
Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 201 –

Reproducibility Analysis of Scientific

Workflows

Anna Bánáti
3
, Péter Kacsuk

1,2
, Miklós Kozlovszky

1,3

1
MTA SZTAKI, H-1518 Budapest, Pf. 63., Hungary

2
University of Westminster, 115 New Cavendish Street, London W1W 6UW

3
Óbuda University, John von Neumann Faculty of Informatics, Bécsi út 96/b, H-

1034 Budapest, Hungary

peter.kacsuk@sztaki.mta.hu, {banati.anna,kozlovszky.miklos}@nik.uni-

obuda.hu)

Abstract: Scientific workflows are efficient tools for specifying and automating compute

and data intensive in-silico experiments. An important challenge related to their usage is

their reproducibility. In order to make it reproducible, many factors have to be investigated

which can influence and even prevent this process: the missing descriptions and samples;

the missing provenance data about the environmental parameters and the data

dependencies; the dependencies of executions which are based on special hardware,

changing or volatile third party services or random generated values. Some of these factors

(called dependencies) can be eliminated by careful design or by huge resource usage but

most of them cannot be bypassed. Our investigation deals with the critical dependencies of

execution. In this paper we set up a mathematical model to evaluate the results of the

workflow in addition we provide a mechanism to make the workflow reproducible based on

provenance data and statistical tools.

Keywords: scientific workflows; reproducibility; analytical model; provenance; evaluation;

gUSE

1 Introduction

In large computational challenges scientific workflows have emerged as a widely

accepted solution for performing in-silico experiments. In general, these in-silico

experiments consist of series of particularly data and compute intensive jobs and

in most cases their executions require parallel and distributed infrastructure

(supercomputers, grids, clusters, clouds). The complexity of workflows and the

continuously changing nature of the environment make it hard or even prevent to

reproduce or share the results in the scientist’s community. The different users for

different purposes may be interested in reproducing the scientific workflow

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 202 –

(SWf). The scientists have to prove its results, other scientists would like to reuse

the results and reviewers intend to verify the correctness of the results [13]. A

reproducible workflows can be shared in repositories and can become useful

building blocks that can be reused, combined or modified for developing new

experiments. The workflows have to be reproducible in order to be shared or

reused. Unfortunately experiences have showed that many workflows failed on

occasion of a later re-execution. Zhao et al. [23] [11] investigated the main

purposes of the so-called workflow decay, which means that year by year the

ability and success of the re-execution of any workflow significantly reduces.

They found four main causes which have prevented the re-execution: 1. the

missing environmental parameters, 2. missing third party resources; 3. missing

descriptions about the workflows; 4. the missing samples of the experiments or the

inputs and outputs of the workflows.

By incorporating these results into our previous paper [2] we have deeply

investigated the requirements of the reproducibility and we have given a

taxonomy of the different dependencies of the execution which can interfere with

a later re-execution. To sum up our conclusions, in order to reproduce an in-silico

experiment the scientist community and the system developers have to face three

important challenges:

1) More and more meta-data has to be collected and stored pertaining to the

infrastructure, the environment, the data dependencies and the partial results

of an execution in order to make us capable of reconstructing the execution

in a later time even on a different infrastructure. The collected data – called

provenance data – help to store the actual parameters of the environments,

the partial and final data results and system variables. Concerning the

provenance, the challenge is what, where and how to store the captured

information.

2) Descriptions and samples have to be stored together with the workflows

which are provided by the user (scientist).

3) Some services or input data can change or become unavailable during the

years. For example, third party services, special local services or

continuously changing databases. Scientific workflows which are established

on them can become instable and non-reproducible. In addition there are

computations based on random generated values (for example, in case of

image processing) thus, their executions are not deterministic so these

computations cannot be repeated to provide the same result in a later time.

These factors – we call dependencies of the execution - can especially

influence the reproducibility of the scientific workflows, consequently, we

have performed a deeper analysis.

The first issue can be solved by capturing detailed provenance information. The

second one is the responsibility of the user (scientist), however, the scientific

workflow management systems (SWfMS) can and should support the scientist to

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 203 –

provide detailed descriptions and samples. We have dealt with this issue in one of

our previous paper [1].

In this paper I deal with the third issue. Based on a provenance database we

introduce a so-called descriptor-space referred to the jobs of the workflow which

contains all the parameters required to reproduce the jobs. The elements of the

descriptor-space we call descriptors. Every descriptor has a name, a value and a

so-called decay-parameter which refer to the fluctuation of the descriptor value. A

workflow can be reproducible if all the descriptor values are known and storable.

However, there are descriptors which cannot be stored (for example too big input),

can become unavailable in later time (for example volatile third party resources),

can vary in time (for example input originated from continuously changing

database). Additionally, the descriptors can be either unknown if they are based on

random generated values or other operation-related system-calls. In this case, the

full reproducibility is very challenging task.

By our research, we intend to make the scientific workflow reproducible by

extending the scientific workflow management system (SWfMS) with an analyzer

tool. With the help of the expressions of the descriptors and the decay-parameters

we can perform a pre-analysis before the execution. During this phase, we can

examine the jobs of a given workflow and determine whether they are

reproducible or not. If not, we determine the tools and the methods which can help

to reproduce the job. According to the decay-parameter, the jobs can be grouped

into four groups and executed in different ways. After the execution, based on

provenance data a post-analysis can be performed by the application of statistical

tools. An evaluation can be computed to replace the non-reproducible parts of the

workflow.

In order to achieve our goal, on one hand we have analyzed [2] the criteria of the

reproducibility on the other hand we have collected and have categorized all the

necessary information which are required to reproduce the scientific workflows

[1]. Finally, in this paper we set up a mathematical model to formalize the

problem and determine certain statistical methods to predict, evaluate or simulate

the results of the jobs and the re-executed workflows. We defined the descriptor

space, the decay parameter of the descriptors and the reproducible job and

workflow. Based on these definitions, we set up a mathematical model of the

reproducibility analysis to formalize the problem and to give our solution.

The ultimate goal of our research is to make the workflows either reproducible by

eliminating the dependencies or simulating the non-reproducible jobs of the

scientific workflows.

Our paper is organized as follows. In the next subsection (1.1) we introduce the

WS-PGARDE/gUSE system, in which we would like to test our results. Chapter 2

gives a brief summary about the related works. Chapter 3 represents our model

and the components of the reproducibility analysis. In Chapter 4 we introduce the

process and the phases of the analysis. Finally, we sum up our results in 5 and in

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 204 –

Chapter 6 we conclude our research with a brief provisioning of possible future

research directions.

1.1. WS-PGRADE/gUSE

gUSE (grid and cloud user support environment) is a well-known and permanently

improving open source science gateway framework developed by the Laboratory

of Parallel and Distributed Systems (LPDS) that enables users the convenient and

easy access to grid and cloud infrastructures. It has been developed to support a

large variety of user communities. It provides a generic purpose, workflow-

oriented graphical user interface to create and run workflows on various

Distributed Computing Infrastructures (DCIs) including clusters, grids, desktop

grids and clouds. [20]

The WS-PGRADE Portal [21] [10] is a web based front end of the gUSE

infrastructure. The structure of WS-PGRADE workflows are represented by

directed acyclic graphs.

The nodes of the graph, namely the jobs are the smallest units of a workflow.

They represent a single algorithm, a stand-alone program or a web-service call to

be executed. Ports represent input and output connectors of the given job node.

Directed edges of the graph represent data dependency (and corresponding file

transfer) among the workflow nodes. This abstract workflow can be used in the

second step to generate various concrete workflows by configuring detailed

properties (first of all the executable, the input/output files where needed and the

target DCI) of the nodes representing the atomic execution units of the workflow.

A job may be executed if there is a proper data (or dataset in case of a collector

port) at each of its input ports and there is no prohibiting programmed condition

excluding the execution of the job. The execution of a workflow instance is data

driven forced by the graph structure: A node will be activated (the associated job

submitted or the associated service called) when the required input data elements

(usually file, or set of files) become available at each input port of the node.

2 State of the Art

The researchers dealing with the reproducibility of scientific workflows have to

approach this issue from two different aspects. First, the requirements of the

reproducibility have to be investigated, analyzed and collected. Secondly,

techniques and tools have to be developed and implemented to help the scientist in

creating reproducible workflows.

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 205 –

2.1. Requirements

Researchers of this field agree on the importance of the careful design [8],[15],

[16], [17], [22] which on one hand means the increased robustness of the scientific

code, such as modular design and detailed description about the workflow, about

the input/output data examples and consequent annotations [7]. On the other hand,

the careful design includes the careful usage of volatile third party or special local

services.

Groth et al. [10] based on several use cases analyzed the characteristics of

applications used by workflows and listed seven requirements in order to enable

the reproducibility of results and the determination of provenance. In addition,

they showed that a combination of VM technology for partial workflow re-run

along with provenance can be useful in certain cases to promote reproducibility.

Davison [7] investigated which provenance data have to be captured in order to

reproduce the workflow. He listed six vital areas such as hardware platform,

operating system identity and version, input and output data etc.

Zhao et al. [23] in their paper investigated the cause of the so called workflow

decay. They examined 92 Taverna workflows submitted in the period between

2007 and 2012 and found four major causes: 1) Missing volatile third party

resources 2) Missing example data 3) Missing execution environment

(requirement of special local services) and 4) Insufficient descriptions about

workflows. Hettne et al. [11] in their papers listed ten best practices to prevent the

workflow decay.

2.2. Techniques and Tools

There are existing available tools, VisTrail, ReproZip or PROB [5], [9], [14]

which allow the researcher and the scientist to create reproducible workflows.

With the help of VisTrail [9], [12] reproducible paper can be created, which

includes not only the description of scientific experiment, but all the links for

input data, applications and visualized output. These links always harmonize with

the actually applied input data, filter or other parameters. ReproZip [5] is another

tool, which stitches together the detailed provenance information and the

environmental parameters into a self-contained reproducible package.

The Research Object (RO) approach [3], [6] is a new direction in this research

field. RO defines an extendable model, which aggregates a number of resources in

a core or unit. Namely a workflow template; workflow runs obtained by enacting

the workflow template; other artifacts which can be of different kinds; annotations

describing the aforementioned elements and their relationships. Accordingly to the

RO, the authors in [4] also investigate the requirements of the reproducibility and

the required information necessary to achieve it. They created ontologies, which

help to uniform these data. These ontologies can help our work and give us a basis

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 206 –

to perform our reproducibility analysis and make the workflows reproducible

despite their dependencies.

Piccolo et al [18] collected the tools and techniques and proposed six strategies

which can help the scientist to create reproducible scientific workflows.

Santana-Perez et al [19] proposed an alternative approach to reproduce scientific

workflows which focused on the equipment of a computational experiment. They

have developed an infrastructure-aware approach for computational execution

environment conservation and reproducibility based on documenting the

components of the infrastructure.

To sum up the results mentioned above, we can conclude that the general

approach is that the scientist has to create reproducible workflows with careful

design, appropriate tools and strategies. But none of them intended to solve the

problem related to the dependencies rather they suggested to bypass them.

Moreover, they did not deal with the following question: How an existing

workflow can be made reproducible?

2.3. Reproducibility Support in WS-PGRADE/gUSE System

In the WS-PGRADE/gUSE system with the help of the “RESCUE” feature the

user has the possibility to re-execute a job which does not own all the necessary

inputs but the provenance data is available from the previous executions. (Fig. 1)

Figure 1

Operation of the Rescue feature in the WS-PGRADE/gUSE system

When submitting a job which has the identifier originated from the previous

execution, the workflow instance (WFI) queries the description file of the

workflow. This XML file includes the jobs belonging to the workflow. Their input

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 207 –

and output ports, their relations and the identifiers of the job instances executed

previously with their outputs. After processing the XML file, a workflow model is

created in the memory representing the given workflow during its execution. At

this point the Runtime Engine (RE) takes over the control to determine the “ready

to run” jobs then it examines whether these jobs have already stored outputs

originated from previous executions. Concerning the answer the RE puts the job in

the input or in the output queue.

3 Reproducibility Analysis

In this section, we introduce our mathematical model of reproducibility analysis.

Next we give a method to handle the influence factors of the reproducibility of a

job and to make the non-reproducible job reproducible under certain conditions or

by a given probability. Finally we deal with jobs applying random generated

values in an independent subsection.

3.1. The Model

In order to formalize the problem let us introduce the following notations and

definitions:

 The scientific workflow (SWf) can be represented by a directed acyclic graph,

where the vertices denote the jobs and the edges denote the dataflow between

jobs.

𝑽 = {𝑱𝟏, … , 𝑱𝑵}, where 𝑵 ∈ N; the number of the job of a given workflow

𝑬 = {(𝑱𝒊, 𝑱𝒋) ∈ 𝑽 × 𝑽|𝒊 ∈ [𝟏, 𝟐, …𝑵 − 𝟏]; 𝒋 ∈ [𝟐, 𝟑, … ,𝑵] 𝒂𝒏𝒅 𝒊 ≠ 𝒋}

 The job Ji is exit job (exit node) in the graph, if ∄𝑱𝒋 ∈ 𝑽: (𝑱𝒊, 𝑱𝒋) ∈ 𝑬; Notation:

Jexit

 The job Ji is entry job (entry node) in the graph, if ∄𝑱𝒋 ∈ 𝑽: (𝑱𝒋, 𝑱𝒊) ∈ 𝑬;

Notation: Jentry

 The job, which is neither exit nor entry job, is an inside job.

 The forward sub-workflow of a job Ji is the part of the workflow, which

contains all the successor jobs (nodes) and the edges between them.

 From our point of view the SWf is a function: SWF(t0, J1, J2, …, JN) = Y,

where t0 is a given time of the submission of the workflow and Y is the result

of the workflow.

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 208 –

 Assuming that the workflow was successfully executed at least once and

provenance database is available a descriptor-space 𝑫𝑱𝒊 can be created to

store all the necessary parameter needed to re-execute the job.

 The job Ji (i = 1, 2, …, N) has Ki descriptors: V1, V2, …, VKi , which are

necessary to reproduce the workflows. The values of descriptors are: 𝑫𝑱𝒊 =

{𝒗𝒊𝟏, 𝒗𝒊𝟐, … , 𝒗𝒊𝑲𝒊}

 With the help of the descriptors every job can be written as a function:

𝑱𝒊(𝒕𝟎, 𝒗𝒊𝟏, 𝒗𝒊𝟐, … , 𝒗𝒊𝑲𝒊) = 𝒀𝒊

 For every descriptor we have defined a so called decay-parameter which

indicates how the descriptor's value changes in time. There are four cases:

1. The availability and the value of the descriptor is not changing in time. In

this case the decay parameter is 0.

2. The availability of the descriptor is changing in time. There are two

cases: the probability distribution function of the descriptor's availability

is known or not. In the first case, the decay parameter can be determined

by the given distribution function and in the second one, the descriptor

value is infinite.

3. The value of the descriptor is changing in time. Similarly to the second

item, the change of the value can be known or unknown. According to

the actual case the value of decay parameter is a function describing the

change or it is infinite.

4. The value of the descriptor is not constant, but both its availability and

change is unknown. For example a random generated value, which is

used during the execution but it is not known. In this case the value of the

decay-parameter is infinite.

In formal:

𝒅𝒆𝒄𝒂𝒚(𝒗𝒊) =

{

𝟎, if the value of the descriptor is
 not changing in time

∞, 𝐢𝐟 𝐭𝐡𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 𝐭𝐡𝐞 𝐝𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐨𝐫
𝐢𝐬 𝐮𝐧𝐤𝐧𝐨𝐰𝐧

𝑭𝒊(𝒕), 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 of the
 availability of the given value

𝑽𝒂𝒓𝒚𝒊(𝒕, 𝒗𝒊), 𝐢𝐟 𝐭𝐡𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 𝐭𝐡𝐞

 𝐝𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐨𝐫 𝐢𝐬 𝐜𝐡𝐚𝐧𝐠𝐢𝐧𝐠
 𝐢𝐧 𝐭𝐢𝐦𝐞

With help of these expressions we can define the reproducibility as the following

way:

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 209 –

Definition (D1): The Ji job is reproducible, if the descriptor space 𝐷𝐽𝑖 =

{𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝐾𝑖} of job – which contains all the inputs and environmental

parameters - is known and can be stored, in other words all the decay parameters

are zero.

Notation: Ji
repro

; 𝐽𝑂𝐵𝑖
𝑟𝑒𝑝𝑟𝑜

(𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖) = 𝑌𝑖

Corollary: A reproducible job is invariable in time (time-independent):

𝑱𝑶𝑩𝒊
𝒓𝒆𝒑𝒓𝒐(𝒕𝟎, 𝒗𝒊𝟏, 𝒗𝒊𝟐, … , 𝒗𝒊𝑲𝒊) = 𝑱𝑶𝑩𝒊

𝒓𝒆𝒑𝒓𝒐(𝒕𝟎 + ∆𝒕, 𝒗𝒊𝟏, 𝒗𝒊𝟐, … , 𝒗𝒊𝑲𝒊) = 𝒀𝒊 for

every ∆t.

Definition (D2): The scientific workflow is reproducible, if its exit jobs and the

𝑆𝑢𝑏𝑊𝐹𝐽𝑒𝑥𝑖𝑡
𝑏𝑎𝑐𝑘 of the exit jobs is reproducible.

It can be easily proven, that if and only if every job of a SWf is reproducible, then

the SWf is also reproducible.

We introduce other properties, namely the substitutional and the approximative

reproducibility referring to that case, in which the decay parameter of one of its

descriptors changes in time and this variation is known. There is two option: the

first one is that the variation of result can be described with a function determined

by the variation function of the descriptor; the second one is that the variation of

result can be estimated. In formal:

Definition (D2): The Ji job is reproducible by substitution, if the descriptor space

{𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝐾𝑖} of job and ∃𝑘 ∈ [1, 2, … , 𝐾𝑖]: 𝑉𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘) is known, and

based on vary function a 𝑉𝑎𝑟𝑦𝑖
∗(∆𝑡, 𝑌𝑖) can be unambiguously determined.

If

𝐽𝑂𝐵𝑖(𝑡0, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖) = 𝑌𝑖

Then

𝐽𝑂𝐵𝑖(𝑡0 + ∆𝑡, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘), … , 𝑣𝑖𝐾𝑖) = 𝑉𝑎𝑟𝑦𝑖
∗(∆𝑡, 𝑌𝑖)

Notation: 𝐽𝑂𝐵𝑖
𝑣𝑎𝑟𝑦

(𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘), … 𝑣𝑖𝐾𝑖)

Definition (D3): The Ji job is approximately reproducible, if Ji is reproducible

under condition that ∃𝑘 ∈ [1, 2, … , 𝐾𝑖]: 𝑉𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘) is precisely known, and

in accordance this function a 𝑉𝑎𝑟𝑦𝑖
∗(∆𝑡, 𝑌𝑖) can be estimated with an acceptable

accuracy:

𝐽𝑂𝐵𝑖(𝑡0 + ∆𝑡, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘), … , 𝑣𝑖𝐾𝑖) ≈ 𝑉𝑎𝑟𝑦𝑖
𝑎𝑝𝑝𝑟𝑜(∆𝑡, 𝑌𝑖) = 𝑌�̃�

Notation: 𝑱𝑶𝑩𝒊
𝒂𝒑𝒑𝒓𝒐

(𝒗𝒊𝟏, 𝒗𝒊𝟐, … , 𝒗𝒂𝒓𝒚𝒊𝒌(∆𝒕, 𝒗𝒊𝒌), … 𝒗𝒊𝑲𝒊)

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 210 –

3.2. Pre-Analysis

The first step of the process of the reproducibility analysis is to create the

descriptor space of all the jobs belonging to the given scientific workflow. The

descriptors and their decay parameters can originate from three different sources:

from the users, from the provenance database and it can be automatically

generated by the SWfMS. [1]

Analyzing the decay parameters of the descriptors we have separated those, which

can influence the reproducibility of the workflow in other words which have non-

zero decay parameters. Four groups have been created:

1. With the help of additional resources or tools this dependency of execution

can be eliminated. For example, in case of random generated values we are

going to implement an operating system level tool, which captures the return

value of the random generator, and stores it in the provenance database (see

subsection 3.4)

2. With the help of approximation tools the value of the descriptor can be

evaluated or even replaced. (see subsection 3.3)

3. A time interval can be given during which the descriptor is available by a

given probability p.

4. There is no method to make the workflow reproducible.

3.3. Evaluation

In this subsection we investigate the case when one decay parameter of the job's

descriptors is changing in time.

In case of the presented methods we assume two essential conditions:

1. The availability of the whole descriptor’s space of the job in a given SWf,

which means all the necessary information to reproduce the job.

2. The availability of a provenance database which contains the provenance

information about the previous executions of a given SWf. For example,

descriptor values, partial and final results of the jobs etc.

Based on provenance database a sample set can be defined which contains

provenance data originated from s (where s is a natural number) previous

executions:

𝑆 =

{

 𝐽𝑖(𝑡0, 𝑣𝑖1

0 , 𝑣𝑖2
0 , … , 𝑣𝑖𝐾𝑖

0) = 𝑌𝑖
0

𝐽𝑖(𝑡0, 𝑣𝑖1
1 , 𝑣𝑖2

1 , … , 𝑣𝑖𝐾𝑖
1) = 𝑌𝑖

1

…
𝐽𝑖(𝑡0, 𝑣𝑖1

𝑠−1, 𝑣𝑖2
𝑠−1, … , 𝑣𝑖𝐾𝑖

𝑠−1) = 𝑌𝑖
𝑠−1
}

 (1)

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 211 –

If a vij (i = 1 … N; j = 1 … Ki) descriptor's value is not changing in time its decay

parameter is 0, thus, in the sample set the given elements are equals:

vij
0
 = vij

1
= … = vij

s-1

Assuming that only one descriptor value is changing in time the sample set related

to the job Ji can be written in a simpler form:

𝑆 = {(𝑡0, 𝑣𝑖𝑗
0 , 𝑌𝑖

0), (𝑡0, 𝑣𝑖𝑗
1 , 𝑌𝑖

1), … , (𝑡0, 𝑣𝑖𝑗
𝑠−1, 𝑌𝑖

𝑠−1)} (2)

Based on the sample set S = i the correlation can be investigated between the

variables vij
k
 an Yi

k
 (k =1, 2, … , s-1) with the? help of the following expression:

𝑐𝑜𝑟𝑟(𝑣, 𝑌) =
∑ (𝑣𝑖𝑗

𝑘−𝑣𝑖�̃�)(𝑌𝑖
𝑘−𝑌�̃�)

𝑠−1
𝑘=0

√∑ (𝑣𝑖𝑗
𝑘−𝑣𝑖�̃�)

2𝑠−1
𝑘=0 ∑ (𝑌𝑖

𝑘−𝑌�̃�)
2𝑆−1

𝑘=0

, (3)

where 𝑌�̃� and 𝑣𝑖�̃� are the empirical (sample) mean of the adequate variables.

In addition, based on provenance data we can determine the coverage of a given

descriptor, which contains every job influenced by this descriptor. We can

compute the correlation matrix of the vi,j descriptor and the results of all the

successors of the job Ji.

 , , , 1 ,

1 , 1 1 1
1 1

, 1

(,) (,) ... ,

(,) (,) (,)

(,) (,) (,)

i j i j i j i j p

i j p
p p

p i j p p p

cor v v cor v Y cor v Y

cor Y v cor Y Y cor Y Y

cor Y v cor Y Y cor Y Y

R

 (4)

where 𝑌1, 𝑌2… , 𝑌𝑝 is the results of the successors of job Ji. . The R matrix is

symmetric and the values in the diagonal are 1.

The coverage of the given descriptor can be determined based on the first row of

the correlation matrix. The non-zero values, which are close to 1 can show which

Ji, i = 1, 2, …, p belong to the coverage zone.

Concerning to the value of the expression (3) we can differentiate two cases:

1. The result is close to 1, which means that the two variables are bounded? up

with each other thus the result Yi. can be evaluated by applying some

approximation. For example, the linear regression consequently, the result Yi.

can be written as a linear combination of the changing descriptor.

𝑌𝑖 = 𝛽0 + 𝛽1𝑣𝑖𝑗 (5)

 where the β0 and β1 are the linear coefficients.

In this way, 𝑌𝑖
𝑡 = 𝛽0 + 𝛽1𝑣𝑎𝑟𝑦𝑖𝑗(𝑡, 𝑣𝑖𝑗), where t is arbitrary.

If the result of (3) is closer to 0.5 then to 1, nonlinear regression or other

curve fitting method can be used.

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 212 –

Storing the approximation and the final results in the repository makes it

possible that during the re-execution of a workflow, the non-reproducible job

can be replaced by these approximated or simulated results.

we call The scientific workflows associated to this group reproducible by

substitution or approximately reproducible scientific workflows.

2. The result of the correlation coefficient is close to 0, which means that the

descriptor vij does not influence the result Yi. In this case, the analysis has to

be continued and the correlations between the results of the successor jobs

have to be investigated.

3.4. Random Based Dependency

Many jobs use applications and computations which are based on random

generated values (RGV). For example, the image processing applications, the

different simulators and workflows which simulate some physical or chemical

phenomena or even cryptographic algorithms. In this case, during the execution a

system call is performed which returns a random generated value but this result is

stored only in the memory. Consequently, provenance information does not get

into the provenance database. We have designed a tool which operates at the

operating system level and it captures the return values of the system call. Next, it

stores the given value in the provenance database or on a predefined location.

With the help of this tool the random RGVs can be stored together with the

workflow in a repository. In/on? occasion of a later re-execution, the SWfMS uses

the originally stored value instead of the newly generated random value.

4 The Process of Reproducibility-Analysis

Based on the decay-parameter (DP) the pre-analyzer performs a classification of

the jobs of the given SWf. Depending on the classification, the job can be

executed in three ways:

1. Standard execution, if all the decay parameters are zero.

2. Replacing the execution with evaluation, if there are changing descriptor

values or the availabilities are defined by a probability distribution function

(PDF).

3. Execution with random value capture (RVC) tool, if the execution of the job

is based on random generated value.

In all cases updating the Provenance Database (PDB) is performed occasionally

by extra provenance information (for example a random value).

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 213 –

Based on the PDB the post-analyzer creates a sample set. The evaluator module

computes the evaluated output of the given job. Figure 2 shows the flow-chart

about the process and Figure 3 presents the block-diagram.

Figure 2

The flow-chart of the process of the reproducibility analysis

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 214 –

Figure 3

The block-diagram of the system of the reproducibility analysis

5 Results and Implementation

Since this investigation is based on the descriptor-space and the descriptor-space

is based on the provenance database, the first step toward the implementation of

an evaluating tool is the implementation of a provenance framework. The

implementation of a Provenance manager (PROV-man) framework is already

finished. It provides functionalities to create and manipulate provenance data in a

consistent manner and ensures its permanent storage. It also provides a set of

interfaces to serialize and export provenance data into various data format, serving

interoperability [24], [25], [26]. Three main components constitutes the PROV-

man framework:

 A set of methods to build and manipulate provenance data, while preserving

full compliance with the PROV specifications

 A set of interfaces for provenance data sharing and interoperation. These

interfaces covers serialization to formats of the PROV family of documents

(e.g. XML, RDF, DC, etc.) and other specifically required format (e.g.

Graphviz, PDF, JPG, etc.)

 A relational database that serves as a main repository for storing provenance

data, reflecting the PROV-man data model

Additionally, the “rescue” feature and the tool which captures the RGVs and

stores them in the PDB or in a predefined location are implemented in the WS-

PGRADE/gUSE system. Furthermore, we intend to extend it with an evaluating

tool in case the job cannot run because of the missing or unavailable inputs. This

solution makes us able to apply not only the previously stored results but an

evaluated or a simulated output of a previously executed job.

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 215 –

Conclusions

We analyzed the requirements of the reproducibility and the critical, continuously

changing or non-deterministic descriptors of the scientific workflows to make

them reproducible. To formalize the problem, we set up a mathematical model and

gave definitions of the reproducible jobs and workflows. Based on the model, we

worked out a reproducibility analysis process which involves three phases. The

first is a pre-analysis based on the descriptor’s space to determine the reproducible

parts of the workflow and to classify the jobs according to their decay-parameter.

The jobs in the different classes are executed in different ways. In the post-

analysis phase, assuming that provenance data is available about the previous

executions a sample set is created and the determination of the evaluating

algorithm is performed. This information is stored together with the workflow in

the repository or in the provenance database. On occasion of a re-execution of the

workflow and in case of a non-reproducible job, instead of the standard execution

we evaluate the outputs based on the stored sample set and on the evaluating

parameters.

The presented framework is theoretical in the sense that the time is limitless. If the

probability distribution function of the availability referring to a descriptor is

given or can be estimated based on provenance, the limit of the function as time

approaches infinity is 1, and the time – during the descriptor is available – can be

determined, theoretically. If an estimating method can be determined for a

changing descriptor, it is also “time-limitless” and the method can be applied at

any time, maybe if the appropriate resources is out of time. However, the

experience actually shows, that the technological development can be prevent the

re-execution and can shorter the theoretical time given by our analysis.

In addition, we particularly have dealt with the job executions based on random

generated values and we have developed a mechanism which is able to capture the

return values of the system calls and to store it for a later re-execution.

In our future work, we would like to develop other tools to be able to handle more

special dependencies of the workflow execution. Also we intend to explore other

procedures to find a more general solution for the evaluating problems when many

descriptors’ values change, simultaneously. Furthermore, we plan to implement

our methods and tools within the gUSE framework.

Acknowledgement

This work was supported by EU project SCI-BUS (SCIentific gateway Based User

Support). The SCI-BUS project aims to ease the life of the e-Scientists by creating

a new science gateway customization methodology based on the generic-purpose

gUSE/WS-PGRADE portal family.

A. Bánáti et al. Reproducibility Analysis of Scientific Workflows

 – 216 –

References

[1] Bánáti A., Kacsuk P., Kozlovszky M.: Minimal Sufficient Information

about the Scientific Workows to Create Reproducible Experiment. In: IEEE

19th International Conference on Intelligent Engineering Systems (INES),

Slovakia, 2015, pp. 189-194

[2] Bánáti A., Kacsuk P. Kozlovszky, M.: “Four Level Provenance Support to

Achieve Portable Reproducibility of Scientific Workflows” In Information

and Communication Technology, Electronics and Microelectronics

(MIPRO) 2015 38
th

 International Convention on (pp. 241-244) IEEE

[3] Bechhofer S., De Roure D., Gamble M., Goble C., Buchan I.: „Research

Objects: Towards Exchange and Reuse of Digital Knowledge” In: he

Future of the Web for Collaborative Science, 2010

[4] Belhajjame K., Zhao J., Garijo D., Gamble M., Hettne K., Palma R., Goble

C.: „Using a Suite of Ontologies for Preserving Workow-Centric Research

Objects” In: Web Semantics: Science, Services and Agents on the World

Wide Web, 2015

[5] Chirigati F., S., Shasha D., Freire J.: „ReproZip: Using Provenance to

Support Computational Reproducibility” Presented as part of the 5
th

USENIX Workshop on the Theory and Practice of Provenance, 2013

[6] Corcho O., Garijo Verdejo D., Belhajjame K., Zhao J., Missier P., Newman

D., Goble C.: „Workflow-Centric Research Objects: First Class Citizens in

Scholarly Discourse” In: Proceedings of Sepublica 2012, pp. 1-12, 2012

[7] Davison, A. „Automated Capture of Experiment Context for Easier

Reproducibility in Computational Research”, Computing in Science &

Engineering, Vol 14/ 4, pp. 48-56, July 2012

[8] De Roure D., Belhajjame K., Missier P., Gmez-Prez J. M., Palma R., Ruiz

J. E., Hettne K., Roos M., Klyne G., Hekkelman M. L.: „Towards the

Preservation of Scientific Workows”. In Proceedings of 8
th

 International

Conference on Preservation of Digital Objects (iPRES 2011) 2011

[9] Freire J., Koop D., Chirigati F. S, and Silva C. T.,: “Reproducibility Using

VisTrails”, Implementing Reproducible Research 33, 2014,

OnlineAvailable:

http://citeseerx.ist.psu.edu/viewdoc/download doi:10.1.1.369.9566

[10] Groth, P; Deelman E., Juve G., Mehta G., and Berriman B., „Pipeline-

Centric Provenance Model”, in Proceedings of the 4
th

 Workshop on

Workflows in Support of Large-Scale Science, 2009, p. 4

[11] Hettne, K. Wolstencroft, K. Belhajjame, Goble C. A., Mina E., Dharuri H.,

D. De Roure, Verdes-Montenegro L., Garrido J., and M. Roos, „Best

Practices for Workflow Design: How to Prevent Workflow Decay”, in

SWAT4LS, 2012

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 217 –

[12] Koop D., Freire J., and Silva C. T., „Enabling Reproducible Science with

VisTrails”, arXiv preprint arXiv:1309. 1784, 2013

[13] Koop, D., Santos, E., Mates, P., Vo, H. T., Bonnet, P., Bauer, B., ... and

Freire, J. (2011) “A provenance-based Infrastructure to Support the Life

Cycle of Executable Papers”. Procedia Computer Science, 4, 648-657

[14] Korolev, A. Joshi, V. Korolev, M. A. Grasso, A. Joshi, M. A. Grasso, D.

Dalvi, S. Das, V. Korolev, Y. Yesha, and others, „PROB: A Tool for

Tracking Provenance and Reproducibility of Big Data Experiments.”,

Reproduce’14. HPCA 2014, Vol. 11, pp. 264-286, 2014

[15] Mesirov J. P., „Accessible Reproducible Research”, Science, Vol. 327/

5964, pp. 415-416, January 2010

[16] Missier P., Woodman S., Hiden H., and P. Watson, „Provenance and Data

Differencing for Workflow Reproducibility Analysis”, Concurrency and

Computation: Practice and Experience, 2013

[17] Peng, „Reproducible Research in Computational Science”, Science, vol.

334/ 6060, pp. 1226-1227, 2011

[18] Piccolo S. R., Lee A. B., Frampton M. B.: „Tools and Techniques for

Computational Reproducibility”. In: bioRxiv, Vol. 022707, 2015

[19] Santana-Perez I., Prez-Hernndez M. S.: „Towards Reproducibility in

Scientific Workows: An Infrastructure-based Approach”. In: Scientific

Programming, Vol. 2015, p. 11, 2015

[20] SZTAKI LPDS: User's Guide. Http://guse.hu/about/home

[21] SZTAKI LPDS: User's Guide

Http://sourceforge.net/projects/guse/_les/3.7.4/Documentation

[22] Woodman, Hiden H., Watson P., and Missier P., „Achieving

Reproducibility by Combining Provenance with Service and Workflow

Versioning”, in Proceedings of the 6
th

 Workshop on Workflows in Support

of Large-Scale Science, 2011, pp. 127-136

[23] Zhao J., Gomez-Perez J. M., Belhajjame K., Klyne G., Garcia-Cuesta E.,

Garrido A., Hettne K., Roos M., De Roure D., and Goble C., „Why

Workflows Break—Understanding and Combating Decay in Taverna

Workflows”, in E-Science (e-Science), 2012 IEEE 8
th

 International

Conference on, 2012, pp. 1-9

[24] http://nl.sharp-sys.com/PROV-man.html

[25] Kiss, Tamás, et al. "Ws-pgrade/guse in European Projects." Science

Gateways for Distributed Computing Infrastructures. Springer International

Publishing, 2014, 235-254

[26] Benabdelkader, A., Antoine AHC van Kampen, and Silvia D. Olabarriaga.

PROV‐Man: A PROV‐Compliant Toolkit for Provenance Management.

No. e1347. PeerJ PrePrints, 2015

http://sourceforge.net/projects/guse/_les/3.7.4/Documentation
http://nl.sharp-sys.com/PROV-man.html

