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Abstract: The emergence of big data science presents a unique opportunity to improve public-health
research practices. Because working with big data is inherently complex, big data research must be
clear and transparent to avoid reproducibility issues and positively impact population health. Timely
implementation of solution-focused approaches is critical as new data sources and methods take root
in public-health research, including urban public health and digital epidemiology. This commentary
highlights methodological and analytic approaches that can reduce research waste and improve
the reproducibility and replicability of big data research in public health. The recommendations
described in this commentary, including a focus on practices, publication norms, and education, are
neither exhaustive nor unique to big data, but, nonetheless, implementing them can broadly improve
public-health research. Clearly defined and openly shared guidelines will not only improve the
quality of current research practices but also initiate change at multiple levels: the individual level,
the institutional level, and the international level.

Keywords: reproducibility; big data; digital epidemiology; urban public health

1. Introduction

Research comprises “creative and systematic work undertaken in order to increase
the stock of knowledge” [1,2]. Research waste, or research whose results offer no social
benefit [3], was characterized in a landmark series of papers in the Lancet in 2014 [4,5]. The
underlying drivers of research waste range from methodological weaknesses in specific
studies to systemic shortcomings within the broader research ecosystem, notably including
a reward system that incentivises quantity over quality and incentivizes exploring new
hypotheses over confirming old ones [4–8].

Published research that cannot be reproduced is wasteful due to doubts about its
quality and reliability. Lack of reproducibility is a concern in all scientific research, and
it is especially significant in the field of public health, where research aims to improve
treatment practices and policies that have widespread implications. In this commentary,
we highlight the urgency of improving norms for reproducibility and scientific integrity
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in urban public health and digital epidemiology and discuss potential approaches. We
first discuss some examples of big data sources and their uses in urban public health,
digital epidemiology, and other fields, and consider the limitations with the use of big
data. We then provide an overview of relevant solutions to address the key challenges
to reproducibility and scientific integrity. Finally, we consider some of their expected
outcomes, challenges, and implications.

Unreliable research findings also represent a serious challenge in public-health re-
search. While the peer-review process is designed to ensure the quality and integrity of
scientific publications, the implementation of peer review varies between journals and
disciplines and does not guarantee that the data used are properly collected or employed.
As a result, reproducibility remains a challenge. This is also true in the context of the
emerging field of big data science. This is largely driven by the characteristics of big
data, such as their volume, variety, and velocity, as well as the novelty and excitement
surrounding new data science methods, lack of established reporting standards, and a
nascent field that continues to change rapidly in parallel to the development of new tech-
nological and analytic innovations. Recent reports have uncovered that most research is
not reproducible, with findings casting doubt on the scientific integrity of much of the
current research landscape [6,9–12]. At the bottom of this reproducibility crisis lies growing
pressure to publish not only novel, but more importantly, statistically significant results
at an accelerated pace [13,14], increasing the use of low standards of evidence and disre-
garding pragmatic metrics, such as clinical or practical significance [15]. Consequently, the
credibility of scientific findings is decreasing, potentially leading to cynicism or reputational
damage to the research community [16,17]. Addressing the reproducibility crisis is not
only one step towards restoring the public’s trust in scientific research, but also a necessary
foundation for future research, as well as guiding evidence-based public-health initiatives
and policies [18], facilitating translation and implementation of research findings [19,20],
and accelerating scientific discovery [21].

While failure to fully document the scientific steps taken in a research project is a
fundamental challenge across all research, big data research is additionally burdened by
the technical and computational complexities of handling and analysing large datasets. The
challenge of ensuring computational capacity, including memory and processing power,
to handle the data, as well as statistical and subject matter expertise accounting for data
heterogeneity, can lead to reproducibility issues at a more pragmatic level. For example,
large datasets derived from social media platforms require data analysis infrastructure,
software, and technical skills, which are not always accessible to every research team [22,23].
Likewise, studies involving big data create new methodological challenges for researchers
as the complexity for analysis and reporting increases [24]. This complexity not only re-
quires sophisticated statistical skills but also new guidelines that define how data should be
processed, shared, and communicated to guarantee reproducibility and maintain scientific
integrity, while protecting private and sensitive information. Some of these challenges
lie beyond the abilities and limitations of individual researchers and even institutions,
requiring cultural and systematic changes to improve not only the reproducibility but also
transparency and quality of big data research in public health.

Importantly, through concerted efforts and collaboration across disciplines, there
are opportunities to systematically identify and address this reproducibility crisis and
to specifically apply these approaches to big data research in public health. Below, we
discuss methodological and analytical approaches to address the previously discussed
issues, reduce waste, and improve the reproducibility and replicability of big data research
in public health.

Specifically, we focus on approaches to improve reproducibility, which is distinct
from replicability. While both are important with regards to research ethics, replicability is
about “obtaining consistent results across studies aimed at answering the same scientific
question, each of which has obtained its own data”, whereas reproducibility refers to
“obtaining consistent results using the same input data’ computational steps, methods and
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code, and conditions of analysis” [25]. Though we mention “reproducibility” throughout
this commentary, some of the arguments presented may apply to replicability as well.
This is particularly true when it comes to transparency when reporting sampling, data
collection, aggregation, inference methods, and study context; these affect both replication
and reproduction [26].

2. Big Data Sources and Uses in Urban Public Health and Digital Epidemiology

Big data, as well as relevant methods and analytical approaches, have gained increas-
ing popularity in recent years. This is reflected in the growing number of publications and
research studies that have implemented big data methods across a variety of fields and sec-
tors, such as manufacturing [27], supply-chain management [28], sports [29], education [30],
and public health [31].

Public health, including urban health and epidemiological research, is a field where
studies increasingly rely on big data methods, such as in the relatively new field of digital
epidemiology [32]. The use of big data in public-health research is often characterized by
the ‘3Vs’: variety in types of data as well as purposes; volume or amount of data; and
velocity, referring to the speed at which the data are generated [33]. Because large datasets
can invariably produce statistically significant findings but systematic biases are unaffected
by data scale, big data studies are at greater risk of producing inaccurate results [34–37].

Big data sources that are used or could be potentially used in fields, such as urban
public health and digital epidemiology, can be divided into two main categories. First,
those that are collected or generated with health as a main focus and, second, those that
are generated out of this scope but that can be associated with or impact public health
(Figure 1) [32].
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Figure 1. Data sources used in urban public health and digital epidemiology research can broadly be
organized along a continuum of health orientation of the process that generated them.

Data sources generated within the context of public health include large datasets
captured within health systems or government health services at the population level, such
as the case of Electronic Health Records (EHRs), Electronic Medical Records (EMRs), or
personal health records (PHRs) [38]. Other examples include pharmacy and insurance
records, omics data, as well as data collected by sensors and devices that are part of the
internet of things (IoT) and are used for health purposes, ranging from smart continuous
glucose monitors (CGMs) [39] to activity and sleep trackers.

In contrast, big data sources generated outside the public-health scope are virtually
unlimited and ever-growing, covering virtually all domains in society. As a result, we
will focus on selected and non-conclusive examples to illustrate and exemplify the diverse
sources of big data that are used or could potentially be used in urban public health and
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digital epidemiology. Notably, social media have become an important source of big data
used for research in different fields, including digital epidemiology. Twitter data have
proven to be useful for collecting public-health information, for example, to measure
mental health in different patient subgroups [40]. Examples of big data collected on Twitter
that can be used in the context of public-health research are the Harvard CGA Geotweet
Archive [41] or the University of Zurich Social Media Mental Health Surveillance project
with their Geotweet Repository for the wider European Region [42]. Other initiatives,
such as the SoBigData Research Infrastructure (RI), aim to foster reproducible and ethical
research through the creation of a ‘Social Mining & Big Data Ecosystem’, allowing for the
comparison, re-use, and integration of big data, methods, and services into research [22].

Cities increasingly use technological solutions, including IoT and multiple sensors,
to monitor the urban environment, transitioning into Smart Cities with the objective of
improving citizens’ quality of life [43,44]. Data stemming from Smart City applications
have been used, for example, to predict air quality [45], analyse transportation to improve
road safety [46], and have the potential to inform urban planning and policy design to
build healthier and more sustainable cities [47].

Data mining techniques also allow for large datasets to be used in the context of
urban public health and digital epidemiology. For example, a project using administrative
data and data mining techniques in El Salvador identified anomalous spatiotemporal
patterns of sexual violence and informed ways in which such analysis can be conducted
in real time to allow for local law enforcement agencies and policy makers to respond
appropriately [48,49]. Other large-dataset sources, such as transaction data [50], have been
used to investigate the effect of sugar taxes [51] or labelling [52] on the consumption of
healthy or unhealthy beverages and food products, which can eventually help model their
potential impact on health outcomes.

3. Approaches to Improving Reproducibility and Scientific Integrity

Big data science has brought on new challenges, to which the scientific community
needs to adapt by applying adequate ethical, methodological, and technological frame-
works to cope with the increasing amount of data produced [53]. As a result, the timely
adoption of approaches to address reproducibility and scientific integrity issues is imper-
ative to ensure quality research and outcomes. A timely adoption is relevant not only
for the scientific community but also for the general public that can potentially benefit
from knowledge and advancements resulting from the use of big data research. This is
particularly important in the context of urban public health and digital epidemiology, as
the use of big data in these fields can help answer highly relevant and pressing descriptive
(what is happening), predictive (what could happen), and prescriptive (why it happened)
research questions [54]. A brief summary of the main points discussed in this section can
be found in Figure 2. We divide our proposed solutions in this commentary into three main
domains: (1) good research practice, (2) scientific communication and publication, and
(3) education.

3.1. Good Research Practice

Practices, such as pre-registration of protocols, predefining research questions and
hypotheses, publicly sharing data analysis plans, and communicating through reporting
guidelines, can improve the quality and reliability of research and results [55,56]. For
experimental studies, clear and complete reporting and documentation are essential to allow
for reproduction. Observational studies can also be registered on well-established registries,
such as on clinicaltrials.gov. Importantly, pre-registration does not preclude publishing
exploratory results; rather, it encourages such endeavours to be explicitly described as
exploratory, with defined hypotheses and expected outcomes, which is appropriate [35,37].

clinicaltrials.gov
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Lack of data access is another key challenge to reproducibility. Adoption of open-
science practices, including sharing of data and code, represents a partial solution to this
issue [57,58], acknowledging that not all data can be shared openly owing to privacy
concerns. Similarly, transparent descriptions of data collection and analytic methods
are necessary for reproduction [59]. For example, in the analysis of human mobility,
which has applications in a wide range of fields, including public health and digital
epidemiology [60,61], the inference of ‘meaningful’ locations [62] from mobility data has
been approached with a multitude of methods, some of which lack sufficient documentation.
Whereas a research project using an undocumented method to identify subject homes
cannot be reproduced, a project using Chen and Poorthius’s [63] R package ‘homelocator‘,
which is open source and freely available, could be.

Likewise, a case could be made to collaboratively share big data within research
networks and IT infrastructures. An example of a project tackling this issue in the context
of public health is currently being developed by the Swiss Learning Health System (SLHS),
focusing on the design and implementation of a metadata repository with the goal of
developing Integrated Health Information Systems (HISs) in the Swiss context [64,65]. The
implementation of such repositories and data-management systems allows for retrieval of
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and access to information; nevertheless, as information systems develop, new challenges
arise, particularly when it comes to infrastructure as well as legal and ethical issues, such
as data privacy. Solutions are currently in development; it is likely that decentralised data
architectures based on blockchain will play an important role in integrated care and health
information models [66]. We briefly expand on this topic in the Anticipated Challenges
section below.

The adoption of appropriate big data handling techniques and analytical methods
is also important to ensure the findability, accessibility, interoperability, and reusability
(FAIR) [67] of both data and research outcomes [68]. Such characteristics allow for different
stakeholders to use and reuse data and research outcomes for further research, replication,
or even implementation purposes.

Complete and standardised reporting of aspects discussed in this section, for instance,
in Reproducibility Network Groups, allows for meta-research and meta-analyses, the
detection and minimization of publication bias, and the evaluation of the adherence of
researchers to guidelines focused on ensuring scientific integrity. The use of checklists by
individual researchers, research groups, departments, or even institutions can motivate
the implementation of good research practices as well as clear and transparent reporting,
ultimately improving research integrity [69]. Such checklists can serve as training tools for
younger researchers, as well as offer practice guidelines to ensure quality research.

Senior researchers and research institutions are vital when it comes to tackling these
challenges as well. The adoption of principles for research conduct, such as the Hong
Kong principles, can help minimise the use of questionable research practices [70]. These
principles are to: (1) assess responsible research practices; (2) value complete reporting;
(3) reward the practice of open science; (4) acknowledge a broad range of research activities;
and (5) recognise essential other tasks, such as peer review and mentoring [71]. The
promotion of these principles by mentors and institutions is a cornerstone of good research
practices for younger researchers.

3.2. Scientific Communication

Scientific communication, not only between researchers but also between institutions,
should be promoted. Recently, requirements for researchers to make data public or open
source have grown popular among journals and major funding agencies in the US, Europe,
and globally; this is an important catalyst for open science and addressing issues such as
reproducibility [72].

Likewise, publication and sharing of protocols, data, code, analysis, and tools are
important. This not only facilitates reproducibility but also promotes openness and trans-
parency [73]. For example, the Journal of Memory and Language adopted a mandatory
data-sharing policy in 2019. An evaluation of this policy implementation found that data
sharing increased more than 50% and the strongest predictor for reproducibility was the
sharing of analysis code, increasing the probability of reproducibility by 40% [57]. Such
practices are also fostered by the creation and use of infrastructure, such as the aforemen-
tioned SoBigData, and reproducibility network groups, such as the Swiss Reproducibility
Network, a peer-lead group that aims to improve both replicability and reproducibility [74],
improve communication, collaboration, and encourage the use of rigorous research practices.

When publishing or communicating their work, researchers should also keep in
mind that transparency regarding whether studies are exploratory (hypothesis forming) or
confirmatory (hypothesis testing) is important to distinguish from testing newly formed
hypotheses and the testing of existing ones [75]; this is particularly important for inform-
ing future research. Journal reviewers and referees should also motivate researchers to
accurately report this.

Similarly, when publishing results, the quality, impact, and relevance of a publication
should be valued more than scores, such as the impact factor, to avoid “publishing for
numbers” [76]. This would, of course, require a shift in the priorities and views shared
within the research community and may be a challenging change to effect.
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Academic editors can also play an important role by avoiding practices, such as ‘cherry-
picking’ publications, either because of statistical significance of results or notoriety of the
authors. Instead, practical significance, topic relevance, and replication studies should
be important factors to consider, as well as valuing the reporting of negative results. It is
important to acknowledge, though, that scientific publication structures face an important
number of challenges that hinder the implementation of these practices. Some of these
points are mentioned in the Challenges section that follows.

3.3. Education

Academic institutions have the responsibility to educate researchers in an integral
way, covering not only the correct implementation of methodological approaches and
appropriate reporting but also how to conduct research in an ethical way.

First, competence and capacity building should be addressed explicitly through
courses, workshops, and competence-building programs aimed at developing techni-
cal skills, good research practices, and adequate application of methods and analytical
tools. Other activities such as journal clubs can allow researchers to exchange and become
familiar with different methodologies, stay up to date with current knowledge and on-
going research, and develop critical thinking skills [77,78], while fostering a mindset for
continuous growth and improvement.

Second, by incorporating practice-based education, particularly with research groups
that already adhere to best practices, such as the Hong Kong principles, institutions can
foster norms valuing reproducibility implicitly as an aspect of researcher education.

4. Expected Outcomes

Ideally, successful implementation of the approaches proposed in Figure 2, and the
methodological and analytical approaches, such as the standardised protocols that were
suggested by Simera et al. [55] and the Equator Network reporting guidelines [79], can
potentially lead to a cultural shift in the research community. This, in turn, can enhance
transparency and the quality of public-health research using big data by fostering interdisci-
plinary programs and worldwide cooperation among different health-related stakeholders,
such as researchers, policy makers, clinicians, providers, and the public. Improving research
quality can lead to greater value and reliability, while decreasing research waste, thus, im-
proving the cost–value ratio and trust between stakeholders [80,81], and as previously
stated, facilitating translation and implementation of research findings [18].

Just in the way replicability is fundamental in engineering to create functioning and
reliable products or systems, replicability is also necessary for modelling and simulation
in the fields of urban public health and digital epidemiology [82]. Simulation approaches
built upon reproducible research allow for the construction of accurate prediction models
with important implications for healthcare [83] and public health [84]. In the same way,
reproduction and replication of results for model validation are essential [85–87].

The importance of reducing research waste and ensuring the value of health-related re-
search is reflected in the existence of initiatives, such as the AllTrials Campaign, EQUATOR
(enhancing the quality and transparency of health research), and EVBRES (evidence-based
research), which promote protocol registration, full methods, and result reporting, and new
studies that build on an existing evidence base [79,88–90].

Changes in editorial policies and practices can improve critical reflection on research
quality by the authors. Having researchers, editors, and reviewers use guidelines [91], such
as ARRIVE [92] in the case of pre-clinical animal studies or STROBE [93] for observational
studies in epidemiology, can significantly improve reporting and transparency. For example,
an observational cohort study analysing the effects of a change in the editorial policy
of Nature, which introduced a checklist for manuscript preparation, demonstrated that
reporting risk of bias improved substantially as a consequence [94].

A valuable outcome of adopting open science approaches that could result in im-
proved communication, shared infrastructure, open data, and collaboration between re-
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searchers and even institutions is the implementation of competitions, challenges, or even
‘hackathons’. These events are already common among other disciplines, such as computer
science, the digital tech sector, and social media research, and are becoming increasingly
popular in areas related to public health. Some examples include the Big Data Hackathon
San Diego, where the theme for 2022 was ‘Tackling Real-world Challenges in Health-
care’ [95], and the Yale CBIT Healthcare Hackathon of 2021, which aimed to build solutions
to challenges faced in healthcare [96]. In addition to tackling issues in innovative ways,
hackathons and other similar open initiatives invite the public to learn about and engage
with science [97] and can be powerful tools for engaging diverse stakeholders and training
beyond the classroom [98].

5. Anticipated Challenges

While the implementation of the approaches discussed (Figure 2) will ideally trans-
late to a significant reduction in research waste and improvement in scientific research
through standardization and transparency, there are also substantial challenges to consider
(Figure 3).
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First, not all researchers have the adequate resources or opportunities to take advan-
tage of new data that can be used to prevent, monitor, and improve population health. Early
career researchers in low-resource settings may be at a particular disadvantage. Among
these researchers, barriers to access and adequately using big data may not only be financial,
when funding is not available, but also technical, when the knowledge and tools required
are not available.

Similarly, events and activities among young researchers can facilitate technical devel-
opment, networking, and knowledge acquisition, ultimately improving research quality
and outcomes. Those who live in environments with limited resources, who are physically
isolated, or have limited mobility may not have access to these opportunities. It might be
possible to overcome some of these limitations with accessible digital solutions.

Much needed shifts in the research and publishing culture that currently enable Ques-
tionable Research Practices (QRPs), such as cherry picking (presenting favourable evidence
or results while hiding unfavourable ones), p-hacking (misusing data through relentless
analysis in order to obtain statistically significant results), HARKing (Hypothesizing After
the Results are Known), among others [59,99,100]. To overcome these particular challenges
embedded in modern day research, it is necessary to educate researchers about the scope
of misconduct, create structures to avoid it from happening, and scrutinize cases in which
these instances may be apparent to determine the actual motive [101].
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Conventional data storing and handling strategies are not sufficient when working
with big data, as these often impose additional monetary and computational costs. Some
solutions are available to tackle these issues, such as cloud computing and platforms that
allow end users to access shared resources over the internet [102]; Data Lakes, consisting of
centralized repositories that allow for data storage and analysis [103]; and Data Mesh, a
platform architecture that distributes data among several nodes [104]. Unfortunately, these
solutions are not always easily accessible. Additionally, use of these platforms has given
rise to important debates concerning issues, such as data governance and security [105].

The use of big data, and especially the use of personal and health information, raises
privacy issues. The availability of personal and health information that results from the
digital transformation represents a constant challenge when it comes to drawing a line
between public and private, sensitive and non-sensitive information, and adherence to
ethical research practices [106].

Ethical concerns are not limited to privacy; while big data entails the use of increas-
ingly complex analytical methods that require expertise in order to deal with noise and
uncertainty, there are several additional factors that may affect the accuracy of research
results [107]. For example, when using machine learning approaches to analyse big data,
methods should be cautiously chosen to avoid issues, such as undesired data-driven vari-
able selection, algorithmic biases, and overfitting the analytic models [108]. Complexity
increases the need for collaboration, which makes “team science” and other collaborative
problem-solving events (such as Hackathons) increasingly popular. This leads to new
requirements to adequately value and acknowledge contributorship [109].

Because statistical methods are becoming increasingly complex and the quantity of
data is becoming greater, the number of scientific publications is also increasing, making it
challenging for already-flawed peer-review systems to keep up by providing high-quality
reviews to more and more complex research. Currently, there are mainly four expectations
from peer-review processes: (i) assure quality and accuracy of research, (ii) establish a
hierarchy of published work, (iii) provide fair and equal opportunities, and (iv) assure
fraud-free research [110]; however, it is not certain whether current peer-review procedures
achieve or are capable of delivering such expectations. Some solutions have been proposed
to address these issues, such as the automation of peer-review processes [111] and the
implementation of open review guidelines [112–114].

6. Conclusions

Big data research presents a unique opportunity for a cultural shift in the way public-
health research is conducted today. At the same time, big data use will only result in
a beneficial impact to the field if used adequately, taking the appropriate measures so
that their full potential can be harnessed. The inherent complexity in working with large
data quantities requires a clear and transparent framework at multiple levels, ranging
from protocols and methods used by individual scientists to institution’s guiding dogma,
research, and publishing practices.

The solutions summarized in this commentary are aimed at enhancing results, repro-
ducibility, and scientific integrity; however, we acknowledge that these solutions are not
exhaustive and there may be many other promising approaches to improve the integrity of
big data research as it applies to public health. The solutions described in this commentary
are in line with “a manifesto for reproducible science” published in the Nature Human
Behavior journal [101]. Importantly, reproducibility is only of value if the findings are
expected to have an important impact on science, health, and society. Reproducibility of
results is highly relevant for funding agencies and governments, who often recognize the
importance of research projects with well-structured study designs, defined data-processing
steps, and transparent analysis plans (e.g., statistical analysis plans) [115,116]. For imaging
data, such as radiologic images, analysis pipelines have been shown to be suitable to struc-
ture the analysis pathway [117]. This is specifically important for big data analysis where
interdisciplinarity and collaboration become increasingly important. The development
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and use of statistical and reporting guidelines support researchers in making their projects
more reproducible [118].

Transparency in all the study-design steps (i.e., from hypothesis generation to availabil-
ity of collected data and code) is specifically relevant for public health and epidemiological
research in order to encourage funding agencies, the public, and other researchers and
relevant stakeholders to trust research results [119]. Similarly, as globalization and dig-
italization increase the diffusion of infectious diseases [120] and behavioural risks [121],
research practices that foster reproducible results are imperative to implement and diffuse
interventions more swiftly.

We believe that these recommendations outlined in this commentary are not unique
to big data and that the entire research community could benefit from the use of these
approaches [122–127]. However, what has been detailed in this commentary is specifically
pertinent for big data, as an increase in the volume and complexity of data produced
requires more structure and consequent data handling to avoid research waste. With clearly
defined and openly shared guidelines, we may strengthen the quality of current research
and initiate a shift on multiple levels: at the individual level, the institutional level, and
the international level. Some challenges are to be expected, particularly when it comes to
finding the right incentives for these changes to stick, but we are confident that with the
right effort, we can put scientific integrity back at the forefront of researchers’ minds and,
ultimately, strengthen the trust of the population in public-health research and, specifically,
public-health research leveraging big data for urban public health and digital epidemiology.

The timely implementation of these solutions is highly relevant, not only to ensure
the quality of research and scientific output, but also to potentially allow for the use of
data sources that originated without public health in mind, spanning various fields that are
relevant to urban public health and digital epidemiology. As outlined in this commentary,
such data can originate from multiple sources, such as social media, mobile technologies,
urban sensors, and GIS, to mention a few. As such data sources grow and become more
readily available, it is important for researchers and the scientific community to be prepared
to use these valuable and diverse data sources in innovative ways to advance research
and practice. This would allow for the expanded use of big data to inform evidence-based
decision making to positively impact public health.
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