stations with vapor pressure normals (dots, N1) and those converted from RH (plus signs,
N2). Interpolation tiles are also shown.

FIG. 13. (top) Validation statistics for the air frost and minimum temperature to ground frost and (bottom)
the minimum temperature only to ground frost conversions. See Fig. 5 for explanation.

F 5 5.2 1 (0.738F ) 2 (0.284T ) T , 98Cgr air mn mn

F 5 0 T $ 98C,gr mn

where Fgr is in days.
This conversion was validated using the 245 (non-

European) stations that had both air and ground frost
normals and that were not used by Hulme et al. (1995)
in their derivation (Fig. 13). The validation stations
show a mean negative bias (underprediction) of up to

two days in the northern summer (the majority of sta-
tions occur in the Northern Hemisphere). This suggests
that the relationship between ground and air frost is less
distinct in warmer weather, perhaps being more site spe-
cific.

For much of the Tropics, no ground frost or air frost
normals were available for the obvious reason that tem-
peratures rarely fall below freezing point. This absence
of data presented problems for the interpolation of frost
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FIG. 14. Location of stations with ground frost normals (dots, N1), those converted from air frost and minimum
temperature (plus signs, N2), and those converted from minimum temperature only (crosses, N3). Interpolation tiles
are also shown.

frequency to high elevations in the Tropics. To surmount
this shortcoming, a second empirical formula, using
only minimum temperature as the predictor, was derived
using a randomly selected subset of half the 1094 sta-
tions, which had both minimum temperature and ground
frost normals:

25 2F 5 0.581 2 0.00670T 2 2.31 3 10 Tgr mn mn

27 3 29 41 2.67 3 10 T 1 1.73 3 10 Tmn mn

29 52 4.07 3 10 T T , 98Cmn mn

F 5 0 T $ 98C,gr mn

where Fgr is in percent (i.e., frost days were standardized
to avoid problems due to months with different numbers
of days).

The temperature-only conversion performs almost as
well as the air frost plus temperature conversion, but in
contrast to the latter, shows a positive bias for most
months of the year, particularly in winter. The smaller
mean error in summer compared to the air frost method
arises from the large number of normals from warmer
regions used in the derivation and validation; in most
cases Tmn was greater than 98C, resulting in an exact
prediction. The minimum temperature-only conversion
was used at stations that had minimum temperature but
no frost normals. The eventual distribution of ground
frost normals used in the interpolation is shown in Fig.
14.

5) ELEVATION DATA

The digital elevation model (DEM) used in the study
originated from the TBASE 5-min lat–long global DEM

(NGDC 1996), modified to exclude all major water bod-
ies (W. Cramer 1997, personal communication). These
data were processed to a 0.58 lat 3 0.58 long resolution
by calculating the mean of the 36 5-min pixels present
in each 0.58 cell. A 0.58 cell was considered to be ocean
only if all 5-min pixels were ocean pixels. Land cells
over Antarctica were also excluded, but ocean islands
were included where the 5-min DEM indicated there
was some land (i.e., at least one 5-min pixel). The re-
sulting 0.58 DEM has 62 300 land cells, out of a possible
259 200 land and sea cells over the globe.

3. Interpolation methodology

The interpolation of irregular gauge data onto a uni-
form grid has been the focus of much research and a
large number of methods have been proposed, ranging
from the relatively simple Thiessen (Thiessen 1911) and
distance weighting methods (Shepard 1968; Willmott et
al. 1985) to geostatistical methods such as kriging (Phil-
lips et al. 1992) or splines (Hutchinson 1995) and locally
varying regression techniques (e.g., PRISM; Daly et al.
1994). For many climate applications it is important that
elevation is included as a covariate or independent var-
iable because the climate variable is dependent on el-
evation in some manner (Willmott and Matsuura 1995;
Briggs and Cogley 1996).

a. Thin-plate splines

We used thin-plate splines to interpolate the climate
surfaces as a function of latitude, longitude, and ele-
vation. The original thin-plate spline-fitting technique
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was described by Wahba (1979), whereas Hutchinson
(1995) provides a theoretical description of their appli-
cation to surface climate variables such as precipitation.
The technique is robust in areas with sparse or irregu-
larly spaced data points. Splines and kriging are for-
mally equivalent, but are formulated differently (Wahba
1990; Hutchinson and Gessler 1994). Thin-plate splines
are defined by minimizing the roughness of the inter-
polated surface, subject to the data having a predefined
residual. This is usually accomplished by determining
the amount of data smoothing that is required to min-
imize the generalized cross validation (GCV). This is
calculated by removing each data point in turn and sum-
ming, with appropriate weighting, the square of the dif-
ference between the omitted point and a surface fitted
using all the other points. The GCV is calculated im-
plicitly and hence without recourse to computationally
demanding iterative procedures. Kriged surfaces are de-
fined by minimizing the variance of the error of esti-
mation, which is normally dependent on a preliminary
variogram analysis. The main advantage of splines over
many other geostatistical methods is that prior estima-
tion of the spatial autocovariance structure is not re-
quired (Hutchinson 1995).

During the GCV minimization, data points are
weighted by s 2/n, where n is the number of years of
record contributing to the mean and s 2 is the variance
estimate obtained from the data. Where s 2 is unknown,
the data may be weighted by 1/n, on the assumption
that means derived from incomplete records are less
likely to represent the true (in our case 30-yr) mean.
Thus errors at stations with large variance or short re-
cords are assigned less weight. The use of s 2/n is par-
ticularly appropriate for precipitation, which can show
marked interannual variability (e.g., Hulme and New
1997). For other variables such as temperature, 1/n can
be used because interannual variability is not particu-
larly important.

Where the number of years of data for a normal was
unknown it was assumed to be 10. Weights for normals
from periods other than 1961–90 were reduced by 0.5
for precipitation and 0.75 for other variables. Similarly,
the weights of normals that were derived from other
variables (e.g., vapor pressure from RH) were reduced
by 0.75. The reductions were multiplicative. Thus nor-
mals with a short or unknown record length, not sam-
pling 1961–90 and derived from another variable were
assigned the lowest weighting under this scheme. This
procedure resulted in normals with the best temporal
fidelity being assigned the highest weight.

Elevation is scaled in kilometers, which essentially
exaggerates its influence by 100 times in relation to
horizontal position. This has been shown to be of critical
importance in ensuring that the interpolation is truly
three-dimensional (Hutchinson 1995; Hutchinson
1998). Nonetheless, three-dimensional interpolation
does require there to be sufficient elevation spread in
the input data to enable smaller-scale elevation depen-

dencies to be captured (in our case, smaller-scale implies
resolution greater than 0.58 lat 3 0.58 long). Therefore,
in mountainous areas with sparse data coverage, the
trivariate thin-plate spline interpolation is likely to un-
derestimate lapse rates. The plots of station distributions
(Figs. 1–4, 6, 7, 8, 12, 14) provide an indication of areas
where sampling density is low.

The splining procedure returns a set of surface co-
efficients that can, in practice, be interrogated at any
resolution provided a suitable digital elevation model is
available. However, the fitted surface is only as good
as the station data that were used to define it. If, as is
the case here, interstation distances are of the order to
10–100 km, the fitted surface will reflect only spatial
and elevation relationships captured at this resolution.
Using a higher-resolution DEM to create a climatology
can be misleading, as users might mistakenly assume
the resulting climate fields adequately describe vari-
ability at this higher resolution. We feel that the 0.58
resolution used here represents the limit at which such
large-scale interpolations can reliably be interrogated.

b. Interpolation procedure

The interpolation of a large number of data points
becomes computationally demanding. In addition, fit-
ting the same spline function to areas with markedly
different station densities (e.g., Europe vs North Africa)
can result in too much smoothing in data-rich areas and
too little smoothing in data-poor areas.

For each variable, therefore, the terrestrial surface
was divided into a number of geographic tiles over
which separate spline functions were fitted (Figs. 1–4,
6, 7, 8, 12, 14). The size of the tiles varied primarily
according to station density, but also as a function of
spatial complexity of the climate variable. Where nec-
essary, tiles were forced to overlap by at least 58 lat 3
58 long so as to minimize edge effects. The number of
stations in a tile varied between about 200 and 1000.

A ‘‘background’’ tile was also interpolated, encom-
passing the entire globe between 608S and 858N, using
a subset of the available normals that included all sta-
tions not within the tiles mentioned above (i.e., oceanic
islands) and some 750 evenly distributed continental
stations.

No interpolations of ground frost were possible over
tiles 12 (eastern North Africa) and 19 (Indonesia) be-
cause no stations were cold enough to have ground frost;
this precluded interpolation to higher elevations where
there might well be frost days. Consequently, ground
frost frequency surfaces were derived from minimum
temperature surfaces (mean temperature minus half of
diurnal temperature range) using the relationship with
minimum temperature described in section 2. Similarly,
wind speed was not interpolated over Australia, as there
were only seven normals for this region. Here, the global
background field (see below) was used.

Output diagnostics from the spline programs were
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TABLE 3. Percentage of grid cells where it was necessary to constrain the interpolated fields to realistic values. Only those variables
where unrealistic values were detected are listed. Here Nmonth is the number of days in the month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Precipitation , 0
Wet days , 0
Wet days . Nmonth
Vapor . Saturation
Sunshine , 0
Cloud , 0
Ground frost , 0
Ground frost . Nmonth

4
3

,1
9
2
—

14
32

3
2

,1
7

,1
—

15
32

3
1

,1
4
—
—

16
30

2
1

,1
2
—
—

17
21

3
1

,1
1
—
—

18
8

4
2
—

,1
—

,1
21

2

4
2

,1
,1

—
,1
27

,1

3
2

,1
,1

—
—

24
,1

3
1
—
1
—
—

18
4

3
1
—
2
—
—

17
16

4
2
—
3

,1
—

16
28

5
2
—
7
4
—

14
32

used to identify erroneous data. Most common errors
were typographic and locational. Where possible, the
errors were corrected; stations that could not be cor-
rected were removed from the dataset.

The final fitted spline functions for each tile were
applied to the portion of the 0.58 DEM falling within
the tile to derive the climate grids for each variable.
The tiles were then merged to produce a global land
field (excluding Antarctica). Where there was overlap
between tiles, for example, between tiles one and two
in Fig. 1, grid values were calculated as a weighted
average from contributing tiles. Weights were simply a
linear function of the inverse-distance in grid points
between a particular point and the edge of its tile.

Finally, the grids were constrained as follows to avoid
unrealistic values. For all variables except temperature,
negative values were converted to zero. Wet-day and
frost-day frequency were limited to the number of days
in the month under consideration. In areas with zero
rainfall, wet-day frequency was set to zero. Vapor pres-
sure was constrained to be less than the saturated vapor
pressure at the corresponding mean temperature. Sun-
shine and cloud were set to upper limits of 100% and
8 oktas, respectively. The number of grid points that
had to be constrained is listed, for each relevant variable,
in Table 3. These primarily occurred throughout the year
in the Sahara and Arabia, but were also present during
the austral winter over drier regions of Namibia, Bot-
swana, Angola, and Peru. Wet-day frequency exceeds
the numbers of days in the month over the Amazon
Basin, particularly between February and April. This
arises from a combination of a sparse station network
and the fact that during this period (the wet season) the
true wet-day frequency is high; thus the likelihood of
values being interpolated beyond the upper limit is en-
hanced. The wet-day grid points with values less than
zero are similar in distribution to precipitation, as might
be expected.

The number of vapor pressure grid cells with values
greater than saturated vapor pressure was quite large for
winter months. The cells are all situated in regions with
extremely low temperatures, namely, Canada, Green-
land, and Siberia. Humidity measurements at these tem-
peratures are subject to considerable uncertainty because
vapor pressure is so low, often below 0.1 hPa, the pre-
cision of most of the vapor pressure normals. When

interpolating such low values, small absolute errors will
result in rather large errors relative to the similarly low
saturated vapor pressure derived from mean tempera-
ture. Thus, vapor pressure in cold regions should be
considered as approximate. In summer, the few vapor
pressure points that are greater than saturated vapor
pressure occur in the Greenland interior. These are most
likely due to the problem of low vapor pressure men-
tioned above. However, station control for both the mean
temperature and vapor pressure interpolation is limited
over the Greenland interior, so there may be some ad-
ditional error in both the vapor pressure estimates and
the temperature-based estimates of saturated vapor pres-
sure used to constrain the vapor pressure.

All the sunshine grid points with negative values oc-
cur at high northern latitudes in winter and result from
the extrapolation of station normals with values close
to or equal to zero into regions without station control,
namely northern Russia and Greenland. The few cloud
grid cells with values less than zero occur in the Arabian
desert, some distance from input station control.

There were numerous cells where it was necessary
to constrain the ground frost estimates. This is because
the interpolation is unable to handle lower and upper
limits. Thus in areas where the station data indicate
ground frost is close to the upper (number of days in
the month) or lower (no days) limit, gradients extrap-
olated away from the control can result in many grid
points being assigned values outside the limits. This is
reflected in the seasonal variation of the number of cells
greater (less) than the upper (lower) limits (Table 3).

4. Validation and reliability of interpolated fields

An issue that has received little attention in recent
years is the frequent use of climatologies interpolated
from station data without reference to the predictive
error associated with the field (Hulme and New 1997;
Legates 1997). End-users of climate data are, more often
than not, unfamiliar with the details of the interpolation
and do not have a feel for the overall accuracy of the
interpolated field or are unaware of areas where the
interpolation is more or less reliable. In this section we
assess the accuracy and reliability of the interpolated
fields in our new climatology.

One method for independently assessing the predic-
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FIG. 15. Seasonal RTGCV for precipitation over each interpolation tile. For each season, (top) is in mm units and
(bottom) in percent of the mean of stations falling within the tile. Tile indices are shown in Fig. 1.

tive error of an interpolated field is cross validation.
These validation errors can then be appraised in a num-
ber of ways, for example, by looking at spatial patterns
of error (Legates 1987) or in terms of average behavior,
such as mean-square error and mean bias (Hulme et al.
1995; Hulme et al. 1996). Although this can be com-
putationally demanding, it complements the standard
error estimates of geostatistical methods, which are
largely dependent on the statistical model being suitable
for the data. A major shortcoming of cross validation
is that it provides error information at station locations
only and can therefore be misleading if the station net-
work is inadequate. The thin-plate spline interpolation
we used calculates the generalized cross validation
(equivalent to the mean-square cross validation error)
implicitly during the surface fitting procedure, and we
assess these in some detail in section 4a below.

Another way of evaluating the predictive error as-
sociated with an interpolated field is by comparison with
other datasets that nominally describe the same variable.
This has been done over the United States by Pan et al.
(1996), who compared several precipitation and tem-
perature climatologies—those of Leemans and Cramer
(1991; W. Cramer 1997, personal communication), Le-
gates and Willmot (1990a,b), and the VEMAP project
(Kittel et al. 1995)—and found large differences be-
tween the datasets, of the order of 20%–40% for pre-
cipitation in some places. These differences were due
to several factors: different observing networks; differ-
ent interpolation schemes; and for precipitation, differ-
ences in corrections made for gauge biases. Similarly,
Hulme and New (1997) compared the Leemans and Cra-
mer and Legates and Willmott precipitation climatolo-

gies to their own over North Africa and Europe, and
found differences of between 10% and 30%. In section
4b below we compare the new CRU 1961–90 clima-
tology to these other commonly used global climatol-
ogies.

a. Spline diagnostics

The GCV and its square root (RTGCV) provide an
estimate of the mean predictive error (and hence power)
of the fitted surface and as such permit an assessment
of the relative accuracy of a fitted surface. Although the
RTGCV from different tiles is partly dependent on the
sampling adequacy of the station network, we compared
the GCV results from different tiles. This provided an
indication of areas where the interpolation is more or
less accurate. The RTGCV for each variable and each
interpolation tile are summarized in Figs. 15–17.

In general, precipitation, wet-day frequency, and wind
speed have the largest relative RTGCV. In the case of
precipitation, this is despite being the variable with the
largest number of stations (N 5 19 295) and is a re-
flection of its greater spatial variability, even when av-
eraged over a large number of monthly totals. Precip-
itation prediction errors are greatest where the station
network is too sparse to capture the spatial variability
of this variable. Examples include mountainous regions
such as the North and South American cordillera and
the Himalayan region, all of which suffer from relatively
poor station coverage and complex precipitation pat-
terns. In northern Asia, where precipitation is less spa-
tially variable but the network is extremely sparse, rel-
ative errors are similarly large. In well-sampled regions,
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FIG. 16. Seasonal RTGCV for (top) mean temperature, (middle) diurnal temperature range,
and (bottom) wet-day frequency over each interpolation tile. Tile indices are shown in Figs. 2,
3, and 6.

such as Europe and the United States, the RTGCV of
10%–25% agrees well with error statistics from other
regional precipitation climatologies (e.g., Daly et al.
1994; Hulme et al. 1995). The largest absolute RTGCVs
occur in the Indonesian region (tiles 26 and 27), a re-
flection of the high precipitation that occurs there.

Wet-day frequency errors are generally between 1 and
3 days (Fig. 16), while relative errors are between 10%
and 30% of the mean of all stations over each tile (not
shown). The exceptions are northern and central South
America, where the RTGCV is between 3 and 4 days,
and the JJA season in Indonesia. Both these regions have
high precipitation and wet-day frequency and relatively
sparse networks, so high absolute errors might be ex-
pected. It is only in the central South American dry
season that relative errors are appreciably larger than in
other areas. Large relative errors also occur over the
Indian subcontinent during the dry season (DJF and
March–May), but these have low absolute errors of 0.8
and 1.1 days, respectively.

RTGCVs for wind speed are also large (Fig. 17),
between 0.5 and 2.0 m s21 (between 20% and 77% of
the mean of all stations in individual tiles). As with

precipitation, wind speed is influenced by small-scale
physiographic features and also has quite steep coast to
inland gradients. The sparser observing network (N 5
3615), combined with possible uncertainties with regard
to instrument type and height, means that the resultant
monthly grids capture only spatial variability associated
with larger-scale circulation features.

Mean temperature is far better predicted than diurnal
temperature range, despite the two variables having sim-
ilar station networks (Fig. 16). The RTGCV for mean
temperature ranges from 0.58 to 1.38C, and is typically
about half that for diurnal temperature range. Errors at
the high end of the range occur in less well-sampled
regions. The poorer results for diurnal temperature range
primarily reflect the more complex character of mini-
mum temperature, which can be strongly influenced by
local topography and land–sea interactions.

Cross validation of the other variables (Fig. 17) re-
sulted in RTGCVs that were less than 20% of the mean
of stations used in the interpolations. The largest vapor
pressure relative errors of 11%–16% occur over the In-
dian subcontinent, which has a comparatively sparse
network. Cloud cover and sunshine percent have a sim-
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FIG. 17. Seasonal RTGCV for (a) vapor pressure, (b) sunshine, (c)
cloud cover, (d) ground frost frequency, and (e) wind speed over each
interpolation tile. Tile indices are shown in Figs. 4, 7, 8, 12, and 14.

ilar range in RTGCV, once the difference in units is
taken into account. Relative RTGCVs are inversely re-
lated because of the inverse relationship between the
two variables. Some of the error in the RTGCV for cloud
and sunshine is likely to stem from the problems in
converting from sunshine to cloud (and vice versa), dis-
cussed in section 2b.2. Ground frost frequency RTGCVs
vary between 0.3 and 3.4 days, but are generally greater
than 1.0 in regions where ground frost is a significant
factor.

b. Comparison with other climatologies

Two commonly used 0.58 global surface climatolo-
gies are those of Legates and Willmott (1990a,b, hence-

forth LEG) and Leemans and Cramer (1991, henceforth
CRA), who have recently released an updated version
(Version 2.1; W. Cramer 1997, personal communica-
tion). LEG constructed a mean monthly climatology for
precipitation and mean temperature, with complete
global coverage. LEG has predominantly been used in
climatological applications, particularly for the evalu-
ation of GCM precipitation fields, and represents both
land areas and oceans, for the period 1921–80, with
greater emphasis on the latter years. The monthly fields
over land were interpolated from about 25 000 precip-
itation and 18 000 mean temperature stations world-
wide, using a spherical angular distance weighting al-
gorithm (Willmott et al. 1985). CRA have produced
mean monthly fields of precipitation (N 5 18 927 sta-
tions), wet-day frequency (N 5 6262), mean tempera-
ture (N 5 13 656), diurnal temperature range (N 5
9927), and sunshine percent (N 5 5263). Their spatial
domain is the same as CRU’s, namely global land areas
excluding Antarctica, but represents (roughly) the pe-
riod 1931–60. CRA has been derived using the same
thin-plate spline interpolation routines that were used
for construction of the CRU climatologies. CRA was
developed for use in global ecosystem modeling and
has received most application in these disciplines.

We compared the CRU climatologies to those of LEG
(for precipitation and mean temperature) and CRA (for
precipitation, mean temperature, diurnal temperature
range, wet-day frequency, and sunshine). LEG required
resampling to arrive at grid cells with the same centroid
as CRU and CRA. LEG was further processed so that
only areas that were in common with the CRU and CRA
land-only fields were assigned values. Subsequently, all
three climatologies were degraded to produce 28 lat 3
28 long grids, in order to improve viewability. Neither
LEG or CRA have climatologies of cloud cover, so we
compared the CRU cloud cover fields to those of Hahn
et al. (1994) and the International Cloud Climatology
Satellite Project (ISCCP; Rossow and Schiffer 1991)
mean climatology.

We are not aware of any global climatologies that
describe vapor pressure, ground frost, and wind speed,
so these fields remain unevaluated.

1) PRECIPITATION

CRU precipitation fields were compared to those of
LEG and CRA. It should be noted that the LEG pre-
cipitation fields we used are the unadjusted version, in
that they contain no adjustments for gauge biases.

Zonal-mean precipitation through the seasonal cycle
is shown in Fig. 18, as are the zonal-mean absolute error
(MAE) and bias between each pair of climatologies. The
zonal-mean precipitation in all three climatologies
agrees closely, except at high latitudes. Along the Pacific
coastline of southern South America (508S–608S), CRU
is drier than both LEG and CRA. This can mostly be
explained by examination of regional time series con-
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FIG. 18. Zonal-mean precipitation, mean absolute differences (MAE), and mean bias between climatologies, for CRU,
LEG, and CRA. The midseason months of Jan, Apr, Jul, and Oct are shown.

structed from CRU station time series (not shown),
where it can be seen that mean precipitation for the
period 1931–60 and 1921–80 is wetter than the period
1961–90 by between 20% and 50%. If these effects are
removed, MAE between CRU and the other two cli-
matologies would be smaller. In the Arctic, CRU pre-
cipitation is, on average, greater than both LEG and
CRA by about 5 mm month21, but CRA and LEG do
not agree particularly well here either. These differences
are understandable given the sparseness of station data
at these latitudes. In particular, the absence of gauges
has resulted in fairly large differences between clima-
tologies over the Greenland interior.

We attempt to quantify the significance of differences
between the CRU, LEG, and CRA precipitation cli-
matologies in Fig. 19, which shows gridpoint Student’s
t-statistics for the differences between each pair of cli-

matologies. The t-statistic was calculated at individual
gridpoint pairs as follows (Hulme and New 1997):

m 2 m1 2t 5 ,
1/22 2s s1 211 2n n1 2

where m and s are the gridpoint means and standard
deviations, respectively, and n is the number of years
the mean climatologies represent. Monthly standard de-
viations were calculated from the CRU 0.58 lat 3 0.58
long gridded monthly precipitation time series (New et
al. 1999), using the periods 1931–60, 1940–80, and
1961–90 for CRA, LEG, and CRU, respectively. The
0.58 gridded monthly standard deviation fields were sub-
sequently degraded to 28 lat 3 28 long resolution. Values
for n were assumed to be 30 for CRU and CRA, but
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FIG. 19. Student’s t-statistic for the differences (former minus latter) between the (top) CRU and LEG, (middle)
CRU and CRA, and (bottom) LEG and CRA mean monthly precipitation climatologies (regridded to 28 lat 3 28
long). Values in the legend correspond to the significance of the t-statistic, with green-blue representing areas where
the former is wetter than the latter and yellow-red where the former is drier than the latter.
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40 for LEG, because the stations are described by the
authors as being more heavily sampled in the latter years
of the nominal 1921–80 normal period.

There are well-documented shortcomings in the use
of t-statistics for assessing differences between fields of
climate data (e.g., Wigley and Santer 1990). In addition,
monthly precipitation is not normally distributed and,
in this instance, assuming constant degrees of freedom
at each grid point is not strictly valid. Nonetheless, the
plots of gridpoint t-statistics highlight areas where dif-
ferences between the climatologies are more or less sig-
nificant. A further advantage of this approach is that it
avoids the necessity of looking at difference fields in
combination with fields of absolute precipitation
amounts, or of having to use relative and absolute dif-
ference fields in areas of high and low precipitation,
respectively.

Comparison of the t-statistic fields indicates that most
of the significant differences occur in data-poor regions,
such as Amazonia, the Sahara, eastern Russia, and the
Arctic, or in regions with complex topography, such as
the American cordillera. CRU is drier than the other two
climatologies over the Sahel region, which is to be ex-
pected, given the well-documented drought that oc-
curred here in the 1970s and 1980s and the fact that
LEG and CRA are sampling earlier, wetter decades
(Hulme and New 1997). Over Russia, CRU and CRA
show no consistent pattern of agreement, but both ex-
hibit higher precipitation than LEG at most grid points.
In the case of CRU, this is because most of the precip-
itation normals are derived from time series that have
been adjusted for gauge undercatch (Groisman et al.
1991), whereas the LEG version used for this compar-
ison is not adjusted for gauge biases. Other areas where
CRU shows significant differences from LEG are over
northern Canada and Alaska, where CRU is drier; both
CRU and LEG are significantly different from CRA in
this region, with similar sign over Alaska, but opposite
sign in the Arctic.

CRU is wetter than both LEG and CRA over most
of the Greenland interior through all seasons, but par-
ticularly in summer. This disagreement is understand-
able given the absence of station data away from the
coast. We therefore compared our estimate of annual
precipitation over the region (not shown) to maps from
several sources reproduced by Chen et al. (1997). The
various climatologies agree well along the coast where
station control is reasonable. Over the northern interior,
however, the CRU annual precipitation is between 40
and 60 mm, markedly higher than the 10–30 mm re-
ported in Chen et al. (1997).

2) WET-DAY FREQUENCY

The only other global-mean monthly climatology of
wet-day frequency of which we are aware is that of
Leemans and Cramer (Version 2.1; W. Cramer 1997,
personal communication) and we compare this to the

CRU wet-day frequency climatology. Zonal-mean wet-
day frequencies agree to within 3 days, except at high
latitudes and during the wet season (austral summer) in
the Southern Hemisphere Tropics (Fig. 20).

The large zonal-mean differences between 458S and
558S are due to CRA exceeding CRU by between 5 and
18 days over South America. Station coverage in CRU
is particularly poor in this area (Fig. 6) and, although
no information was available on CRA’s station network,
it is likely to be similarly sparse. This, combined with
the fact that precipitation in 1961–90 was up to 50%
less than in 1931–60, probably explains much of the
difference.

Differences in the southern Tropics arise mainly be-
cause CRU wet-day frequency is greater than CRA over
South America and Indonesia. Again, both these regions
have sparse observational networks, which may account
for some of the differences. A second factor could be
the fact that many of the CRA wet-day frequencies may
be for a higher threshold than the CRU normals (W.
Cramer 1997, personal communication). It is worth not-
ing that because CRU precipitation is lower than CRA
and CRU wet-day frequency is higher over much of
tropical South America, rainfall intensities derived from
the CRU precipitation and wet-day frequency grids will
be much less intense than those from CRA in this region.

The large differences in the Arctic, where wet days
in CRU are less frequent than in CRA, occur in all
seasons except in summer, where the two climatologies
agree closely. Possible reasons for this include the
sparse observing network or changes in reporting pro-
cedures and/or gauge catch efficiency between 1931–
60 and 1961–90. The latter explanation seems likely
because the differences are largest and extend further
south in winter, and are negligible in summer, suggesting
that they are related to snowfall in some way. Precise
reasons are difficult to determine because of the lack of
documentation that accompanied the CRA dataset; we
do not know the threshold or whether precipitation is
liquid or solid plus liquid. In the case of CRU station
data, Canadian wet-day frequency normals supplied
were explicitly described as days with precipitation (sol-
id and liquid) greater than 0.1 mm. Normals from Russia
used by CRU were derived directly from 6-h or 3-h
observations of precipitation and so also represent days
with solid and liquid precipitation greater than 0.1 mm.

3) MEAN TEMPERATURE

As with precipitation, we compared the CRU mean
temperature climatology to LEG and CRA. CRU and
CRA both make use of thin-plate splines for interpo-
lation, in which elevation is an independent predictor
variable. Thus, lapse rates are derived during the inter-
polation and these rates vary in space. Conversely, LEG
does not incorporate elevation effects in their inverse-
distance weighting interpolation.

Zonal statistics for January, April, July, and October
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FIG. 20. Zonal-mean wet-day frequency for CRU and CRA, and zonal MAE and bias between CRU and CRA, for
each of the four peak-season months.

are displayed in Fig. 21, where the strong latitudinal
control of zonal-mean temperature patterns is evident.
Mean absolute differences between CRU and CRA are
consistently less than those between LEG and either
CRU or CRA, by between 0.58C and 28C. The closer
agreement between CRU and CRA is most likely a con-
sequence of the use of the same interpolation method
producing similar elevation-dependent gradients. This
is most evident at 308–408N, where LEG is much warm-
er than CRU and CRA over the Tibetan plateau, by up
to 158C. Similarly CRU and CRA are colder than LEG
in other areas with high elevation: the American cor-
dillera, New Zealand, and the European Alps.

Examination of the spatial patterns in difference fields
(Fig. 22) shows that CRU is generally slightly warmer
than CRA and, to a lesser extent, LEG, by about 18C
over most of the Southern Hemisphere and Asia, where-

as patterns elsewhere are more variable. Over the Green-
land interior, CRU is warmer than CRA in winter, by
up to 158C, but colder in summer by a similar amount.
The absence of long-term measuring stations here is
clearly a major cause of discrepancy. CRU and CRA
are both colder than LEG over the Greenland interior,
except for a small area toward the south. There, LEG
is colder, suggesting the presence of a station that was
used in the LEG interpolation, but not in either CRU
or CRA.

CRU is distinct from both LEG and CRA along the
Arctic coasts of Russia and North America. In Russia,
CRU is colder in winter and warmer in summer, whereas
the reverse occurs over North America, albeit less dis-
tinctly. This is most likely due to differences in the way
mean temperature was calculated in each climatology.
For example, in colder regimes mean temperatures de-
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FIG. 21. Zonal-mean temperature, MAE, and mean bias between the CRU, LEG, and CRA mean temperature
climatologies for Jan, Apr, Jul, and Oct.

fined as the average of maximum and minimum tem-
perature, as in CRU, will be several degrees less than
the mean calculated from 3-h or 6-h measurements, as
is possibly the case in LEG and CRA over Russia. These
differences have likely been exaggerated along the Arc-
tic coast of Russia where there were no stations, and
gradients interpolated from stations further to the south
may well be different in the three climatologies.

4) DIURNAL TEMPERATURE RANGE

The only other global-mean monthly climatology of
diurnal temperature range (or maximum and minimum
temperature, from which diurnal temperature range can
be derived) we are aware of is that of CRA (Version
2.1; W. Cramer 1997, personal communication). The
CRA climatology represents the period 1931–60 and

was derived in a different way to CRU: maximum and
minimum temperature were interpolated separately (us-
ing thin-plate splines) and subsequently differenced to
derive a diurnal temperature range climatology. Differ-
ences between CRU and CRA, for January, April, July,
and October, are displayed in Fig. 23.

Over about 50% of the globe, CRU and CRA agree
to within 18C, which is similar to the RTGCV reported
during interpolation of the CRU data over most tiles
(Fig. 16). Over much of central Asia, CRU and CRA
differ in a sporadic manner, but there is an overall pat-
tern of CRU diurnal temperature range being lower than
CRA. Over central Greenland, however, CRU diurnal
temperature range is greater than CRA, except in July.
Elsewhere, CRU is consistently different to CRA in sev-
eral domains.

R CRU diurnal temperature range is greater than CRA

Unauthenticated | Downloaded 08/24/22 05:42 AM UTC



850 VOLUME 12J O U R N A L O F C L I M A T E

FIG. 22. Differences between CRU, LEG, and CRA (degraded to 28 lat 3 28 long) mean temperature grids for January and
July. The size of the dots (continuous scale) indicates the magnitude of the differences as shown in the legend. Top CRU
minus LEG, middle CRU minus CRA, and bottom LEG minus CRA.

FIG. 23. Difference between CRU and CRA diurnal temperature range climatologies in peak season months. The size of the
dots (continuous scale) shows the magnitude of the differences as indicated in the legend.
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over Mexico and the southwest United States, Sri Lan-
ka, New Guinea-Irian Jaya, New Zealand, and the
Tibetan plateau, by several degrees Celsius in all sea-
sons, and over Arctic Russia in spring and summer.

R CRU diurnal temperature range is less than CRA by
more than 18C over the Amazon Basin and Arabia
throughout the year, and over parts of Canada and
Alaska in the Northern Hemisphere summer.

Some of the differences described above can be ex-
plained by the fact that they occur in areas with sparse
observing networks, where gradients arising from the
two interpolation approaches are most likely to disagree.
Examples here include Greenland, Amazonia, the Ti-
betan plateau, and New Guinea. Of more concern are
the large differences over Mexico and the southwest
United States and New Zealand, where the CRU dataset
has a dense station network and the differences are up
to 68C. The differences in the USA are not due to chang-
es in mean diurnal temperature range between the two
normal periods, as Karl et al. (1993, their Figs. 2 and
4) show that diurnal temperature range in 1961–90 was
about 18C lower than in 1931–60. Similarly, Easterling
et al. (1997) show a decreasing trend in diurnal tem-
perature range of 18–38C (100 yr)21 (based on 1951–90
data) over New Zealand. Moreover, the contrasts are not
due to the different interpolation methodologies, as we
reinterpolated the CRU data to produce maximum and
minimum temperature fields. These were then differ-
enced to derive a new diurnal temperature range field
(i.e., same approach as CRA) that exhibited similar dif-
ferences to CRA. Closer examination of the patterns of
differences indicate that they are greatest in, though by
no means restricted to, mountainous regions (i.e., the
Rocky Mountains, the Sierra Nevada, the Sierra Madre,
and Baja California). A likely explanation for the dif-
ferences is that the CRA station network inadequately
captures topographic controls of diurnal temperature
range (or maximum and minimum temperature) in these
regions. However, at the time of writing no information
on the CRA network was available from the authors, so
this could not be addressed further.

5) CLOUD

We compared the CRU cloud cover climatology with
two other frequently cited mean monthly climatologies:

R the 1984–91 ISCCP (Rossow and Schiffer 1991;
ISCCP 1997) C1 mean monthly cloud fraction cli-
matology; and

R the 1982–91 land-only cloud climatology of Hahn et
al. (1994; henceforth Hahn).

Both these datasets have a resolution of 2.58 lat 3
2.58 long. Therefore, the CRU cloud climatology was
degraded to the same resolution by taking the average
of all 0.58 grid points falling within the larger 2.58 cells.
If fewer than five 0.58 values were present, then a 2.58

cell was assigned missing value (i.e., considered to be
ocean).

The differences between the three climatologies are
summarized in Fig. 24, which shows zonal-mean cloud
fractions, MAE, and mean biases between the three cli-
matologies for January, April, July, and October. In gen-
eral, CRU zonal means tend to fall between ISCCP and
Hahn, but agree more with Hahn, particularly in north-
ern midlatitudes where the ground-based observing net-
work is most extensive. MAEs are predominantly in the
range 5%–15%, similar to results reported elsewhere
(Rossow et al. 1993; Mokhov and Schlesinger 1994).
The underestimation of ISCCP cloud amount in polar
regions has also been well documented (Rossow et al.
1993; Mokhov and Schlesinger 1994).

CRU differs from Hahn most noticeably between 108
and 208N in October and January, where Hahn exceeds
both CRU and ISCCP by up to 28%. Examination of
the geographical distribution of cloud amounts (not
shown), revealed that the differences arise because Hahn
cloud amounts are larger than CRU and ISCCP over the
Indian/Southeast Asian monsoon region (by up to 40%),
and over much of the Sahel. Some of the differences
over the Sahel may be explained by the period of ex-
tended drought that occurred in the 1970s and 1980s,
relative to earlier decades (Hulme 1992b; Hulme and
New 1997) that would reduce cloud cover in Hahn more
than CRU (which samples 1961–90 and, at some sta-
tions, 1931–60). A second possible cause of the differ-
ences over the Sahel could be that most of the CRU
station data over this region are derived from sunshine,
which introduces considerable uncertainty to the station
values (see section 2 and Fig. 8). CRU and ISCCP agree
quite well over the Sahel, however, which suggests that
the CRU data are not inordinately biased. Over the In-
dian/Southeast Asian monsoon region, ISCCP and CRU
agree well, although CRU tends to be 5%–10% more
cloudy than ISCCP. Over India, CRU cloud cover nor-
mals are once again derived from sunshine, which may
help explain differences between CRU and ISCCP, but
is unlikely to explain the 25% differences between CRU
and Hahn.

6) SUNSHINE

We compared the CRU and CRA sunshine climatol-
ogies. Although CRU and CRA use a similar number
of stations, there is no information on the spatial dis-
tribution of the CRA stations, or the number that were
derived from cloud cover.

Differences between CRU and CRA are summarized
for the four midseason months in Fig. 25. The two cli-
matologies agree well in mid and low latitudes, but
diverge at high latitudes, particularly in the Northern
Hemisphere, where stations are sparsely distributed. Ex-
amination of the spatial patterns of these differences
(not shown) reveal that the differences at southern high
latitudes arise primarily because CRU sunshine is higher
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FIG. 24. Zonal-mean cloud cover, MAE, and bias between the CRU, ISCCP, and Hahn cloud climatologies in each of
the peak-season months.

over the Pacific coasts and adjacent interiors of South
America and Australia. This may be due to the sparse
observing network (only a few stations in the CRU da-
taset) or differences arising from the estimation of sun-
shine from cloud data at high latitudes. It is difficult to
assess the relative merits of these arguments because
we have no information on the CRA station network.

At northern high latitudes the differences occur be-
cause CRU exceeds CRA over Russia and Greenland
in spring, summer, and autumn, and vice versa in winter.
In winter, CRU shows the expected strong latitudinal
control on sunshine (due to zero hours at very high
latitudes, and the effect of low sun angles on the amount
of bright sunshine recorded), which CRA does not. Lee-
mans and Cramer (1991) acknowledge that the 1991
version of CRA is limited by poor station coverage at
high latitudes, and it is likely that the latest version

suffers from similar shortcomings. The opposite trend
over Russia in summer is difficult to explain. It is pos-
sible that CRA uses cloud cover measurements, con-
verted to sunshine, and that their conversion to sunshine
has resulted in systematic biases at high latitudes in
summer. Without further documentation of CRA the
causes of these differences cannot be resolved.

5. Conclusions

We have constructed a new high-resolution
(0.5830.58) global-mean monthly climatology from sur-
face observations. The dataset describes the spatial char-
acteristics over land areas (excluding Antarctica) of a
suite of nine variables: precipitation, wet-day frequency,
mean temperature, diurnal temperature range, vapor
pressure, sunshine, cloud cover, ground frost frequency,
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FIG. 25. Zonal-mean sunshine, MAE, and bias for the CRU and CRA sunshine climatologies.

and wind speed. The climate grids are derived from as
extensive a database of time-dependent normals that ex-
ists anywhere.

The accuracy of the monthly grids varies both re-
gionally and between variable. In general, cross-vali-
dation results indicate that mean temperature, diurnal
temperature range, and vapor pressure are the variables
most reliably interpolated from the available station
data, followed, in decreasing order by sunshine, cloud
cover, ground frost frequency, wet-day frequency, pre-
cipitation, and wind speed. For all variables, the surfaces
are least reliable in areas with poor data coverage and/
or complex topography. This is particularly so for the
Greenland Ice Sheet, where only one or two short-term
normals were available. Other regions with large cross-
validation errors include the American cordillera, the
Himalaya–Tibetan region, and Southeast Asia during the
monsoon season. Some of the cross-validation errors for

the surfaces can be ascribed to uncertainties inherent in
the conversion of variables to a common base unit (va-
por pressure, sunshine, cloud cover, wet-day frequency,
and ground frost frequency), errors in station location,
or data values that were not identified during the inter-
polation. However, most of the error is likely to arise
from inadequate station networks.

We compared our climate fields to several other com-
monly used climatologies, namely Legates and Willmott
(LEG), Leemans and Cramer (CRA, Version 2.1), as
well as the ISCCP and Hahn cloud climatologies. The
CRU precipitation and mean temperature fields show
large systematic differences to LEG in high-elevation
regions. The main reason for these is that LEG does not
include elevation as a predictor variable in their inter-
polation and we suggest that the CRU grids are more
accurate in such regions. The two climatologies also
disagree markedly in high latitudes. Despite this, CRU
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precipitation is more similar to LEG than CRA, which
may well be due to the fact that the CRU and LEG
normal periods overlap (1961–90 and 1921–80, respec-
tively), whereas CRU and CRA (nominally) sample en-
tirely different periods.

The CRU diurnal temperature range fields show some
systematic differences to CRA that cannot be attributed
to differences in interpolation methodology, most no-
tably over the southwestern United States, Mexico, In-
donesia, and New Zealand, where errors are of the order
of 38–68C. These regions exhibited the largest cross-
validation errors for this variable during the interpola-
tion of the CRU surfaces. This suggests that different
station networks in these regions may well be the cause
of the relatively large differences between CRU and
CRA. Contrasts between CRU and CRA for sunshine
and wet-day frequency are of similar magnitude to, but
slightly larger than, the cross-validation errors reported
during the interpolation of the CRU surfaces, suggesting
that these fields agree well given the available station
networks. Largest errors occur where the network is
sparsest, namely, in the Tropics and at high latitudes.

The CRU cloud cover fields agree best with the ob-
served climatology of Hahn, but generally falls between
ISCCP and Hahn. Zonal-mean errors are around 10%,
similar to the cross-validation errors from the CRU in-
terpolation.

Thus the picture that emerges from cross validation
and intercomparison is that there are nonnegligible pre-
diction errors associated with the CRU climate fields
and, more generally, in all observed climatologies of
this type. In specific instances, the differences between
climatologies can be attributed to either contrasting in-
terpolation methodologies or temporal sampling strat-
egies. However, much of the difference between fields
is due to interpolation from different station networks,
and it is probably impossible to provide an absolute
answer as to which climatology, if any, is superior. It
may well be that for specific applications in certain re-
gions, one climatology is more appropriate than another.
A more robust approach would be to use more than one
climate field that describes the same variable, using the
spread of results to arrive at a qualitative assessment of
the uncertainty associated with the observed climate
data (e.g., Arnell 1995; Pan et al. 1996).

Nonetheless, several features of our new climatology
suggest that it should be widely applicable in climate
and related activities. These include the following:

R it is derived from the largest possible collection of
station normals that are constrained to a specific time
period, namely, 1961–1990;

R it encompasses a suite of nine surface variables, sev-
eral of which have not previously been interpolated
at the global scale;

R we have used a consistent interpolation methodology
that includes specific treatment of elevation as a pre-
dictor variable; and

R we provide regional error estimates and comparisons
with other climatologies so that potential users are
aware of the uncertainties associated with individual
surfaces.

This paper describes the first step in an attempt to
construct a high-resolution terrestrial climate dataset
that describes month-by-month space–time variability
of surface climate from 1901 to the present day. The
normal climatology described here provides the back-
ground fields onto which monthly anomaly fields can
be superimposed to arrive at monthly climate fields. A
subsequent paper (New et al. 1999) will describe con-
struction of the monthly fields and provide an assess-
ment of their accuracy via comparison with other, more
limited, gridded time series.

The data are available from the Climatic Research
Unit and enquiries should be directed to the Climate
Impacts LINK Project, Climatic Research Unit, Uni-
versity of East Anglia, Norwich NR4 7TJ (d.viner@uea.
ac.uk or http://www.cru.uea.ac.uk/;link). Full color
plots of each monthly field can be accessed via the
World Wide Web at http://ipcc-ddc.cru.uea.ac.uk.
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