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Abstract 

With the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) that are 

associated with various phenotypes has been accelerated. An open question is whether SNPs identified 

with genome-wide significance in earlier genome-wide association studies (GWAS) are replicated also in 

later GWAS conducted in biobanks. To address this question, the authors examined a publicly available 

GWAS database and identified two, independent GWAS on the same phenotype (an earlier, “discovery” 

GWAS and a later, replication GWAS done in the UK biobank). The analysis evaluated 136,318,924 

SNPs (of which 6,289 had reached p<5e-8 in the discovery GWAS) from 4,397,962 participants across 

nine phenotypes. The overall replication rate was 85.0% and it was lower for binary than for quantitative 

phenotypes (58.1% versus 94.8% respectively). There was a18.0% decrease in SNP effect size for binary 

phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery SNP effect size, 

phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that 

predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication 

may often reflect lack of power rather than genuine false-positive findings, these results provide insights 

about which discovered associations are likely to be seen again across subsequent GWAS.  
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Introduction 

Genome-wide association studies (GWAS) have already a long track record and have resulted in the 

discovery of tens of thousands of genetic associations for various traits and phenotypes. Polygenic risk 

scores (1), innovative drug discovery (2), and gene-editing (3) have all been enhanced, or even based on, 

GWAS results. Genome-wide association studies investigate the association of individual single 

nucleotide polymorphisms (SNPs) on a phenotype of interest (for example coronary artery diseases) (4). 

Most GWAS identify SNPs with, individually, small effects (4). This supports the notion that most 

diseases are polygenic, rather than monogenic, in nature (5).   

 

To observe the small effect of individual SNPs, GWAS have relied on increasingly larger sample sizes 

(4). Recent advances have seen rapidly increasing sample sizes, particularly with the establishment of 

large biobanks. The most widely used and analyzed biobank in human genetics is the UK Biobank 

(UKBB) (6). Analyses done in the UK biobank and other similar biobanks have the opportunity not only 

to identify new associations but also to replicate previously proposed associations that arose from other 

GWAS investigations. It is not unexpected that some SNPs that were considered to be associated with a 

phenotype in an earlier GWAS may not be replicated in a subsequent GWAS. Even if they are replicated, 

their effect size may change, e.g. because of the winner’s curse phenomenon (7), where early discoveries 

see attenuation of their effect size when they are replicated in subsequent studies. This has implications 

for all scientific progress, and even patient care, (i.e. polygenic risk scores) reliant on GWAS results, if 

these scores include variants that have null effects or effects that are smaller than those anticipated based 

on their earlier discovery profile.  

 

Although several studies have looked at SNP replication for specific phenotypes, it remains broadly 

unclear across phenotypes how often SNPs replicate, how this varies between binary and quantitative 

traits, at different p-values, across varying effect sizes, and how effect sizes change between earlier, 

smaller GWAS and later, larger GWAS examining the same phenotype. A most interesting comparison 

would be to contrast earlier GWAS versus the UK biobank, which has become a standard, widely used 

resource. We set out to address these questions, and, from our results, built a model to predict SNP 

replication.      

 

Methods 

 

Data acquisition 

To determine the reproducibility of SNPs between an earlier GWAS and the UK biobank, we identified 

two, independent GWAS on the same trait, one without data from the UK biobank and the second being 

done on UK biobank data. To do this, we systematically searched a publically available database of 

genome-wide association studies (GWAS) (available at: https://atlas.ctglab.nl/) (8) for GWAS that had 

been conducted for the same trait (e.g. systolic blood pressure) first using data independent of the UK 

Biobank (UKBB) and then a second, independent GWAS using exclusively UKBB data. Thus a trait was 

eligible if there were two independent GWAS available for it; one not using UKBB data (hereafter 

referred to as: discovery GWAS) and one using UKBB data (hereafter: replication GWAS). All discovery 

GWAS occured before the replication GWAS. Further inclusion criteria was GWAS conducted in 

European subjects (or results available for exclusively Europeans) and GWAS with more than 50 

genome-wide significant SNPs, so as to allow having a meaningful number of discoveries to be assessed 
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for replication. More information on the GWAS database we searched and its accompanying paper (8) are 

available in the appendix.  

 

Determination of reproducibility 

To determine the reproducibility of SNPs in the discovery and replication GWAS we performed three 

broad steps: 1. Determined overlap of SNPs between discovery and replication GWAS (via rsID) and 

only included SNPs shared between two GWAS cohorts. We then identified the SNPs that reached 

genome-wide significance (defined consistently as P<5e-8, regardless of the threshold that the original 

authors might have used) in the discovery GWAS - these were the SNPs we determined the 

reproducibility of.  2. Aligned the effect allele between the discovery and replication GWAS, and 

consequently inverted the effect size if effect alleles did not originally match and 3. Classified SNPs as 

replicated if they reached genome-wide significant (P<5e-8) in both discovery and replication GWAS and 

had congruent effect directions in both GWAS (e.g. odds ratio (OR) above 1 in both GWAS). All SNP 

effect sizes were converted to OR before reproducibility was determined via the Chinn formula (9). Thus, 

SNP effect sizes that were originally produced from linear models for quantitative (continuous) traits 

were converted to OR. Further details appear in the appendix.  

 

Calculating reproducibility 

We calculated the replication rate for each included trait individually, for all traits collectively, and for 

binary (e.g. coronary artery disease) and quantitative (e.g. diastolic blood pressure) traits separately. To 

calculate replication rate for each individual trait we calculated a simple proportion (e.g. [number of SNPs 

replicated] / [number of SNPs shared between discovery and replication GWAS]). To calculate the 

replication rate for all traits collectively we constructed a inverse-variance meta-analysis (10) using fixed-

effects. Further, we constructed similar inverse-variance meta-analysis (10) to determine the replication 

rate for binary and quantitative traits; including only traits recorded in a binary fashion (yes/no) or on a 

continuous scale, respectively. To explore the replication rate across P-values and odd ratios, we also 

performed meta-analysis assessing the replication of SNPs with certain P-value and OR characteristics 

(from the discovery GWAS). We calculated the reproducibility of SNPs across the following discovery 

GWAS P-value categories: 5e-8 to 5e-9, 5e-9 to 5e-10, 5e-10 to 5e-11, and <5e-11. We calculated the 

reproducibility of SNPs across the following discovery GWAS OR categories: 1-1.05, 1.05-1.1, 1.1-1.15, 

1.15-1.2, 1.2-1.3, 1.3-1.4, >1.4.  

 

Quantifying the change in effect size between GWAS 

To determine if a change in SNP effect size occured between the earlier, discovery GWAS and the later, 

replication GWAS in the UKBB we constructed a single variate linear model, with the discovery OR as 

the predictor variable and replication OR as the outcome variable. As stated above (see ‘Determination of 

reproducibility’), we converted all SNP effect sizes to an OR via the Chinn formula (9). Then, to help 

interpret the output from this model, we converted all OR values to above 1 (using the formula 1/OR if 

the original SNP OR was <1) Finally we combined SNPs across all traits for the model. From the 

regression model, we determined the regression coefficient for the discovery OR and interpreted this 

coefficient as the change in OR between GWAS (e.g. a regression coefficient of 0.80 would imply that 

20% decrease in OR between discovery and replication GWAS). We only quantified the change in effect 

size of SNPs that were replicated, and also for all SNPs that had reached genome-wide significance in the 
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discovery GWAS, regardless of whether they were replicated or not in the replication GWAS. We 

performed similar analyses for binary and quantitative traits individually.  

 

Prediction model for SNP replication 

First we constructed a multivariate logistic regression model to examine the association of our predictors 

(odds ratio, p-value, p-value category (as above), and trait characteristic (binary vs. quantitative) on 

replication. We initially split our data into test and train sets (split, randomly, by half). Using the train set, 

we constructed logistic regression model using the following predictors: odds ratio (numeric, not 

category), p-value category, and trait characteristic (binary vs. quantitative). We then tested the 

constructed model on the test set. We report the model’s predictive accuracy via the following metrics: 

sensitivity, specificity, and area under the curve (AUC) all with 95% confidence intervals. We further 

assessed model fit via McFadden’s R
2
.  

 

 

Results 

 

We analysed 136,318,924 SNPs from 4,397,962 participants across nine different phenotypes (from 18 

GWAS, 9 pairs) (table 1). The traits included were: asthma, systolic blood pressure (SBP), eczema, body 

mass index (BMI), waist circumference, hip circumference, coronary artery disease (CAD), resting pulse 

rate, and diastolic blood pressure (DBP). Of the 136,318,924 included SNPs, 6,289 reached genome-wide 

significance (P < 5e-8) in the discovery GWAS (table 1 and eTable1).  

 

Replication rate 

Of the 6,289 SNPs that were genome-wide significant in the discovery cohort, 5,343 were replicated in 

the replication cohort (85.0%, 95% Confidence Interval (CI): 84.1% to 85.8%) (eFigure 1). Results varied 

substantially between binary and quantitative traits; the replication rate for exclusively binary phenotypes 

was 58.1% (95%CI: 55.7% to 60.4%) (eFigure 2), compared with 94.8% (95%CI: 94.2% to 95.4%) for 

quantitative traits (eFigure 3). The replication rate varied across the included phenotypes from 52.7% to 

99.6% (Figure 1).  

 

Furthermore, the replication rate varied across discovery GWAS P-values and OR (Figure 2, Figure 3, 

eFigure 4 and eFigure 5). As is expected, the replication rate increased as the discovery GWAS SNP P-

value decreased (table 2); the highest replication was observed with a P-value <5e-11 (94% (95%CI: 93% 

to 95%). A less consistent pattern was observed with discovery GWAS OR, almost all OR >/= 1.2 were 

replicated (table 2), however a similarly large number of SNPs with a discovery OR of >1 to <1.05 were 

replicated (94.3% (95%CI: 93.5% to 95.0%)). This is likely due to the fact that all SNPs >1 to <1.05 were 

for quantitative traits, with no SNPs corresponding to binary traits (figure 4).  

 

Change in effect size between GWAS 

When considering SNPs that were replicated in both cohorts, we found a 9.6% (95%CI: 8.9% to 10.2%) 

decrease in replicated SNP OR between discovery and replication cohorts (Figure 3), for all phenotypes 

collectively. This decrease in effect size was larger for binary traits (18.0% (95%CI: 16.0% to 20.0%), 

eFigure 6), however for quantitative traits an increase in effect size was observed (12.0% (95%CI: 11.0% 

to 13.0%), eFigure 6). The change in effect size varied substantially across phenotypes (eFigure 7).  
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When considering SNPs that reached genome-wide significance in the discovery cohort (and weren’t 

necessarily replicated), we found a 16.4% (95%CI: 82.8% to 84.4%) decrease in SNP OR between 

discovery and replication cohorts, for all phenotypes collectively. For binary traits this decrease was 

13.6% (95%CI: 11.4% to 15.9%), whereas we observed a 10.9% (95%CI: 9.9% to 11.9%) increase for 

quantitative traits.    

 

Predicting SNP replication 

First, from our training model the following predictors were significantly associated with SNP 

replication: discovery cohort SNP odds ratio (figure 4), discovery cohort trait (binary or quantitative), 

discovery cohort SNP p-value <5e-10 & >5e-11, and discovery cohort SNP p-value <5e-11 (both 

categorical variables with p-value <5e-8 & >5e-9 as reference) (eTable2). P-value as a continuous 

variable and p-value <5e-9 & >5e-10 were not significant (eTable2).  

 

When we applied our training model to our test data set, we found an area under the Receiver Operator 

Curve (ROC) of 0.90 (95%CI: 0.89 to 0.91) corresponding to a sensitivity and specificity of 70.9% 

(95%CI: 69.2% to 84.5%) and 93.6% (95%CI: 80.0% to 95.6%) respectively (eFigure 8). We found a 

McFadden’s R
2
 of  0.33.  

 

 

Discussion 

 

We analysed 136,318,924 SNPs from 4,397,962 participants across nine different phenotypes (18 

GWAS). Of these 136,318,924 SNPs, 6,289 SNPs reached genome-wide significance in the respective 

discovery GWAS, of which 5,343 were replicated in their replication GWAS (85.0%, 95% Confidence 

Interval (CI): 84.1% to 85.8%). Replication rate varied substantially between binary and quantitative 

phenotypes and it was much lower in the former. Further, replication rate varied across P-value and OR of 

discovery GWAS SNP. We also found that SNP odds ratios (OR) decreased between discovery and 

replication GWAS for binary phenotypes, but increased for quantitative phenotypes. Lastly, we developed 

and then validated a model to predict SNP replication, and found it to be accurate (0.90 (95%CI: 0.89 to 

0.91)).  

 

Implications 

Our results have implications for the potential validity and utility of GWAS results. First, the SNP 

replication rate for quantitative phenotypes is very high; implying that quantitative GWAS in the UKBB 

had likely reached sufficient power to accurately detect all SNPs that were truly associated with a 

phenotype and that had been discovered by earlier GWAS efforts. The high replication rate observed for 

quantitative traits may also reflect the precision and relative ease in which quantitative traits can be 

measured. The converse of this, the likely measurement error and ultimate definition heterogeneity of 

binary phenotypes, may be one explanation for the relatively low rate of replication in binary phenotypes. 

For instance, binary phenotypes often represent complex clinical diseases that can have a) broad 

diagnostic criteria (e.g. angina, and myocardial infarction are often captured under “Coronary Artery 

Disease”) and b) are defined via an array of data sources, of varying quality. The UKBB, for instance, 

defines their phenotypes with ICD codes based on linked electronic health records (EHR).(6) While this 
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probably represents the best current method to define phenotypes in large cohorts, EHR data is “messy” 

and likely to include some “administrative and clinical error” (11). An improvement in the phenotyping in 

data used for GWAS of binary phenotypes is likely to result in improved SNP replication. This may be 

even more crucial for phenotypes where we saw low replication rates, e.g. eczema.   

 

While the quality of phenotyping will eventually improve, in the meantime the modest replication rate we 

observed poses questions about the best way to utilize current binary phenotype GWAS results. On the 

one hand, it is encouraging that much scientific progress has been accomplished with current binary 

GWAS. For instance, polygenic risk scores based on current binary GWAS have been shown to 

accurately predict complex, common phenotypes (1,12,13). With improved phenotyping, it seems 

plausible that these scores may continue to improve. Nevertheless, in the meantime there may be other 

ways to enhance current binary GWAS results for polygenic risk scores. First, our results clearly show a 

superior replication rate with quantitative phenotypes. These quantitative phenotypes are often more in 

line with physiological processes (e.g. systolic blood pressure) than clinical diseases (e.g. coronary artery 

disease). As such, future GWAS that directly use metabolomic data as outcomes (such as protein 

expression) are likely to, similarly, have higher accuracy than clinical disease phenotypes. Future research 

merging metabolomic outcomes and GWAS may be a useful addition to our scientific knowledge. 

Second, almost all SNPs for binary traits with an OR >/= 1.2 were replicated, whereas the majority of 

SNPs with an OR below 1.2 were not replicated and this may reflect lack of power in the replication 

dataset. Of note, many of the replication UKBB datasets that we considered here did not use the full 

UKBB data, and power is likely to improve as complete biobank data are used and many biobanks are 

combined. 

 

Limitations in comparison to previous literature  

We were surprised to find only nine phenotypes where two GWAS had been conducted in truly 

independent participants and where inclusion or not of UKBB data was a distinguishing feature. It is 

plausible that further independent GWAS on the same traits exist, although this seems unlikely given the 

thorough and systematic search we performed of the GWAS atlas (8). It is, however, likely that more 

GWAS are available, but they contain overlapping samples between GWAS (i.e. two GWAS of the same 

phenotype are not truly independent as they contain similar cohorts of participants), aren’t of sufficient 

quality to be included in the GWAS Atlas, are conducted in a non-European population, or have not made 

their summary statistics available. A earlier study (14) reports building a model for SNP replication using 

GWAS for over 50 phenotypes, although it is unclear what, if any, measures were taken to determine if 

these numerous GWAS were truly independent i.e. did not include overlapping participants. Also, this 

study validated their model in two, small GWAS of one trait. Furthermore, this study didn’t actually 

quantify a SNP replication rate, nor did they stratify their results by binary and quantitative phenotypes. A 

further limitation of our study is that we didn’t include other SNP features, ideally we would have liked to 

include, for instance, minor allele frequency as a predictor in our model. However, this data was sparsely 

available in the replication (non-UKBB) GWAS. Lastly, it should be acknowledged that large disease-

specific consortiums generally qualitatively describe the replication of SNPs as their consortium 

increases. Our study quantifies this formally and, importantly, quantifies replication across more than one 

phenotype.  

 

Future research 
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We have identified a number of future research priorities. First, improving the phenotyping of binary 

phenotypes seems to be a priority for GWAS. Second, to facilitate an assessment of SNP replication, 

future independent cohorts are likely required. Many efforts to do this are already underway (e.g. AllofUs 

cohort and Millions Veteran Program).  

 

Conclusions 

The replication of SNPs discovered from GWAS was high for quantitative phenotypes. Genome-wide 

Association Studies appear to be entirely sufficient to detect SNPs associated with quantitative traits. For 

binary traits, however, the replication rate is modest. We have built a simple prediction model that can 

accurately ascertain SNP replication in later GWAS. It may be of use for researchers and clinicians that 

utilize GWAS results.  

 

 

 

Table 1 

 

Disease 

Total 

sample 

size 

Number of 

Genome-wide 

significant 

SNPs 

Number of SNPs 

that are replicated 

(%) 

Asthma 225,309 889 494 (56%) 

SBP 430,797 110 107 (97%) 

Eczema 330,142 640 337 (53%) 

BMI 613,900 1835 1756 (96%) 

Waist Circumference 618,033 937 827 (89%) 

Hip circumference 598,925 1083 1043 (96%) 

Coronary Artery 

Disease/IHD 387,786 159 149 (94%) 

Resting Heart 

rate/Pulse Rate 447,198 549 547 (99%) 

DBP 430,806 87 83 (95%) 

Total sample size is the sample size of the discovery and replication GWAS collectively.  

 

Table 2  

 

Metric Category Replication rate (95%CI) 

P-Value 

5e-8 to >5e-9 72% (69% to 74%) 

5e-9 to >5e-10 78% (75% to 80%) 
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5e-10 to >5e-11 81% (77% to 83%) 

<5e-11 94% (93% to 95%) 

Odds Ratio 

1-1.05 94.3% (93.5% to 95.0%) 

1.05-1.1 70.0% (66.8% to 72.9%) 

1.1-1.15 62.5% (59.4% to 65.6%) 

1.15-1.2 69.3% (64.3% to 73.9%) 

1.2-1.3 98.7% (91.0% to 99.8%) 

1.3-1.4 100%* 

>1.4 100%* 

* Paucity of data prevented formal meta-analysis 

 

 

Figure 1  
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Figure 2 

 
 

Figure 3 

 
 

 

Figure 4 
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