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ABSTRACT

The Climate Prediction Center (CPC) morphing technique (CMORPH) satellite precipitation estimates are

reprocessed and bias corrected on an 8 km 3 8 km grid over the globe (608S–608N) and in a 30-min temporal

resolution for an 18-yr period from January 1998 to the present to form a climate data record (CDR) of high-

resolution global precipitation analysis. First, the purely satellite-based CMORPH precipitation estimates (raw

CMORPH) are reprocessed. The integration algorithm is fixed and the input level 2 passive microwave (PMW)

retrievals of instantaneous precipitation rates are from identical versions throughout the entire data period. Bias

correction is then performed for the raw CMORPH through probability density function (PDF) matching

against the CPC daily gauge analysis over land and through adjustment against the Global Precipitation Cli-

matology Project (GPCP) pentad merged analysis of precipitation over ocean. The reprocessed, bias-corrected

CMORPH exhibits improved performance in representing the magnitude, spatial distribution patterns, and

temporal variations of precipitation over the global domain from 608S to 608N. Bias in the CMORPH satellite

precipitation estimates is almost completely removed over land during warm seasons (May–September), while

during cold seasons (October–April) CMORPH tends to underestimate the precipitation due to the less-than-

desirable performance of the current-generation PMW retrievals in detecting and quantifying snowfall and cold

season rainfall. An intercomparison study indicated that the reprocessed, bias-corrected CMORPH exhibits

consistently superior performance than the widely used TRMM 3B42 (TMPA) in representing both daily and

3-hourly precipitation over the contiguous United States and other global regions.

1. Introduction

One great achievement of the recent three decades in

the area of geosciences is the construction of global pre-

cipitation products with refined resolution and improved

quality. Virtually the only quantitative global precipitation

datasets available in the early 1990s were the estimated

monthly climatology fields at a 2.58 latitude–longitude

(lat–lon) grid (Jaeger 1976; Legates and Willmott 1990).

Now observation-based precipitation analyses are rou-

tinely produced on a fine time (space) resolution of 30min

(8km 3 8km) over a quasi-global domain. Particularly

noticeable is the development of satellite-based, high-

resolution, long-term precipitation analyses.

At least six such datasets have been developed in re-

cent years to facilitate improved research and applica-

tions in meteorology, hydrometeorology, and hydrology.

Pioneering the efforts in this front, Hsu et al. (1997)

developed a sophisticated system to convert geo-

stationary (GEO) satellite infrared (IR) blackbody tem-

peratures (TBB) into instantaneous rain rate through an
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artificial neural network. A regionally dependent and

temporally evolving TBB–precipitation relationship is

established by training concurrent GEO IR data against

precipitation estimates derived from passive microwave

(PMW) channel measurements from low-Earth-orbiting

(LEO) platforms with a neural network system. This

technique, called Precipitation Estimation from Re-

motely Sensed Information Using Artificial Neural Net-

work (PERSIANN), is further improved by including

additional information on cloud type information

(Hong et al. 2007). A climate data record (CDR) of the

PERSIANN daily precipitation is created through re-

processing the raw estimates for an extended period from

1981 to the present and calibrating the reprocessed sat-

ellite precipitation estimates against the Global Pre-

cipitation Climatology Project (GPCP) merged analysis

of monthly precipitation (Ashouri et al. 2015).

Turk et al. (2003, 2010) and Huffman et al. (2007)

developed algorithms that produce IR-based pre-

cipitation estimates by matching the probability density

function (PDF) of GEO IR TBB with collocated LEO

PMW-derived precipitation intensity and then combin-

ing these IR-based estimates with PMWdata to produce

precipitation maps of fine spatial–temporal resolution.

The algorithm of Turk et al. (2003) has been im-

plemented at the Naval Research Laboratory (NRL)

to generate high-resolution global precipitation esti-

mates on a real-time basis since 2004. The technique of

Huffman et al. (2007), called Tropical Rainfall Mea-

suring Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA), is adopted by the TRMMprogram to

generate level 3 gridded precipitation products, TRMM

3B42 and its real-time version 3B42RT. TRMM

3B42RT is postprocessed with all available inputs and

calibrated against the Global Precipitation Climatology

Centre (GPCC) monthly gauge analysis over land

(Becker et al. 2013; Schneider et al. 2014) to remove

biases in the satellite estimates (Huffman and Bolvin

2014). The TMPA data are generated on a 0.258 lat–lon

grid over the globe (508S–508N) and at a 3-hourly tem-

poral resolution from 1998 to the present.

The CPC morphing technique (CMORPH; Joyce

et al. 2004), meanwhile, takes a very different approach

to take advantage of the high temporal resolution of the

GEO IR observations. Motion vectors of the cloud

systems are first defined from the consecutive GEO IR

images through the cross-correlation technique. Pre-

cipitation analyses are then produced at 30-min intervals

and on an 8km 3 8 km grid over the globe through the

propagation of precipitating cloud clusters observed by

the instantaneous PMW estimates along cloud motion

vectors. A similar Lagrangian approach is adopted

by Ushio et al. (2009), who developed a Kalman

filtering–based method to construct maps of hourly

precipitation on a 0.18 lat–lon grid over the globe.

Latest in the development in this area is the IMERG

high-resolution satellite precipitation estimates as the

United States’ official Global Precipitation Measure-

ment (GPM) mission (Hou et al. 2010) level 3 pre-

cipitation product (Huffman et al. 2011). The

integration framework of the IMERG technique is

based on the Kalman filter version CMORPH (Joyce

and Xie 2011), combined with the intercalibration and

bias-adjustment algorithms fromTMPA (Huffman et al.

2007) and the GEO IR estimation method adopted

from PERSIANN (Hsu et al. 1997). Starting in March

2014, the IMERG 30-min precipitation estimates are

produced on a quasi-real-time basis on a 0.18 lat–lon

grid from 608S to 608N.

Evaluation studies have shown improved performance

of these satellite integration techniques in constructing

precipitation analyses upon individual PMW-based re-

trievals, especially over tropical and subtropical areas (Ebert

et al. 2007). The high-resolution precipitation estimates

created by these algorithms enabled a variety of applica-

tions in weather, climate, and hydrology, including the

examination of diurnal cycle of precipitation over the

globe, forcing land surface models, and real-time global

flooding monitoring (e.g., Cosgrove et al. 2003; Xie et al.

2012; Wu et al. 2012; Meng et al. 2012).

Among the high-resolution global precipitation

datasets mentioned above, CMORPH presents superior

performance in capturing the spatial distribution and

temporal variations over most of the global regions as

verified by relatively high correlations with independent

surface observation data in numerous validation studies

(e.g., Xie et al. 2007; Sapiano and Arkin 2009). Dis-

continuities, however, are observed in the time series

of the operational CMORPH satellite precipitation

estimates (hereafter referred to as version 0.X). Many

changes have occurred to the CMORPH integration

algorithm and the input level 2 satellite retrievals since

the commencement of the operational production of the

CMORPH version 0.X in December 2002. Another

shortcoming of the CMORPH version 0.X is the exis-

tence of biases in the integrated satellite precipitation

estimates passed through from the input PMW retrievals

(Sapiano and Arkin 2009; Habib et al. 2012). Changing

with region, season, surface type, diurnal cycle, and pre-

cipitation intensity, these biases compromise quantitative

applications of the dataset, especially in hydrology, hy-

drometeorology, and air–sea interaction studies (Tian

et al. 2009; Xu et al. 2010;Wu et al. 2012; Tang et al. 2014).

Two objectives of this work are 1) to reprocess the

CMORPH satellite precipitation estimates for the en-

tire TRMM/GPM era from 1998 to the present using a
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fixed version of the integration algorithm and with input

PMW retrievals of identical versions throughout the

data period and 2) to perform bias correction for the raw

integrated CMORPH satellite precipitation estimates

through comparison with gauge data over land and

calibration against the GPCP merged analysis over

ocean. The result of the work is a homogenous CDR of

high-resolution (30min and 8 km 3 8 km) global pre-

cipitation for an extended period from January 1998 to

the present. Sections 2 and 3 provide detailed de-

scriptions of the CMORPH reprocessing and bias

correction procedures, respectively. Section 4 presents

an examination of the reprocessed, bias-corrected

CMORPH against ground observations and an

intercomparison with a similar product (TMPA, version

7/TRMM 3B42). A summary will be given in section 5.

2. The CMORPH algorithm, input data, and

reprocessing

One important requirement for a CDR of satellite-

based, long-term time series of essential climate vari-

ables is the temporal and spatial homogeneity (Bates

and Barkstrom 2006). To satisfy this requirement, the

CMORPH high-resolution global precipitation esti-

mates are reprocessed using a fixed version of the in-

tegration algorithm and with input PMW retrievals of

identical versions throughout the data period.

a. Input satellite data

The purely satellite-based CMORPH precipitation

estimates (the raw CMORPH) are created with inputs

from three categories of spaceborne measurements as

detailed below.

1) LEVEL 2 PMW RETRIEVALS OF PRECIPITATION

RATE

Level 2 retrievals from PMW sensors aboard multiple

LEO satellites are used in this work to construct the

CMORPH integrated satellite estimates. Table 1 lists

satellite PMW sensors whose measurements are used to

derive the level 2 precipitation retrievals served as

inputs to the raw CMORPH. Over ocean, retrievals of

precipitation are derived from PMW emission and

scattering channels taking advantage of the relationship

between surface precipitation and the vertical profile of

liquid water. Over land, scattering channels are used

assuming that concentration of frozen hydrometeors

and large water droplets inside the clouds are associated

with the precipitation rate at surface. The input level 2

PMW retrievals derived from PMW imagers are gen-

erated using the GPROF, version 2004, algorithms

(Kummerow et al. 2001). Precipitation retrievals from

PMW sounders are produced using the Microwave

Surface and Precipitation Products System (MSPPS;

Ferraro et al. 2005).

2) SATELLITE-BASED SNOW/ICE MAPS

Interactive Multisensor Snow and Ice Mapping Sys-

tem (IMS) daily 4-km snow and sea ice cover maps over

the Northern Hemisphere are used in this work to mask

out areas where PMW retrievals of precipitation may be

contaminated by the noise from the snow/ice over the

ground. The IMS snow/ice maps are constructed by

combining information from a variety of sources, in-

cluding the in situ measurements and satellite images of

visible and PMW channels (Armstrong and Brodzik

2002; Helfrich et al. 2007). This dataset is created by

NOAA/National Environmental Satellite, Data, and

Information Service (NESDIS) under the direction of

the NOAA Ice Center (NIC) and updated on a quasi-

real-time basis. No similar snow/ice maps are available

for the Southern Hemisphere for the entire data period

of our CMORPH reprocessing.

3) FULL-RESOLUTION GEO IR DATA

Full-resolution global surface/cloud-top temperature

data of Janowiak et al. (2001) are used to derive cloud

motion vectors as part of the CMORPH processing. The

global array of IR TBB is constructed at NOAA/CPC

through compositing IR window channel measurements

from five geostationary satellites located above the

equator at the Atlantic Ocean, Africa, the Indian

Ocean, the western Pacific Ocean, and the eastern

TABLE 1. PMW sensors whose measurements are used to derive level 2 precipitation retrievals.

PMW sensor LEO platform carrying the sensor

TMI TRMM

Advanced Microwave Scanning Radiometer (AMSR) Aqua

Special Sensor Microwave Imager/Sounder (SSMIS) Defense Meteorological Satellite Program (DMSP) F-16, F-17, and F-18

Special Sensor Microwave Imager (SSM/I) DMSP F-13, F-14, and F-15

Microwave Humidity Sounder (MHS) NOAA-18, NOAA-19, MetOp-A, and MetOp-B

Advanced Microwave Sounding Unit (AMSU) NOAA-15, NOAA-16, and NOAA-17

Microwave Radiation Imager (MWRI) Fengyun-3B (FY-3B)
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Pacific Ocean. The full-resolution IR data are pro-

duced on a 4 km 3 4 km grid over the global domain

(608S–608N) and in a 30-min interval starting on

1 January 1998.

b. The CMORPH integration algorithm

1) PREPROCESSING

The rawCMORPH is constructed through integrating

precipitation information from multiple PMW sensors

aboard LEO satellites (Fig. 1). Preprocessing is first

performed for the level 2 precipitation rate retrievals

from all available PMW sensors (Fig. 1, left). Level 2

retrievals at respective satellite footprints are re-

mapped to a common equal angle global grid system of

8 km 3 8 km at the equator. Calibration is then per-

formed through PDF matching against a common ref-

erence field using temporally–spatially collocated data

pairs. Precipitation retrievals from the TRMM/TRMM

Microwave Imager (TMI) are utilized as the calibrator

here for their high quality and the availability of

temporally–spatially coincident matching samples with

all other PMW sensors. These coincident samples are

made possible by the precessing orbit pattern of the

TRMM satellite (Simpson et al. 1988). Updated once a

month, this PDF calibration table is constructed for

each 108 latitude band and for land and ocean sepa-

rately using collocated data pairs available over the

target month. This calibration ensures input PMW

retrievals from individual sensors present close PDF

characteristics.

Because of the loss of TMImeasurements inApril 2015,

the PDF tables used to perform intercalibration of PMW

level 2 precipitation rate retrievals as described above can

no longer be updated. To continue the intercalibration for

PMW retrievals after April 2015, a set of PDF tables are

established for PMW retrievals from each sensor using

historical data. The climatological PDF tables are con-

structed for each calendar month to account for seasonal

variations, for every 108 latitude band to reflect regional

differences, and for land and ocean separately.

2) COMPOSITING

The remapped and calibrated level 2 PMW pre-

cipitation rate retrievals are then composited into a

single global field of precipitation estimates, called

MWCOMB, at a time (space) resolution of 30min

(8 km 3 8km). When PMW retrievals from multiple

sensors are available over a specific grid box and for a

specific 30-min time slot, only the one with the highest

quality is used to define the MWCOMB. The quality of

PMW retrievals from various sensors is ranked, as

shown in Table 2. This ranking is based on published

studies by other scientists (e.g., Tian et al. 2009) as well

as our own examinations (e.g., Joyce and Xie 2011).

Every time a new version of level 2 precipitation

retrievals is available from a new or existing sensor, a

set of examination procedures is implemented by the

FIG. 1. Flowchart of the raw CMORPH integrated satellite precipitation estimates.
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CMORPH developers at CPC to quantify the error of

the level 2 products through comparison against surface

radar estimates and gauge observations. As shown in

Table 2, PMW imager-equipped satellites consistently

yield higher rankings than PMW sounder satellites.

Quality control is performed for the MWCOMB to

eliminate erroneous and suspicious PMW retrievals

over grid boxes of 8 km 3 8 km where the IMS daily

snow cover maps indicate any contamination of snow or

ice. Figure 2a illustrates an example of the MWCOMB

for the 30-min window starting at 0000 UTC 1

August 2014. While the PMW retrievals are capable

of depicting distribution patterns of instantaneous

precipitation quite well, only a small portion of the

global domain is covered by the PMW orbits for the

30-min window even with as many as eight LEO

satellites.

3) CLOUD MOTION VECTORS

In the meantime, cloud motion vectors are computed

from consecutive GEO IR images in 30-min intervals

(Janowiak et al. 2001) through the cross-correlation

technique (Fig. 1, right). The cross-correlation tech-

nique has been long used for automatic tracking of cloud

motion (Leese et al. 1971). Cloud motion vectors are

calculated for each grid box of 2.58 lat–lon using data

TABLE 2. Quality ranking of PMW precipitation retrievals from various sensors aboard various platforms.

Quality ranking PMW sensor (decreasing quality from top to bottom) LEO platforms (decreasing quality from left to right)

1 TMI TRMM

2 AMSR Aqua

3 MWRI FY-3B

4 SSMIS F-18, F-17, and F-16

5 SSM/I F-15, F-14, and F-13

6 MHS MetOp-B, MetOp-A, NOAA-19, and NOAA-18

7 AMSU NOAA-17, NOAA-16, and NOAA-15

FIG. 2. Samples of global fields of (a) composite calibrated PMW precipitation retrievals (MWCOMB; mmh21),

(b) cloud motion vector, (c) raw CMORPH (mmh21), and (d) bias-corrected CMORPH (mmh21), for the 30-min

time slot beginning at 0000 UTC 1 Aug 2014. In (b), arrows indicate the direction while the color shading represents

the speed (in number of 8 km 3 8 km grid boxes).
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over a 58 lat–lon domain centering at the target grid box.

Spatial pattern correlation is computed between the

GEO IR TBB data array for the target analysis time and

that for the previous time step at a combination of

spatial displacements in both zonal and meridional di-

rections. The spatial displacement with the maximum

correlation is assumed to be caused by the mean

movement of the cloud systems over the region and is

used to define the cloud motion vector at the target grid

point. The cloud motion vectors are adjusted through

comparisons with precipitation propagation derived

from radar precipitation. The cloud motion vector de-

fined on the 2.58 lat–lon grid system is then downscaled

to the MWCOMB resolution of 8 km 3 8 km through

bilinear interpolation. Figure 2b shows an example of

the cloud motion vectors at 0000 UTC 1 August 2014.

Cloudmovements associated with the synoptic weather

systems over both hemispheres are well captured by

our vectors.

4) PROPAGATING AND MORPHING

The PMW precipitation rate retrievals composited in

the MWCOMB are then propagated from their re-

spective observation times to the target analysis time

(Fig. 1, center). The propagation is conducted in both

the forward and backward directions to fully take ad-

vantage of the PMW observations at, before, and after

the target analysis time. The raw CMORPH integrated

satellite precipitation estimation at a grid box of 8 km3

8 km is defined as the weighted mean of the PMW re-

trievals propagated there from the forward and back-

ward directions with the weights inversely proportional

to the temporal length of the propagation.

After the MWCOMB PMW retrievals are propa-

gated and morphed onto an 8km 3 8 km grid and at a

30-min time step, quality control is performed, once

again, using the IMS daily surface snow/ice map of

NESDIS and the full-resolution IR data of Janowiak

et al. (2001) to screen out suspicious precipitation esti-

mates over grid boxes of clear sky or with snow or sea

ice coverage (Fig. 1, top center). In the current version

of the algorithm, no further steps are taken to fill in the

gaps left by the screening process, resulting in in-

complete spatial coverage especially during cold sea-

sons. An IR-based technology is under development as

part of the next-generation CMORPH to provide rea-

sonable precipitation estimates for those situations (Xie

et al. 2016).

5) POSTPROCESSING

Postprocessing (Fig. 1, bottom center) is finally

implemented to create global fields of the raw

CMORPH precipitation estimates at an assortment of

time (space) resolutions, including 30-min (8 km 3

8 km), hourly (0.258 lat–lon), daily from 0000 to 0000

UTC (0.258 lat–lon), and daily from the gauge at the

end of day (0.258 lat–lon). Figure 2c shows an example

of the raw CMORPH at 0000 UTC 1 August 2014.

Propagating and morphing the level 2 precipitation re-

trievals from individual PMW sensors, CMORPH is ca-

pable of producing precipitation estimates on a very high

time (space) resolution [30min (8km 3 8km)] over the

globe from 608S to 608N.

c. Reprocessing of the purely satellite-based

CMORPH

As mentioned in section 1, the CMORPH satellite

precipitation estimates have been generated on a

real-time basis since December 2002 with an evolving

integration algorithm and inputs of varying versions.

As the first step of this work, the raw CMORPH es-

timates have been extended backward in time from

the December 2002 operational initiation to January

1998 and reprocessed from January 2003 to the

present using the most recent PMW precipitation re-

trieval algorithm version from all available low-Earth

orbiters and IR observations from geostationary

platforms.

The input level 2 PMW retrievals of instantaneous

precipitation rates are those generated using GPROF,

version 2004 (Kummerow et al. 2001). Level 2 data

coverages for the PMW sensors aboard various plat-

forms are shown in Fig. 3. While PMW-based pre-

cipitation retrievals are available only from three LEO

platforms over the first 2 years of the data period, the

number of satellites with PMW sensors increases

with time, reaching ;10 for most of the period after

2007. The version of the integration algorithm is the

implementation code operational as of 2009. Joyce

et al. (2004) provide a description of an earlier im-

plementation of the CMORPH algorithm.

The back-extended and reprocessed CMORPH pre-

cipitation estimates (the raw CMORPH) consist of a

homogeneous record of high-resolution precipitation on

an 8km3 8km grid covering the globe from 608S to 608N

and in a 30-min interval covering an 18-yr period from

1998 to the present.

3. CMORPH bias correction

Integrated satellite precipitation estimates, such as

the raw CMORPH, contain bias passed through from

the input level 2 PMW retrievals (Ebert et al. 2007; Tian

et al. 2009). Bias correction needs to be performed to

ensure improved quantitative accuracy. Among the

six sets of integrated satellite precipitation estimates

1622 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Unauthenticated | Downloaded 08/26/22 09:57 AM UTC



discussed in section 1, the TMPA is the first to include

the bias correction procedures. The PMW–IR merged

precipitation estimates in the TMPA are calibrated

against the GPCCmonthly gauge analysis (Becker et al.

2013; Schneider et al. 2014) over land and against the

TMI–Precipitation Radar (PR) combined precipitation

product (TRMM 3B31; Haddad et al. 1997) over the

ocean. This bias correction is adopted by IMERG in

creating GPM official level 3 gridded precipitation

products (Huffman et al. 2011). In constructing the

PERSIANN CDR, the purely satellite-based pre-

cipitation estimates are adjusted to the GPCP merged

analysis of monthly precipitation (Adler et al. 2003) over

both land and ocean (Ashouri et al. 2015). In both the

TMPA and PERSIANN approaches, the ratio of correc-

tion is calculated month by month, leaving the possibility

of discontinuities around the monthly boundaries. Re-

cently, the GSMaP team added a new component to their

global precipitation product suite by correcting the

satellite-based hourly estimates [Global Satellite

Mapping of Precipitation moving vector with Kalman

filter (GSMaP_MVK)] so that its 24-hourly total

matches with the CPC daily gauge analysis (Ushio et al.

2013; Mega et al. 2014).

In this part of the paper, we develop a set of pro-

cedures to remove (reduce) the biases in the raw

CMORPH precipitation estimates. Because of the dif-

ferences in both the characteristics of the CMORPH

biases and the availability of ‘‘ground truth’’ (reference)

datasets, bias correction algorithms are developed sep-

arately for land and ocean.

a. CMORPH bias correction over land

1) RAW CMORPH BIAS OVER LAND

Whilemany studies have been conducted to investigate

the performance of CMORPH and other high-resolution

satellite precipitation estimates in lieu of their capacities

in various applications (e.g., Tian et al. 2009; Yong et al.

2012), the objective of this part of our study is to un-

derstand theCMORPHerror structure for the design and

development of an effective bias-removal procedure.

Toward this goal, we examine the regional, seasonal de-

pendence, time–space scales, and nonlinearity of the raw

CMORPH bias.

CPC gauge-based analysis of daily precipitation (Xie

et al. 2010) is used here as the ground truth to quantify

the error structures of the CMORPH satellite estimates

and, later on, utilized as the reference field in removing

the biases in the raw CMORPH over land. Although

reports of gauge measurements suffer from wind-induced

undercatch, especially for snowfall (Sevruk 1982), and the

gauge station network is not appropriate over many

sparsely populated and/or mountainous regions (Xie et al.

2010), gauge-based analysis of precipitation exhibits much

higher quality than satellite estimates over regions of rea-

sonable station coverage (Xie et al. 2007). Xie and Xiong

(2011) investigated the quantitative accuracy of the CPC

FIG. 3. Availability of level 2 precipitation retrievals derived from measurements of PMW

sensors aboard various LEO satellites from January 1998 to December 2015.
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gauge-based analysis of daily precipitation as a function of

station network density and found that the gauge analysis

bias is negligible and the random error is only a fraction of

that for the CMORPH satellite estimates over a 0.258 lat–

lon grid box with one or more reporting gauges.

Figure 4 shows a comparison of long-term daily mean

precipitation estimates derived from the raw CMORPH

and the CPC gauge-based analysis for the entire data

period from 1998 to 2015. The raw CMORPH (Fig. 4,

middle left) presents mean precipitation of very similar

spatial patterns to that of the CPC gauge analysis (Fig. 4,

top right) over the global land. The centers of heavy

rainfall over equatorial Africa, the Maritime Continent,

and the Amazon associated with the intertropical con-

vection zone (ITCZ) are well captured, together with

the bands of precipitation over coastal regions attrib-

utable to the monsoon circulations, and over mid- and

high-latitude regions of cyclone passage and frontal ac-

tivities. The raw CMORPH, however, overestimates the

precipitation over most of the tropical land areas, while

underreporting the annual mean precipitation over mid-

and high-latitude land areas, as shown in the difference

map between the raw CMORPH and the CPC gauge

(Fig. 4, bottom left).

A quantitative evaluation is carried out for the raw

CMORPHover the contiguousUnited States (CONUS)

through comparison against the high-quality CPC daily

gauge analysis (Fig. 5). To ensure accurate evaluation,

only daily precipitation analysis over a 0.258 lat–lon grid

box with one or more reporting gauges is included in the

bias examination. Averaged over the entire CONUS for

the 18-yr period from 1998 to 2015, the raw CMORPH

shows a distinct annual cycle of bias, over and under-

estimating precipitation over the warm and cold seasons,

respectively (Fig. 5a). The biases in the raw CMORPH,

and other integrated satellite precipitation (e.g., NASA

TMPA) aswell, are attributable to those in the input level

2 PMW retrievals (Xie and Joyce 2014). Previous studies

indicate that the overestimation of warm season pre-

cipitation is mostly caused by overestimation for the

precipitation intensity for precipitating cloud systems,

while the underestimation for the cold seasons are com-

bined effects of undetected precipitation events and un-

dervalued intensity (Tian et al. 2009; Xie and Joyce 2014).

Raw CMORPH bias exhibits year-to-year variations,

as shown in Fig. 5b, caused by interannual variability of

the cloud and precipitation systems and by the changes

in the PMW sensors aboard satellites indicated in Fig. 3.

FIG. 4. The 1998–2015 annual mean precipitation (mmday21) for the (top right) CPC Unified gauge analysis of

daily precipitation, (middle left) the raw CMORPH, (middle right) the bias-corrected CMORPH, (bottom left) the

differences between the raw CMORPH and the CPC gauge, and (bottom right) the differences between the bias-

corrected CMORPH and the CPC gauge.
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Despite their sophisticated models reflecting the re-

lationship between the surface precipitation and the

radiance measurements from multiple PMW channels,

modern-era PMW retrievals still suffer from different

types of biases for different cloud/precipitation systems.

Changes in the weather regimes therefore will yield

biases in the retrieved precipitation. Different PMW

sensors covering different parts of the data period may

also cause differences in the precipitation retrievals due

to the imperfect intercalibration.

The raw CMORPH also shows biases of submonthly

time scales, even for precipitation averaged over the

entire CONUS domain (Fig. 5c). The fluctuations of the

biases are results of variable cloud–precipitation re-

lationships for the individual weather systems. Overall,

the raw CMORPH tends to overestimate weak pre-

cipitation while underreporting strong events, present-

ing nonlinearity in its bias structure as a function of the

target precipitation intensity (Fig. 5d).

In summary, the raw CMORPH bias is regionally

dependent, temporally changing, and is a nonlinear

function of target precipitation intensity.While seasonal

variations are quite significant in the raw CMORPH

biases, with over and underestimation observed for

warm and cold seasons, respectively, the bias also

shows year-to-year variations as well as fluctuations of

submonthly time scales.

2) ALGORITHM TO REMOVE CMORPH BIAS

OVER LAND

Several of the published methods [e.g., Huffman

et al. (2007) for TMPA and Ashouri et al. (2015) for

PERSIANN CDR] apply spatially and temporally vary-

ing coefficients to adjust the raw satellite estimates, im-

plicitly assuming linearity of the satellite estimation bias

relative to the precipitation intensity. In addition, ad-

justment coefficients are computed against a reference

field of monthly precipitation (e.g., GPCC monthly

gauge or GPCP monthly merged analysis), assuming

homogeneity of satellite estimation bias within a month.

In our approach, both the nonlinearity and the sub-

monthly variations of rawCMORPHbias are accounted

for through matching the PDF of the daily raw

CMORPH against that for the CPC daily gauge analysis.

FIG. 5. Comparison of the raw CMORPH against the CPC Unified gauge analysis over CONUS. (a) Daily cli-

matology of raw CMORPH bias averaged over the entire CONUS for the entire data period from 1998 to 2015.

(b) Raw CMORPH monthly mean bias (mmday21) averaged over the entire CONUS for each year from 2004 to

2015. (c) Time series of raw CMORPH daily mean CMORPH averaged over the entire CONUS for 2013. (d) Raw

CMORPH bias, expressed as the ratio between CMORPH and gauge analysis, as a function of precipitation in-

tensity. Only the CMORPH–daily gauge data pairs over 0.258 lat–lon grid boxes where/when gauge reports are

available from at least one station are included in the calculations.
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The PDFmatching technique is capable of removing the

bias in the mean value while ensuring the fidelity of the

frequency distribution for events of various intensities

(Haddad and Rosenfeld 1997; Turk et al. 2003; Wang

and Xie 2007; Huffman et al. 2007; Xie et al. 2014). A

conceptual model developed using the CMORPH and

gauge data over China has demonstrated the feasibility

of the PDF-matching-based bias-removal technique

(Xie and Xiong 2011). The system described below is an

operational realization of the technique to perform bias

correction for the raw CMORPH over the global

land areas.

Figure 6 illustrates the flowchart of the CMORPH

bias correction system. The bias correction over land is

implemented in two consecutive steps. First, bias cor-

rection is performed using PDF tables constructed with

historical data (Fig. 6, top center-right). To account for

the regional changes and seasonal evolution of the raw

CMORPHbias structures, PDF tables are constructed for

each grid box of 0.258 lat–lon and for each calendar day.

Raw CMORPH and CPC daily gauge data are collected

over a 31-day period, centering at the target date over the

entire 15-yr period and over a circular spatial domain of

two grid boxes (0.58 lat–lon) with the radius centered at

the target grid box. The spatial domain is expanded to

achieve at least 500 collocated data pairs with at least 300

cases of raw CMORPH reporting nonzero precipitation.

The collected rawCMORPHand the CPC gauge data are

then sorted separately in descending order and grouped

into 100 equal numbered classes. The adjustment co-

efficient is calculated for each class as the ratio between

the mean value of CPC gauge data and that of the raw

CMORPH averaged over five consecutive classes cen-

tering at the target class. The two threshold numbers of

cases (500/300) are determined empirically to ensure op-

timal balance between the stability and time–space rep-

resentativeness for the resulting bias correction statistics.

The bias correction is conducted through multiplying the

raw CMORPH precipitation estimates with the adjust-

ment coefficient. This first step of the bias correction is

called climatological correction, intended to remove/

reduce the mean bias reflected in the historical data.

The second step (Fig. 6, right), termed here as the real-

time refinement, is designed to account for the year-to-

year variations in the raw CMORPH bias not detected

and removed by the climatological correction. The bias

correction procedure is repeated but with the PDF ta-

bles established using collocated CMORPH and daily

FIG. 6. Flowchart of the CMORPH bias correction procedures.
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gauge data for a 31-day period centered at the target

date. PDF tables are constructed for each 0.258 lat–lon

grid using data over a spatial domain expandable follow-

ing the same criteria rules in the climatological correction.

The result of this two-step bias correction approach is an

array of correction coefficients on a 0.258 lat–lon grid over

the global land computed for daily precipitation.

The PDF bias correction described above is unable

to adjust a zero-value case to a positive precipitation

without additional information. This will cause un-

derestimation in the total precipitation amount in the

PDF-corrected satellite precipitation. A ratio is calcu-

lated between themean of the reference field and that of

the PDF-corrected field and is applied back to the PDF-

corrected fields, with a range limit of 0.95–1.05, to ensure

the accuracy of the overall magnitude in the bias-

corrected CMORPH.

The conceptual model for bias correction as de-

scribed in Xie and Xiong (2011) contains only one step

to perform PDF matching against concurrent gauge

data (real-time correction). In applying the methodol-

ogy to regions of very sparse gauge networks, such as

equatorial Africa, collocated gauge–CMORPH data

pairs need to be collected over a very large region of

different weather regimes. The resulting PDF tables

are therefore unable to accurately represent the

CMORPH bias structure over the target grid box,

causing large errors in the corrected CMORPH. The

climatology correction is based on PDF tables con-

structed using data pairs collected over an extensive

historical period and over a therefore much smaller

spatial domain. Including the climatology correction as

the first step of the bias correction procedure enables

the quantification of CMORPH bias structure with

PDF tables to be much more representative of the

weather/climate conditions.

b. CMORPH bias correction over ocean

No observations are available from gauges or other

in situ platforms over the vast oceanic regions covering

an extended period for use as a reference standard to

remove the biases in the raw CMORPH. The purpose

of this part of the work rather is to adjust the raw

CMORPH against a homogeneous long-term record of

oceanic precipitation so that the adjusted CMORPH is

capable of providing climate information of fine struc-

ture precipitation over the global oceans.

In this study, the GPCP merged analysis of pentad

precipitation (Xie et al. 2003) is used as the reference

field to adjust the raw CMORPH over the ocean. The

GPCP pentad analysis is defined on a 2.58 lat–lon grid

over the globe through calibrating the pentad CPC

MergedAnalysis of Precipitation (CMAP;Xie andArkin

1997) against the GPCP merged analysis of monthly

precipitation, version 2 (Adler et al. 2003). The GPCP

1-degree daily (1DD) dataset (Huffman et al. 2001)

provides a homogeneous long-term record of global

precipitation at a fine space (time) scale [18 (daily)].

However it is not available on a real-time basis and

therefore is not used in this work as the reference standard.

The flowchart of the CMORPH oceanic bias correction

procedures is illustrated in Fig. 6 (top center-left).

The raw CMORPH satellite estimates are first

upscaled from their original resolution (8 km3 8 km and

30min) to 2.58 lat–lon and pentad to match the GPCP

merged analysis. Adjustment coefficient for the raw

CMORPH is first calculated for each pentad time step

and for each 2.58 lat–lon grid box as the ratio between

the mean GPCP and mean raw CMORPH averaged

over a circular region of three grid boxes of 2.58 lat–lon

in radius and for a 19-pentad time period centering at

the target grid box and target analysis time. The ad-

justment coefficient computed for each 2.58 lat–lon grid

box and for each pentad period is then downscaled to

daily and 0.258 lat–lon resolution, assuming no changes

in the coefficient inside the 2.58 lat–lon grid box and

within a pentad time period.

c. Merging and downscaling the adjustment factors

The adjustment coefficients computed for land and

ocean for daily precipitation are then merged into a

combined global field with smooth transition over the

land–sea boundaries. To this end, the adjustment factors

over the coastal grid boxes are first smoothed to reduce

discontinuities (Fig. 6, middle). The smoothing is per-

formed over oceanic grid boxes within the distance of two

0.258 lat–lon grid boxes from any land points.

The global field of 0.258 lat–lon and daily resolution is

then downscaled to create a global array of adjustment

coefficients on an 8km3 8km and 30-min resolution. The

raw CMORPH bias is nonlinear relative to the pre-

cipitation intensity, so the adjustment coefficient for each

of the 48 half-hourly fields in a day is different from that

for the daily mean precipitation, changing with the pre-

cipitation intensity (Xu et al. 2010). Ideally, this non-

linearity should be taken into account in downscaling the

adjustment coefficients computed for daily precipitation

over a 0.258 lat–lon grid box to a finer time–space reso-

lution. A simplified approach is taken in this study to

downscale the adjustment coefficients to 30-min and

8km 3 8km resolution, assuming no changes in the ad-

justment coefficient inside a 0.258 lat–lon and daily box.

Smoothing is then applied crossing the grid box and time

step boundaries. The final bias-corrected CMORPH is

defined by applying this downscaled adjustment co-

efficient to the raw CMORPH.
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d. Verifications of the bias-corrected CMORPH

The bias-corrected CMORPH integrated satellite

global precipitation estimates are generated for an

18-yr period from 1 January 1998 to 31 December

2015. An example of the bias-corrected CMORPH at

0000 UTC 1 August 2014 is illustrated in Fig. 2d. The

spatial patterns of the bias-corrected CMORPH are

almost exactly the same as those for the raw CMORPH

(Fig. 2c), while differences of various magnitudes are

observed, especially over mid- and high-latitude

oceans. No discontinuities are visible across the

land–sea boundaries. To demonstrate the effective-

ness of the bias correction procedures described in the

previous subsections, the raw and bias-corrected

CMORPH satellite precipitation estimates are com-

pared against ground observations and the GPCP

merged analysis.

1) EFFECTIVENESS OF THE BIAS CORRECTION

OVER LAND

The raw and bias-corrected CMORPH satellite pre-

cipitation estimates are compared against the CPC daily

gauge analysis to quantify their performance over land.

Although the CPC daily gauge analysis is used to cal-

ibrate the CMORPH and therefore is not fully in-

dependent of the bias-corrected CMORPH, the

manner in which the PDF tables are constructed,

however, greatly lowered the dependence of the bias-

corrected CMORPH at a grid box on the gauge data

over that same location. A simple examination with

data over a limited area (China) showed little differ-

ence between performance statistics achieved

through a direct comparison with this partially de-

pendent gauge data and those computed through a

complete cross validation with totally independent

gauge data (not shown). Considering the magnitude of

work involved in performing a full cross validation

similar to the one described in Xie et al. (2007), here in

this study, we examine the effectiveness of the bias

correction through simple comparison against the CPC

gauge data.

Figure 4 (right) presents a comparison of the 1998–

2015 mean annual precipitation derived from the bias-

corrected CMORPH against that for the CPC daily

gauge analysis (Fig. 4, top right). Bias in the raw

CMORPH over land, as shown in Fig. 4 (left), is greatly

removed over most land areas with reasonable gauge

coverage (Fig. 4, bottom right). Negative bias remains,

with reduced magnitude, over middle and high latitudes

over the Northern Hemisphere. This is caused by poor

capacity of the input PMW retrievals in detecting

snowfall and cold season rainfall, which will be discussed

in more detail later in this subsection. The relatively

large ‘‘bias’’ that appeared over equatorial Africa and

along the western coast of South America is actually the

result of the poor quality of gauge analysis. The distance

between two nearby gauges may be 500km or farther

over equatorial Africa, while over South America, the

sparse station networks often miss precipitation along

the western slope of the Andes mountain range. The

differences showing in those regions therefore are

largely not the bias in the CMORPH. A simple com-

parison of the bias-corrected CMORPH with the gauge

data over locations with reporting stations over the two

regions, however, showed very close agreement (not

shown).

To examine the effectiveness of the various algo-

rithm components, two intermediate results of the

bias correction procedures are used: CMORPH after

adjustments with the climatology correction and

CMORPH after the bias correction refinement with

real-time data. Figures 7 (top and bottom) show the

correlation and the bias between the CMORPH satel-

lite estimates and the CPC daily gauge analysis as a

function of season, respectively, while Fig. 8 presents

time series of the two comparison statistics for the en-

tire data period from 1998 to 2015. In both figures,

comparisons are made for daily precipitation over the

entire global land from 608S to 608N. Only data over a

0.258 lat–lon box with one or more reporting gauges

are included in the calculations to ensure reliable

examinations.

The PDF matching technique described in section 3a

succeeded in removing the bias in the raw CMORPH

over the land areas during the warm season (Fig. 7).

While the climatological correction (red lines) sub-

stantially reduced the biases for all seasons, applying

real-time refinement (green lines) further improved

the performance of the bias-corrected CMORPH.

Downscaling and smoothing the adjustment factor

from daily and 0.258 lat–lon to 30min and 8 km 3 8 km

enabled the bias correction at CMORPH’s native res-

olution but resulted in a slight degradation in perfor-

mance (blue lines). Overall, the bias is removed almost

completely and the pattern correlation is increased by

;0.1 over warm seasons. Over cold seasons, bias re-

mains, although its magnitude is reduced substantially.

The imperfect performance of the bias correction

procedure is caused by the limited detection capability

of the input level 2 retrievals for cold season pre-

cipitation (Xie and Joyce 2014). The PDF technique is

unable to raise a zero-value retrieval to a nonzero es-

timation. Key to the improvement of cold season pre-

cipitation estimates is the development and production

of snowfall rate and cold season rainfall retrievals such
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as those of Wang et al. (2009, 2011) and Meng

et al. (2011).

Performance of the CMORPH satellite precipitation

estimates improves with time as the number of the LEO

platforms with PMW sensors increases, especially dur-

ing the earlier half of the data period (Fig. 8). The cor-

relation is;0.50 and 0.55 for the raw and bias-corrected

CMORPH during 1998–99, respectively, when PMW

retrievals are available fromonly three LEO satellites. It

reaches;0.60 and 0.65 for period after 2006 when there

are eight or more LEO platforms, as indicated in Fig. 3.

As already clearly shown in Fig. 7, the bias in the raw

CMORPH is removed almost completely over the warm

seasons, while it is reduced substantially (Fig. 8, bottom)

over cold seasons.

2) EFFECTIVENESS OF THE ADJUSTMENT OVER

OCEAN

Over global oceans, the raw CMORPH is calibrated

against the pentad GPCP analysis to ensure long-term

homogeneity. To examine the performance of this ad-

justment, the calibratedCMORPH, created following the

procedures described in section 3b, is upscaled from the

CMORPH native resolution of 30min and 8km 3 8km

FIG. 7. (top) Correlation and (bottom) bias (mmday21) of the CMORPH precipitation es-

timates as a function of season. The two performance statistics are calculated through com-

parison against CPC Unified gauge analysis of daily precipitation on a 0.258 lat–lon grid over

the global land for a 17-yr period from 1998 to 2015. Results for the raw, climatologically

corrected, real-time enhanced, and bias-corrected–downscaled CMORPH are shown in black,

red, green, and blue lines, respectively. Only gauge–CMORPH data pairs over 0.258 lat–lon

grid boxes where/when reports are available from one or more stations are included in the

calculations.
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to a pentad and 2.58 lat–lon and compared against the

pentad GPCP for the entire 18-yr period from 1998 to

2015. While the raw CMORPH (Fig. 9, middle left)

exhibits very similar spatial patterns of long-term mean

precipitation with the pentad GPCP analysis (Fig. 9, top

right), it is wetter/drier than the GPCP merged analysis

over tropical/high-latitude oceans (Fig. 9, bottom left).

After the adjustment, CMORPH presents very close

agreements with the pentad GPCP in both the distri-

bution patterns and the precipitationmagnitude (Figs. 9,

middle right and bottom right). Underestimation of very

small magnitude remains over high-latitude oceans close

to the very northern and southern edges of the domain

(Fig. 9, bottom right). This is due to the upper limit set for

the adjustment factors (2.0) for pentad accumulation

over a 2.58 lat–lon grid box to avoid unrealistic pre-

cipitation fields. Examinations of the CMORPH against

independent in situ observations will be presented in the

next section as part of the evaluation and intercomparison.

4. Evaluation and intercomparison

The reprocessed, bias-corrected CMORPH is evalu-

ated against several high-quality ground truth datasets

of surface precipitation and intercompared with a simi-

lar long-term time series of global high-resolution

precipitation: TRMM 3B42 (TMPA), version 7. The

primary objective of this part of the work is to quantify

the performance of the bias-corrected CMORPH in

depicting precipitation and its variations at various

time–space scales.

a. Comparison with CPC daily gauge analysis over

the global land

First, the CMORPHandTMPA satellite precipitation

estimates are compared against the CPC daily gauge

analysis to examine the performance of the two satellite

products in representing precipitation and its variations

over the global land. The comparisons are conducted

using data over 0.258 lat–lon grid boxes when/where

both the CMORPH and TMPA are available and the

CPC gauge analysis is created with reports from at least

one station inside the target grid box. Figure 10 shows

the time series of the pattern correlation (Fig. 10, top)

and bias (mmday21; Fig. 10, bottom) for the two satel-

lite products computed using data over the global land

areas from 508S to 508N. The bias-corrected CMORPH

exhibits consistently better pattern correlation through-

out the data period from 1998 to 2015, indicating superior

capability of CMORPH in depicting the spatial distribu-

tion patterns of daily precipitation. For both CMORPH

and TMPA, correlation improves with time for the early

part of the period when the number of LEO satellites

carrying PMW sensors increases from three to seven. The

correlation becomes stable from 2006when there aremore

than seven satellites.

The bias-corrected CMORPH satellite precipitation

estimates present an annual cycle in the bias against the

FIG. 8. As in Fig. 7, but for time series of the performance statistics. Correlation and bias are

calculated for each month, from January 1998 to December 2015, using daily gauge and

CMORPH data over 0.258 lat–lon grid boxes over the entire global land where/when reports

are available from one or more stations are included in the calculations.
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CPC gauge analysis, with minimum bias over the warm

seasons and negative bias during cold seasons (black line

in Fig. 11, bottom). As discussed in the previous section,

this cold season underestimation in the CMORPH can

be traced back to the detection deficiencies in the input

level 2 PMW precipitation retrievals. The current gen-

eration PMW retrievals present poor skills in detecting

and quantifying cold season precipitation, especially the

snowfall. No annual cycle in the bias is observed for the

TMPA, thanks to a procedure to force the monthly total

precipitation to match the GPCC gauge analysis over

land (Huffman andBolvin 2014). The TMPAbias against

the CPC daily gauge analysis, however, shows a slightly

declining trend throughout the data period (red line in

Fig. 10, bottom). A preliminary examination suggested

that this negative trend in the TMPA bias against the

CPC gauge analysis is caused by the differences in the

GPCCmonthly gauge and the CPC daily gauge analyses.

More examinations are needed to explore the causes of

this difference between the two gauge analyses.

No significant seasonal variations are observed in the

pattern correlation between CMORPH/TMPA and

gauge analysis when data over the entire global land are

used in the calculation (Fig. 11, top). This is largely due

to the inclusion of data from both the Southern and

Northern Hemispheres. Overall, the correlation for

CMORPH is ;0.05 higher than that for the TMPA.

The TMPA shows a consistent slight overestimation

(;0.2mmday21) compared to the CPC daily gauge

analysis throughout the annual cycle. CMORPH, how-

ever, tends to underestimate the precipitation during

boreal winter, a reflection of less-than-desirable perfor-

mance of CMORPH in picking up cold season pre-

cipitation over the Northern Hemisphere.

b. Comparison with NCEP stage IV radar

precipitation estimates over CONUS

The National Centers for Environmental Prediction

(NCEP) stage IV radar precipitation estimates provide a

high-quality reference standard for precipitation esti-

mates over CONUS (Nelson et al. 2016). Regional an-

alyses of hourly and 6-hourly precipitation are first

constructed at the 12 National Weather Service (NWS)

River Forecast Centers (RFC) over the CONUS

through blending information from the radar estimates

and gauge measurements with the Multisensor Pre-

cipitation Analysis (MPE) technique (Seo and

Breidenbach 2002). These regional analyses are then

FIG. 9. The 1998–2015 annual mean precipitation (mmday21) for (top right) the GPCP pentad merged analysis,

(middle left) the raw CMORPH, (middle right) the bias-corrected CMORPH, (bottom left) the differences be-

tween the raw CMORPH and the pentad GPCP, and (bottom right) the differences between the bias-corrected

CMORPH and the pentad GPCP.
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mosaicked into a national product at the NCEP Envi-

ronmental Modeling Center (EMC) on a quasi-real-time

basis (Lin and Mitchell 2005; Nelson et al. 2016).

While CMORPH generates 30-min mean pre-

cipitation over an 8 km 3 8km grid box, time (space)

resolution for TMPA is 3 hourly (0.258 lat–lon). In ad-

dition, the 3-hourly period for the TMPA precipitation

estimates are centered at the eight synoptic hours so that

the 3-hourly block stamped at 1200 UTC covers a

180-min period from 1030 to 1330 UTC. To ensure fair

comparisons, 3-hourly CMORPH is assembled from the

original 30-min CMORPH data following the TMPA

definition of the time periods. Daily precipitation esti-

mates are then computed from the 3-hourly data for

CMORPH and TMPA, respectively.

The stage IV radar analysis of hourly precipitation,

originally constructed on a 4km 3 4km grid, is post-

processed into an equal angle grid system of 0.258 lat–lon

resolution to match the spatial resolution of TMPA.

Since the stage IV hourly data are for a 60-min period

ending at each hour, 3-hourly mean stage IV pre-

cipitationmatching the TMPAdefinition is calculated as

the weighted mean of four hourly values covering the

target period, with the hourly data for the first and

fourth hours receiving half of the weight as those for the

two hours in the middle. For example, 3-hourly mean

stage IV precipitation at 1200UTC is the weightedmean

of hourly values at 1000, 1100, 1200, and 1300 UTC, with

weights of 0.5, 1.0, 1.0, and 0.5, respectively.

The CMORPH and TMPA satellite precipitation es-

timates are first validated against the stage IV radar data

for all months throughout a 14-yr period from 2002 to

2015 (Fig. 12). As of July 2016, no stage IV data are

available for periods before 2002. Correlation between

the CMORPH/TMPA satellite estimates and stage IV

radar data is quite low (,0.3) for both the daily and

3-hourly precipitation over themountainous regionswest

of 1108W (Figs. 12, top and middle), while the magnitude

of the radar precipitation is substantially lower than

satellite data over the same region (Fig. 12, bottom).

This poor agreement between the radar and satellite

precipitation data is attributable mostly to the less-than-

desirable quality of the stage IV radar data in detecting

precipitation over the region caused by mountain

blockage and radar beam overshooting.

East of 1108W, serial correlation between the

CMORPH/TMPA and radar data is quite high for both

the daily (Fig. 12, top) and the 3-hourly precipitation

(Fig. 12, middle). Bias-corrected CMORPH exhibits

consistently higher correlation with the radar observa-

tions over most of the central and eastern CONUS, in-

dicating superior performance in capturing the temporal

FIG. 10. Time series of the (top) correlation and (bottom) bias (mmday21) for the bias-

corrected CMORPH (black) and TMPA, version 7 (red), over the entire data period from

January 1998 to December 2015. The statistics are calculated for daily precipitation over

a 0.258 lat–lon grid box through comparison against CPC Unified gauge analysis of daily pre-

cipitation over the global land (508S–508N).Only daily precipitation data over 0.258 lat–lon grid

boxes where/when at least one reporting gauge is available are used to ensure reasonable

quality of the gauge analysis.

1632 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Unauthenticated | Downloaded 08/26/22 09:57 AM UTC



variations of precipitation at daily and subdaily time

scales. Maximum correlation for CMORPH daily and

3-hourly precipitation estimates reaches.0.85 and.0.75

over central CONUS near the Gulf of Mexico coasts,

respectively. The annualmean precipitation derived from

TMPA shows a slight overestimation against the stage IV

radar data over most of the central and eastern CONUS

(Fig. 12, bottom right), a reflection thatTMPA is adjusted

by the GPCC monthly gauge analysis that is slightly dif-

ferent from the stage IV radar data. The 2002–15 annual

mean precipitation from CMORPH, however, exhibits a

spatially consistent underestimation over the northern

portion of the domain (Fig. 12, bottom left). As discussed

in the previous subsection, this is caused by the poor

detection of the input level 2 PMWretrievals and thereby

the CMORPH integrated estimates in capturing cold

season precipitation, especially snowfall. As illustrated in

Fig. 13, during the warm season [June–August (JJA)],

both CMORPH and TMPA present improved perfor-

mance with higher correlation and much smaller biases

over most of the CONUS east of 1108W.

Performance of the bias-corrected CMORPH and

TMPA over the CONUS east of 1108W is quite stable

over the evaluation period from 2002 to 2015, although

correlations for periods before 2007 are slightly lower

than those for the period afterward, attributable to

the difference in the number of PMW-equipped

LEO satellites in operation (Fig. 14). Here again, the

FIG. 11. Performance of the bias-corrected CMORPH (black) and TMPA, version 7 (red), in

representing daily precipitation over a 0.258 lat–lon grid box over the global land as a function

of season. (top) Correlation and (bottom) bias (mmday21) are calculated for each month

through comparison against collocated CPCUnified gauge analysis of daily precipitation using

data over the global land (508S–508N) for the entire data period from 1998 to 2015.
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FIG. 12. Comparison statistics for the (left) CMORPH and (right) TMPA, version 7, precipitation estimates

against the NCEP stage IV radar estimates. The statistics are computed for each grid box of 0.258 lat–lon grid over

the CONUS using data for all 12months over the entire data period from 1 Jan 2002 to 31Dec 2015. Correlation for

daily precipitation, 3-hourly precipitation, and bias (mmday21) are shown in the (top), (middle), and (bottom),

respectively.
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bias-corrected CMORPH exhibits a consistently higher

pattern of correlation for both daily and 3-hourly pre-

cipitation, indicating a relatively superior capacity of the

CMORPH in capturing the spatial patterns of pre-

cipitation over the region. A drop in correlation is

observed around the end of 2002 and beginning of 2003

for both CMORPH and TMPA. Preliminary inspections

showed that this is caused by suspicious radar pre-

cipitation around the western boundary (;1108W) over

the evaluation domain.

FIG. 13. As in Fig. 12, but for statistics computed using data for JJA from 2002 to 2015.
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CMORPH presents an annual cycle of bias for pre-

cipitation estimates averaged over the entire evalua-

tion domain, with an underestimation observed over

winters as discussed before (Fig. 14, bottom). No sig-

nificant bias is observed for TMPA over the CONUS

for years after 2006. Overestimates, however, are visi-

ble for TMPA during cold seasons before 2005. In ad-

dition, the TMPA shows a negative trend in its bias

against the stage IV radar data over the examination

period from 2002 to 2015. Since the stage IV radar pre-

cipitation data are calibrated against the SYNOP gauge

measurements used as part of the inputs to construct the

CPC daily gauge analysis, this declining trend should be

also caused by the systematic differences between the

GPCC monthly gauge and the daily gauge data as dis-

cussed in section 4a.

Table 3 lists comparison statistics computed for the

bias-corrected CMORPH and TMPA precipitation

estimates at 0.258 lat–lon grid resolution over the

CONUS east of 1108W and for the entire evaluation

period from 2002 to 2015. CMORPH presents higher

correlation than the TMPA for both daily and 3-hourly

precipitation. Correlation coefficients for CMORPH are

0.761 and 0.671 for daily and 3-hourly precipitation, re-

spectively, while they are 0.715 and 0.566 for TMPA.

Since CMORPH is constructed on a 30-min temporal

resolution, hourly CMORPH is created and compared

against the stage IV radar data. A quite high correlation

of 0.580 is achieved for the CMORPH hourly pre-

cipitation estimates, demonstrating good skill of the

CMORPH data in resolving variations of subdaily time

scales such as the evolution of mesoscale systems and the

diurnal cycle. Both the CMORPH and the TMPApossess

relatively small biases of less than 10% against the stage

IV radar data.

c. Comparison with in situ measurements from

moored buoys over tropical oceans

Evaluation of high-resolution satellite precipitation

products over ocean has been a challenging task because

of the lack of appropriate surface observations used as

the ground truth. While rainfall observations made by

gauges at atolls and small islands (Morrissey et al. 1995)

have been widely used to quantify the performance of

satellite precipitation products of climate scale (e.g., Xie

and Arkin 1995), their representativeness for pre-

cipitation of higher temporal–spatial scales over nearby

open-ocean grid boxes is greatly compromised. Radar-

based observations, like those produced by the ground

validation components of the TRMM and GPM mis-

sions (Wolff et al. 2005), provide reliable precipitation

estimation over a relatively broad spatial domain

FIG. 14. Comparison statistics of the CMORPH (black) and TMPA, version 7 (red), pre-

cipitation estimates against the NCEP stage IV radar precipitation estimates. The statistics are

computed as a function of time using data at 0.258 lat–lon grid boxes over the CONUS east of

1108W. Correlation for (top) daily precipitation, (middle) 3-hourly precipitation, and (bottom)

bias (%; relative to the radar precipitation) are shown.
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(;150 km in diameter) over ocean, but they are avail-

able only for short periods.

In this study, we take advantage of the rainfall mea-

surements made from moored ocean buoys to examine

the performance of the CMORPH and TMPA satellite

precipitation products over tropical oceans. The buoy-

measured precipitation data used here include those

from the Tropical Atmosphere Ocean (TAO)/Triangle

Trans-Ocean BuoyNetwork (TRITON) over the Pacific

(McPhaden et al. 1998), the Prediction and Research

Moored Array in the Tropical Atlantic (PIRATA) over

the Atlantic (Bourles et al. 2008), and the Research

Moored Array for African–Asian–Australian Monsoon

Analysis and Prediction (RAMA) over the IndianOcean

(McPhaden et al. 2009). Reports of buoy measurements

are collected and processed at the TAO Project Office at

NOAA Pacific Marine Environmental Laboratory

(PMEL) and released to general public.

Although buoy measurements of tropical oceanic

rainfall are also available at finer temporal resolutions,

only daily total precipitation data are used to ensure the

best possible quality. Completed in 1994, TAO/TRITON

provides precipitation reports from ;40 buoys, covering

the equatorial Pacific across the entire basin. The number

of PIRATA buoys with rainfall measurements, mean-

while, increased from ;8 for the earlier period before

2005 to;14 for later years, reflecting an enhancement to

the network in 2005. Newest in the global moored buoy

network family, RAMA started operations in late 2004,

achieving rainfall measurements from 12 to 18 sites for

late years.

Since all of these buoys are moored at locations on

the edges of the 0.258 lat–lon grid boxes of the

CMORPH and TMPA satellite estimates, daily mean

satellite precipitation over a 0.58 lat–lon grid box

centering at the buoy locations is calculated and

compared against the corresponding buoy measure-

ments. A summary of the comparison statistics is given

in Table 4. Both CMORPH and TMPA present very

good skills in estimating daily precipitation and its

variations over the tropical oceans, with CMORPH

presenting slightly better performance statistics than

TMPA. The overall bias is 4.4% for CMORPH and

16.7% for TMPA, while the correlation ranges from

0.583 to 0.684 for the CMORPH and from 0.564 to

0.669 for the TMPA. Here again, the bias-corrected

CMORPH outperforms TMPA in representing the

temporal–spatial variations of precipitation over the

tropical oceans.

Relatively sparsely distributed buoy networks make it

difficult to examine the regional dependence of the

satellite precipitation performance. Instead, we calcu-

lated the serial correlation between CMORPH/TMPA

and the buoy rainfall for each buoy location and exam-

ined the correlation variations as a function of the mean

rainfall intensity measured by buoys (Fig. 15). Only re-

sults for buoy locations with 1000 or more days of col-

located satellite–buoy data pairs are displayed to avoid

fluctuations in the statistics caused by insufficient data.

Correlation between satellite estimates and buoy mea-

surements is quite stable, around 0.6–0.7, for locations

with heavy rainfall, suggesting stable performance of

CMORPH and TMPA in their capability to capture and

quantify strong convective precipitation over tropical

oceans. The spread in correlation, however, is quite

large, ranging from 0.3 to higher than 0.8, for locations of

light rainfall. Locations of light rainfall are associated

with cloud systems of smaller spatial extension and

shorter life span. The wide spread in the correlation is

likely attributable to the combined effects of 1) less-

than-excellent performance for the satellite retrieval

algorithms to estimate instantaneous rain rates of weak

intensity (Xu et al. 2015) and for the integration tech-

niques to capture the evolution of a cloud system of

shorter life span and 2) large error of the point mea-

surements at buoy locations to represent mean pre-

cipitation over a 0.58 lat–lon grid box.

TABLE 3. Comparison statistics of the CMORPH/TMPA satel-

lite precipitation estimates against the NOAA/NCEP stage IV

radar precipitation over the CONUS east of 1158W.

Technique Statistics

Daily 0.258

lat–lon

3-hourly 0.258

lat–lon

Hourly 0.258

lat–lon

CMORPH Correlation 0.761 0.671 0.580

Bias (%) 26.0 25.2 23.8

TMPA Correlation 0.715 0.566 —

Bias (%) 8.1 6.5 —

TABLE 4. Comparison statistics of the CMORPH/TMPA daily precipitation against buoy measurements from the TAO/TRITON,

RAMA, and PIRATA networks.

Technique Statistics TAO/TRITON (Pacific) RAMA (Indian) PIRATA (Atlantic) All

CMORPH Correlation 0.684 0.583 0.642 0.653

Bias (%) 5.1 12.7 26.6 4.4

TMPA Correlation 0.669 0.564 0.637 0.640

Bias (%) 16.6 26.0 7.4 16.7
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5. Summary and conclusions

The CMORPH global high-resolution satellite

precipitation estimates have been reprocessed and

bias-corrected on an 8km 3 8km grid over the globe

(608S–608N) for an 18-yr period from January 1998 to the

present. First, the purely satellite-based CMORPH

precipitation estimates have been reprocessed using a

fixed version of the integration algorithm and with input

from level 2 PMW retrievals of identical versions

throughout the entire data period. The CMORPH in-

tegration technique used here is the version 1 algorithm

described in Joyce et al. (2004), implementation as of

2009. The level 2 PMW retrievals are produced with

GPROF, version 2004.

Bias correction is performed for the raw CMORPH

through calibration against the CPC daily gauge analysis

over land and against the GPCP pentad merged analysis

of precipitation over ocean. The calibration over land is

conducted by matching the PDF of the raw CMORPH

satellite estimates against that of the temporally/spatially

collocated CPC gauge analysis. The adjustment to the

pentad GPCP analysis over ocean is carried out by ap-

plying correction coefficients defined as the ratio between

the mean GPCP and mean raw CMORPH calculated

locally and updated for each pentad.

The reprocessed, bias-corrected CMORPH exhibits

improved performance in representing the magnitude,

spatial distribution patterns, and temporal variations of

precipitation over the global domain from 608S to 608N.

Bias in the CMORPH satellite precipitation estimates is

almost removed over land during the warm season, while

during cold seasonsCMORPH tends to underestimate the

precipitation because of the less-than-desirable perfor-

mance of the current-generation PMW retrievals in de-

tecting and quantifying frozen precipitation and cold

season rainfall.

An intercomparison study showed that the reproc-

essed, bias-corrected CMORPH exhibits consistently

superior performance over the widely used TRMM

3B42 (TMPA) in representing the spatial–temporal

variations for both the daily and 3-hourly precipitation

over CONUS and other global regions. In particular,

CMORPH is capable of capturing and quantifying

subdaily variations of warm season precipitation, al-

lowing potential applications of the satellite-based

dataset in examining diurnal cycles and their represen-

tations in numerical models.

A major shortcoming of the current version of

CMORPH is its less-than-desirable performance in

detecting snowfall and cold season rainfall, causing a

negative bias in the CMORPH over mid- and high-

latitude land regions over cold seasons. Future im-

provements are expected, with the next version of

CMORPH (Xie and Joyce 2014) to take in retrievals of

snowfall rate such as those of Meng et al. (2011).

The bias-corrected CMORPH (called CMORPH,

version 1.0, CRT) is updated on a quasi-real-time basis at

NOAA/CPC. The data files are available through FTP

(ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT). Work

FIG. 15. Correlation between the CMORPH/TMPA satellite estimates of daily precipitation and buoy mea-

surements from the TAO/TRITON, RAMA, and PIRATA networks, plotted as a function of mean buoy rainfall

intensity. (left) CMORPH and (right) TMPA satellite precipitation rates are averaged over a 0.58 lat–lon grid box

centering at buoy locations before they are compared with the buoy rainfall.
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is underway to convert the bias-corrected CMORPH

described in this paper into a CDR following required

technical standards.

A global precipitation dataset created using a fixed

version of integration algorithm and identical versions

of inputs provides a homogeneous long-term record for

climate applications. In the meantime, it is equally im-

portant that products of refined quality are developed by

taking advantage of advanced technology and newly

available satellite measurements. In particular, efforts

are being made to improve the precipitation estimates

using measurements from GPM (Huffman et al. 2011)

and to expand the spatial coverage to polar regions (Xie

and Joyce 2014).

Work is also underway to further combine the bias-

corrected CMORPH with the CPC daily gauge analysis

with a blending algorithm proposed by Xie and Xiong

(2011). The gauge–CMORPH blended analysis will

provide an analyzed field of daily precipitation over a

0.258 lat–lon grid resolution over the entire global land,

with refined quantitative accuracy taking advantage of

the strength of both the gauge measurements and sat-

ellite observations.
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