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Abstract
With the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) associated with various
phenotypes has accelerated. An open question is whether genome-wide signi�cant SNPs identi�ed in earlier genome-wide
association studies (GWAS) are replicated in later GWAS conducted in biobanks. To address this, we examined a publicly
available GWAS database and identi�ed two, independent GWAS on the same phenotype (an earlier, “discovery” GWAS
and a later, “replication” GWAS done in UK biobank). The analysis evaluated 136,318,924 SNPs (of which 6,289 reached
p<5e-8 in the discovery GWAS) from 4,397,962 participants across nine phenotypes. The overall replication rate was
85.0%; although lower for binary than quantitative phenotypes (58.1% versus 94.8% respectively). There was a 18.0%
decrease in SNP effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery
SNP effect size, phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that
predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication may re�ect lack of
power rather than genuine false-positives, these results provide insights about which discovered associations are likely to
be replicated across subsequent GWAS.

Introduction
Genome-wide association studies (GWAS) have already a long track record and have resulted in the discovery of tens of
thousands of genetic associations for various traits and phenotypes. Polygenic risk scores 1, innovative drug discovery 2,
and gene-editing 3 have all been enhanced, or even based on, GWAS results. Genome-wide association studies investigate
the association of individual single nucleotide polymorphisms (SNPs) on a phenotype of interest (for example coronary
artery diseases) 4. Most GWAS identify SNPs with, individually, small effects 4. This supports the notion that most
diseases are polygenic, rather than monogenic, in nature 5.

To observe the small effect of individual SNPs, GWAS have relied on increasingly larger sample sizes 4. Recent advances
have seen rapidly increasing sample sizes, particularly with the establishment of large biobanks. The most widely used
and analyzed biobank in human genetics is the UK Biobank (UKBB) 6. Analyses done in the UK biobank and other similar
biobanks have the opportunity not only to identify new associations but also to replicate previously proposed
associations that arose from other GWAS investigations. It is not unexpected that some SNPs that were considered to be
associated with a phenotype in an earlier GWAS may not be replicated in a subsequent GWAS. Even if they are replicated,
their effect size may change, e.g. because of the winner’s curse phenomenon 7, where early discoveries see attenuation of
their effect size when they are replicated in subsequent studies. This has implications for all scienti�c progress, and even
patient care, (i.e. polygenic risk scores) reliant on GWAS results, if these scores include variants that have null effects or
effects that are smaller than those anticipated based on their earlier discovery pro�le.

Although several studies have looked at SNP replication for speci�c phenotypes, it remains broadly unclear across
phenotypes how often SNPs replicate, how this varies between binary and quantitative traits, at different p-values, across
varying effect sizes, and how effect sizes change between earlier, smaller GWAS and later, larger GWAS examining the
same phenotype. A most interesting comparison would be to contrast earlier GWAS versus the UK biobank, which has
become a standard, widely used resource. We set out to address these questions, and, from our results, built a model to
predict SNP replication.

Methods

Data acquisition
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To determine the reproducibility of SNPs between an earlier GWAS and the UK biobank, we identi�ed two, independent
GWAS on the same trait, one without data from the UK biobank and the second being done on UK biobank data. To do
this, we systematically searched a publically available database of genome-wide association studies (GWAS) (available
at: https://atlas.ctglab.nl/) 8 for GWAS that had been conducted for the same trait (e.g. systolic blood pressure) �rst using
data independent of the UK Biobank (UKBB) and then a second, independent GWAS using exclusively UKBB data. Thus a
trait was eligible if there were two independent GWAS available for it; one not using UKBB data (hereafter referred to as:
discovery GWAS) and one using UKBB data (hereafter: replication GWAS). All discovery GWAS occured before the
replication GWAS. Further inclusion criteria was GWAS conducted in European subjects (or results available for
exclusively Europeans) and GWAS with more than 50 genome-wide signi�cant SNPs, so as to allow having a meaningful
number of discoveries to be assessed for replication. More information on the GWAS database we searched and its
accompanying paper8 are available in the appendix. The code for this paper is available at:
https://github.com/jackosullivanoxford, speci�cally:
https://github.com/jackosullivanoxford/Repro_GWAS/blob/master/Data_cleaning_meta_analysis_regression_prediction).

Determination of reproducibility
To determine the reproducibility of SNPs in the discovery and replication GWAS we performed three broad steps: 1.
Determined overlap of SNPs between discovery and replication GWAS (via rsID) and only included SNPs shared between
two GWAS cohorts. We then identi�ed the SNPs that reached genome-wide signi�cance (de�ned consistently as P < 5e-8,
regardless of the threshold that the original authors might have used) in the discovery GWAS - these were the SNPs we
determined the reproducibility of. 2. Aligned the effect allele between the discovery and replication GWAS, and
consequently inverted the effect size if effect alleles did not originally match and 3. Classi�ed SNPs as replicated if they
reached genome-wide signi�cant (P < 5e-8) in both discovery and replication GWAS and had congruent effect directions in
both GWAS (e.g. odds ratio (OR) above 1 in both GWAS). All SNP effect sizes were converted to OR before reproducibility
was determined via the Chinn formula 9. Thus, SNP effect sizes that were originally produced from linear models for
quantitative (continuous) traits were converted to OR. Further details appear in the appendix.

Calculating reproducibility
We calculated the replication rate for each included trait individually, for all traits collectively, and for binary (e.g. coronary
artery disease) and quantitative (e.g. diastolic blood pressure) traits separately. To calculate replication rate for each
individual trait we calculated a simple proportion (e.g. [number of SNPs replicated] / [number of SNPs shared between
discovery and replication GWAS]). To calculate the replication rate for all traits collectively we constructed a inverse-
variance meta-analysis 10 using �xed-effects. Further, we constructed similar inverse-variance meta-analysis 10 to
determine the replication rate for binary and quantitative traits; including only traits recorded in a binary fashion (yes/no)
or on a continuous scale, respectively. To explore the replication rate across P-values and odd ratios, we also performed
meta-analysis assessing the replication of SNPs with certain P-value and OR characteristics (from the discovery GWAS).
We calculated the reproducibility of SNPs across the following discovery GWAS P-value categories: 5e-8 to 5e-9, 5e-9 to
5e-10, 5e-10 to 5e-11, and < 5e-11. We calculated the reproducibility of SNPs across the following discovery GWAS OR
categories: 1-1.05, 1.05–1.1, 1.1–1.15, 1.15–1.2, 1.2–1.3, 1.3–1.4, > 1.4.

Quantifying the change in effect size between GWAS
To determine if a change in SNP effect size occured between the earlier, discovery GWAS and the later, replication GWAS
in the UKBB we constructed a single variate linear model, with the discovery OR as the predictor variable and replication
OR as the outcome variable. As stated above (see ‘Determination of reproducibility’), we converted all SNP effect sizes to
an OR via the Chinn formula 9. Then, to help interpret the output from this model, we converted all OR values to above 1
(using the formula 1/OR if the original SNP OR was < 1) Finally we combined SNPs across all traits for the model. From
the regression model, we determined the regression coe�cient for the discovery OR and interpreted this coe�cient as the
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change in OR between GWAS (e.g. a regression coe�cient of 0.80 would imply that 20% decrease in OR between
discovery and replication GWAS). We only quanti�ed the change in effect size of SNPs that were replicated, and also for
all SNPs that had reached genome-wide signi�cance in the discovery GWAS, regardless of whether they were replicated or
not in the replication GWAS. We performed similar analyses for binary and quantitative traits individually.

Prediction model for SNP replication
First we constructed a multivariate logistic regression model to examine the association of our predictors (odds ratio, p-
value, p-value category (as above), and trait characteristic (binary vs. quantitative) on replication. We initially split our
data into test and train sets (split, randomly, by half). Using the train set, we constructed logistic regression model using
the following predictors: odds ratio (numeric, not category), p-value category, and trait characteristic (binary vs.
quantitative). We then tested the constructed model on the test set. We report the model’s predictive accuracy via the
following metrics: sensitivity, speci�city, and area under the curve (AUC) all with 95% con�dence intervals. We further
assessed model �t via McFadden’s R2.

Results
We analysed 136,318,924 SNPs from 4,397,962 participants across nine different phenotypes (from 18 GWAS, 9 pairs)
(Table 1). The traits included were: asthma, systolic blood pressure (SBP), eczema, body mass index (BMI), waist
circumference, hip circumference, coronary artery disease (CAD), resting pulse rate, and diastolic blood pressure (DBP). Of
the 136,318,924 included SNPs, 6,289 reached genome-wide signi�cance (P < 5e-8) in the discovery GWAS (Table 1 and
eTable1).

Table 1
We analysed 136,318,924 SNPs from 4,397,962 participants across nine different phenotypes (from 18 GWAS, 9 pairs)

(table 1).
 

Disease Total sample
size

Number of Genome-wide
signi�cant SNPs

Number of SNPs that are
replicated (%)

Asthma 225,309 889 494 (56%)

SBP 430,797 110 107 (97%)

Eczema 330,142 640 337 (53%)

BMI 613,900 1835 1756 (96%)

Waist Circumference 618,033 937 827 (89%)

Hip circumference 598,925 1083 1043 (96%)

Coronary Artery
Disease/IHD

387,786 159 149 (94%)

Resting Heart rate/Pulse
Rate

447,198 549 547 (99%)

DBP 430,806 87 83 (95%)

Total sample size is the sample size of the discovery and replication GWAS collectively.

Replication rate
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Of the 6,289 SNPs that were genome-wide signi�cant in the discovery cohort, 5,343 were replicated in the replication
cohort (85.0%, 95% Con�dence Interval (CI): 84.1–85.8%) (eFigure 1). Results varied substantially between binary and
quantitative traits; the replication rate for exclusively binary phenotypes was 58.1% (95%CI: 55.7–60.4%) (eFigure 2),
compared with 94.8% (95%CI: 94.2–95.4%) for quantitative traits (eFigure 3). The replication rate varied across the
included phenotypes from 52.7–99.6% (Fig. 1).

Furthermore, the replication rate varied across discovery GWAS P-values and OR (Fig. 2, Fig. 3, eFigure 4 and eFigure 5).
As is expected, the replication rate increased as the discovery GWAS SNP P-value decreased (Table 2); the highest
replication was observed with a P-value < 5e-11 (94% (95%CI: 93–95%). A less consistent pattern was observed with
discovery GWAS OR, almost all OR >/= 1.2 were replicated (Table 2), however a similarly large number of SNPs with a
discovery OR of > 1 to < 1.05 were replicated (94.3% (95%CI: 93.5–95.0%)). This is likely due to the fact that all SNPs > 1
to < 1.05 were for quantitative traits, with no SNPs corresponding to binary traits (Fig. 4).

Table 2
As is expected, the replication rate increased as the discovery

GWAS SNP P-value decreased (table 2); the highest
replication was observed with a P-value <5e-11 (94% (95%CI:

93% to 95%).
 

Metric Category Replication rate (95%CI)

P-Value 5e-8 to > 5e-9 72% (69–74%)

5e-9 to > 5e-10 78% (75–80%)

5e-10 to > 5e-11 81% (77–83%)

< 5e-11 94% (93–95%)

Odds Ratio 1-1.05 94.3% (93.5–95.0%)

1.05–1.1 70.0% (66.8–72.9%)

1.1–1.15 62.5% (59.4–65.6%)

1.15–1.2 69.3% (64.3–73.9%)

1.2–1.3 98.7% (91.0–99.8%)

1.3–1.4 100%*

> 1.4 100%*

* Paucity of data prevented formal meta-analysis

Change in effect size between GWAS
When considering SNPs that were replicated in both cohorts, we found a 9.6% (95%CI: 8.9–10.2%) decrease in replicated
SNP OR between discovery and replication cohorts (Fig. 3), for all phenotypes collectively. This decrease in effect size
was larger for binary traits (18.0% (95%CI: 16.0–20.0%), eFigure 6), however for quantitative traits an increase in effect
size was observed (12.0% (95%CI: 11.0–13.0%), eFigure 6). The change in effect size varied substantially across
phenotypes (eFigure 7).

When considering SNPs that reached genome-wide signi�cance in the discovery cohort (and weren’t necessarily
replicated), we found a 16.4% (95%CI: 82.8–84.4%) decrease in SNP OR between discovery and replication cohorts, for all
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phenotypes collectively. For binary traits this decrease was 13.6% (95%CI: 11.4–15.9%), whereas we observed a 10.9%
(95%CI: 9.9–11.9%) increase for quantitative traits.

Predicting SNP replication
First, from our training model the following predictors were signi�cantly associated with SNP replication: discovery cohort
SNP odds ratio (Fig. 4), discovery cohort trait (binary or quantitative), discovery cohort SNP p-value < 5e-10 & >5e-11, and
discovery cohort SNP p-value < 5e-11 (both categorical variables with p-value < 5e-8 & >5e-9 as reference) (eTable2). P-
value as a continuous variable and p-value < 5e-9 & >5e-10 were not signi�cant (eTable2).

When we applied our training model to our test data set, we found an area under the Receiver Operator Curve (ROC) of
0.90 (95%CI: 0.89 to 0.91) corresponding to a sensitivity and speci�city of 70.9% (95%CI: 69.2–84.5%) and 93.6% (95%CI:
80.0–95.6%) respectively (eFigure 8). We found a McFadden’s R2 of 0.33.

Discussion
We analysed 136,318,924 SNPs from 4,397,962 participants across nine different phenotypes (18 GWAS). Of these
136,318,924 SNPs, 6,289 SNPs reached genome-wide signi�cance in the respective discovery GWAS, of which 5,343 were
replicated in their replication GWAS (85.0%, 95% Con�dence Interval (CI): 84.1–85.8%). Replication rate varied
substantially between binary and quantitative phenotypes and it was much lower in the former. Further, replication rate
varied across P-value and OR of discovery GWAS SNP. We also found that SNP odds ratios (OR) decreased between
discovery and replication GWAS for binary phenotypes, but increased for quantitative phenotypes. Lastly, we developed
and then validated a model to predict SNP replication, and found it to be accurate (0.90 (95%CI: 0.89 to 0.91)).

Implications
Our results have implications for the potential validity and utility of GWAS results. First, the SNP replication rate for
quantitative phenotypes is very high; implying that quantitative GWAS in the UKBB had likely reached su�cient power to
accurately detect all SNPs that were truly associated with a phenotype and that had been discovered by earlier GWAS
efforts. The high replication rate observed for quantitative traits may also re�ect the precision and relative ease in which
quantitative traits can be measured. The converse of this, the likely measurement error and ultimate de�nition
heterogeneity of binary phenotypes, may be one explanation for the relatively low rate of replication in binary phenotypes.
For instance, binary phenotypes often represent complex clinical diseases that can have a) broad diagnostic criteria (e.g.
angina, and myocardial infarction are often captured under “Coronary Artery Disease”) and b) are de�ned via an array of
data sources, of varying quality. The UKBB, for instance, de�nes their phenotypes with ICD codes based on linked
electronic health records (EHR) 6. While this probably represents the best current method to de�ne phenotypes in large
cohorts, EHR data is “messy” and likely to include some “administrative and clinical error” 11. An improvement in the
phenotyping in data used for GWAS of binary phenotypes is likely to result in improved SNP replication. This may be even
more crucial for phenotypes where we saw low replication rates, e.g. eczema.

While the quality of phenotyping will eventually improve, in the meantime the modest replication rate we observed poses
questions about the best way to utilize current binary phenotype GWAS results. On the one hand, it is encouraging that
much scienti�c progress has been accomplished with current binary GWAS. For instance, polygenic risk scores based on
current binary GWAS have been shown to accurately predict complex, common phenotypes 12–14. With improved
phenotyping, it seems plausible that these scores may continue to improve. Nevertheless, in the meantime there may be
other ways to enhance current binary GWAS results for polygenic risk scores. First, our results clearly show a superior
replication rate with quantitative phenotypes. These quantitative phenotypes are often more in line with physiological
processes (e.g. systolic blood pressure) than clinical diseases (e.g. coronary artery disease). As such, future GWAS that
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directly use metabolomic data as outcomes (such as protein expression) are likely to, similarly, have higher accuracy than
clinical disease phenotypes. Future research merging metabolomic outcomes and GWAS may be a useful addition to our
scienti�c knowledge. Second, almost all SNPs for binary traits with an OR >/= 1.2 were replicated, whereas the majority of
SNPs with an OR below 1.2 were not replicated and this may re�ect lack of power in the replication dataset. Of note, many
of the replication UKBB datasets that we considered here did not use the full UKBB data, and power is likely to improve as
complete biobank data are used and many biobanks are combined.

Limitations in comparison to previous literature
We were surprised to �nd only nine phenotypes where two GWAS had been conducted in truly independent participants
and where inclusion or not of UKBB data was a distinguishing feature. It is plausible that further independent GWAS on
the same traits exist, although this seems unlikely given the thorough and systematic search we performed of the GWAS
atlas 8. It is, however, likely that more GWAS are available, but they contain overlapping samples between GWAS (i.e. two
GWAS of the same phenotype are not truly independent as they contain similar cohorts of participants), aren’t of
su�cient quality to be included in the GWAS Atlas, are conducted in a non-European population, or have not made their
summary statistics available. A earlier study 15 reports building a model for SNP replication using GWAS for over 50
phenotypes, although it is unclear what, if any, measures were taken to determine if these numerous GWAS were truly
independent i.e. did not include overlapping participants. Also, this study validated their model in two, small GWAS of one
trait. Furthermore, this study didn’t actually quantify a SNP replication rate, nor did they stratify their results by binary and
quantitative phenotypes. A further limitation of our study is that we didn’t include other SNP features, ideally we would
have liked to include, for instance, minor allele frequency as a predictor in our model. However, this data was sparsely
available in the replication (non-UKBB) GWAS. Lastly, it should be acknowledged that large disease-speci�c consortiums
generally qualitatively describe the replication of SNPs as their consortium increases. Our study quanti�es this formally
and, importantly, quanti�es replication across more than one phenotype.

Future research
We have identi�ed a number of future research priorities. First, improving the phenotyping of binary phenotypes seems to
be a priority for GWAS. Second, to facilitate an assessment of SNP replication, future independent cohorts are likely
required. Many efforts to do this are already underway (e.g. AllofUs cohort and Millions Veteran Program).

Conclusions
The replication of SNPs discovered from GWAS was high for quantitative phenotypes. Genome-wide Association Studies
appear to be entirely su�cient to detect SNPs associated with quantitative traits. For binary traits, however, the replication
rate is modest. We have built a simple prediction model that can accurately ascertain SNP replication in later GWAS. It
may be of use for researchers and clinicians that utilize GWAS results.
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Figure 1

Replication of SNPs across traits
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Figure 2

Replication of SNPs across P-values

Figure 3

Replication of SNPs across odds ratios
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Figure 4

Replication of SNPs across odds ratios between Binary and Quantitative traits
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