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Abstract

Introduction: Compartmental modelling is an established method of quantifying
18F-FDG uptake; however, only recently has it been applied to evaluate pulmonary

inflammation. Implementation of compartmental models remains challenging in the

lung, partly due to the low signal-to-noise ratio compared to other organs and the lack

of standardisation. Good reproducibility is a key requirement of an imaging biomarker

which has yet to be demonstrated in pulmonary compartmental models of 18F-FDG; in

this paper, we address this unmet need.

Methods: Retrospective subject data were obtained from the EVOLVE observational

study: Ten COPD patients (age= 66 ± 9; 8M/2F), 10 α1ATD patients (age= 63 ± 8;

7M/3F) and 10 healthy volunteers (age= 68 ± 8; 9M/1F) never smokers. PET and CT

images were co-registered, and whole lung regions were extracted from CT using an

automated algorithm; the descending aorta was defined using a manually drawn

region. Subsequent stages of the compartmental analysis were performed by two

independent operators using (i) a MIAKATTM based pipeline and (ii) an in-house

developed pipeline. We evaluated the metabolic rate constant of 18F-FDG (Kim) and the

fractional blood volume (Vb); Bland-Altman plots were used to compare the results.

Further, we adjusted the in-house pipeline to identify the salient features in the analysis

which may help improve the standardisation of this technique in the lung.

Results: The initial agreement on a subject level was poor: Bland-Altman coefficients

of reproducibility for Kim and Vb were 0.0031 and 0.047 respectively. However, the

effect size between the groups (i.e. COPD, α1ATD and healthy subjects) was similar

using either pipeline. We identified the key drivers of this difference using an

incremental approach: ROI methodology, modelling of the IDIF and time delay

estimation. Adjustment of these factors led to improved Bland-Altman coefficients of

reproducibility of 0.0015 and 0.027 for Kim and Vb respectively.

Conclusions: Despite similar methodology, differences in implementation can lead to

disparate results in the outcome parameters. When reporting the outcomes of lung

compartmental modelling, we recommend the inclusion of the details of ROI

methodology, input function fitting and time delay estimation to improve

reproducibility.
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Introduction

Inflammation is a hallmark of many respiratory diseases and is thought to be com-

plicit in the progression of chronic lung diseases such as chronic obstructive pulmonary

disease (COPD). The limitations of clinical measurements to quantify pulmonary inflam-

mation are well documented [1]. 18F-FDG PET-CT is a non-invasive imaging technique;

quantification of 18F-FDG uptake has emerged as a promising biomarker to assess

lung inflammation [2]. Recruitment of inflammatory cells requires increased glucose

utilisation; therefore, 18F-FDG uptake should be elevated in inflammatory pathologies [3].

A major challenge in quantifying 18F-FDG in the lung is the poor signal-to-noise ratio;

the low basal uptake of FDG is a consequence of the low density of lung tissue (due to

large proportions of air). Interpretation is further confounded by FDG within pulmonary

blood, which in the healthy lung is substantially larger (typically 15–20%) than other

organs, e.g. the brain (typically 5%). Static measures, such as the standard uptake value

(SUV), are likely to be heavily influenced by these factors which has led to the exploration

of alternative methods that account for these effects [4].

Kinetic modelling has traditionally been regarded as the gold standard method of quan-

tification in PET studies; well established applications include estimation of cerebral

metabolic rate (CMR) and neurological receptor binding (a general framework for kinetic

modelling is described in [5]). In the lung, kinetic modelling has recently been used to

explicitly account for the effects of air and blood on the rate of 18F-FDG uptake [6, 7]

which may lead to a better estimation of underlying inflammation. Provided there is not

significant oedema, the two compartment irreversible model [8] has been widely adopted

to model the kinetics of 18F-FDG in pulmonary inflammation [9] (see Fig. 1).

The concentration of 18F-FDG measured in a region of interest (ROI) within the lung

can be described by:

Cm(t) = VbCb(t) + (1 − Va − Vb)Ct(t,K1, k2, k3,Vb) + VaCa(t) (1)

where Cm(t) is the concentration of 18F-FDG in the ROI; Cb(t) and Ct(t) are the concen-

trations of 18F-FDG in the pulmonary blood vessels and lung cells respectively. Va and Vb

are the fractional volumes of air and blood respectively. K1, k2 and k3 are the micropa-

rameters of the model [5]. The concentration of radioactivity in air, Ca(t), is assumed

negligible. Va can be derived from a CT image as described in [10].

Fig. 1 Irreversible two compartmental model describing the kinetics of 18F-FDG used to evaluate lung

inflammation. In the absence of significant oedema, the concentration of 18F-FDG in a ROI in the lung can be

described by three compartments [9]: a blood compartment Cb(t), an extravascular pre-cursor pool Ce(t) and

phosphorylated (’trapped’) 18F-FDG compartment Cp(t). The relationships between the concentration of

tracer in a compartment is described by the rate constants (i.e. K1 , k2 , k3). ROI = Region of Interest



Vass et al. EJNMMI Physics            (2019) 6:26 Page 3 of 14

The metabolic rate constant of 18F-FDG is then given by

Kim = K1k3/(k2 + k3) (2)

The microparameters and Vb are estimated by minimising the weighted residual sum

of squares (WRSS):

WRSS=
∑N

i=1Wi(Y (i) − Cm(i))2 (3)

where N is the number of time frames of the dynamic scan, i is the frame number and

Wi is the weighting factor for each frame, Cm(i) is the estimated concentration of 18F-

FDG fitted from the compartmental model in frame i (i.e. Eq. 1) and Y (i) is the measured

concentration from the PET scanner.

An essential requirement of this approach is an accurate blood input function (Cb(t))

[11]; although arterial blood samples taken during the PET scan are considered the gold

standard, obtaining samples from a peripheral vein is less invasive and onerous. Alterna-

tively, a blood TAC can be derived from the dynamic PET images by delineating a ROI

within a vessel in the field of view, referred to as an image-derived input function (IDIF).

Optimal positioning of the blood vessel ROI has been discussed extensively in application

to 18F-FDG tumour kinetics [12] and cardiac metabolism [13]; IDIFs derived from several

different vessels were found to be comparable to arterial samples. In pulmonary 18F-FDG

kinetics, several regions have been explored including the ascending and descending pul-

monary aorta, left and right ventricles and aorta [14, 15]. The TAC extracted from the

blood pool ROI is then modelled as a continuous curve to reduce noise: models based

on an initial linear rise followed by a sum of exponentials have been proposed in tumour

kinetics [16]. In the brain, extensive effort has been made to improve input function mod-

elling including those based on reference regions [17] and methods using carotid or other

blood vessels with one or more manual samples [18–20] with voxel-based approaches

also feasible [21]. In the lung, there remains a need for optimisation of input function

modelling.

Early studies of kinetic models of cerebral blood flow (CBF) demonstrated the impor-

tance of correcting the blood input function for time delay [22] (i.e. the time taken for

the tracer to travel between the blood sampling site and the tissue of interest). Methods

to estimate the delay between blood sample point and the tissue ROI are largely based

on these earlier observations in neurological PET [23, 24]. More recently, inaccuracies in

time delay were shown to cause significant deviations in the microparameters of a CMR

kinetic model in rodents [25]. This applies equally to pulmonary compartmental models

of 18F-FDG: incorporating a regional lung time delay has been shown to improve the fit

to the experimental data compared to no delay in acute lung injury (ALI) [26]. Further

corrections such as accounting for the partial volume effect (PVE) and spill-over in pul-

monary 18F-FDG scans may be important [15], but the impact of this approach on kinetic

parameter estimation in humans has yet to be explored.

The approach taken to model the input function and estimate the time delay are clearly

operator dependent with several different feasible methodologies. Further, estimation of

the microparameters in Eq. 2 depends on the chosen optimisation algorithm and the

applied variance model (i.e. choice of Wi) [27]—these too are not yet standarised in

pulmonary compartmental models. Experts in quantitative 18F-FDG lung imaging have
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recently highlighted the need to improve the standardisation of the analysis and assess the

reproducibility of the outcome parameters (e.g. Kim and Vb)[2, 28].

To this end, our aim was to evaluate the reproducibility of pulmonary compartmental

models—this has yet to be performed in 18F-FDG models of lung inflammation and, to

our knowledge, reproducibility of kinetic modelling outcomes in neurological PET also

has yet to be disclosed. Reproducibility will be influenced by the number of operator

dependent steps required to estimate Kim and Vb (see Fig. 2) and the inherent variability

associated with measurements of low signal. We investigate the reproducibility of the

analysis with two operators who independently analysed 30 lung scans using different

analysis pipelines. During the evaluation, we identified the key parameters in the analyses

which could be standarised to help improve reproducibility in pulmonary compartmental

modelling of 18F-FDG.

Methods

Study data

Thirty age and gender matched patients from the EVOLVE study were included in this

evaluation: ten patients with COPD (age= 66 ± 9; 8M/2F), ten patients with α1ATD

(age= 63±8; 7M/3F) and ten healthy never smokers (age= 68±8; 9M/1F). The EVOLVE

study was a cross-sectional multi-centre study to investigate vascular and pulmonary

inflammation (REC 13/EE/0165, UK CRN ID 1513); the primary outcomes of this study

are reported in [29]. Patients were clinically diagnosed with COPD stratified with fib-

rinogen ≤2.8g/L. Healthy volunteers (HV) were recruited if they had no regular smoking

history and normal predicted spirometry (further protocol details are available [30]).

Imaging protocol

A single bolus of approximately 240MBq 18F-FDG was injected into the antecubital vein

and images were acquired for 60 min under list mode acquisition (further details are

available in the Additional file 1). A low dose attenuation correction CT (CTAC) was

acquired under free breathing prior to PET scanning. Three subjects (1 COPD, 2 HV)

Fig. 2 Overview of the main stages of compartmental modelling used in 18F-FDG in diffuse lung disease. DA

= Descending Aorta,WL =Whole Lung, TAC = Time Activity Curve, IDIF = Image Derived Input Function
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were removed from subsequent analysis after failing initial quality control procedures (see

Additional file 1). The blood input function was calculated using an IDIF (as described

in the following section); discrete venous blood samples were obtained as a means to

calculate a plasma-over-blood (POB) ratio.

Imaging analyses

For the initial analysis, subject data were analysed by operator A (as described in [7]) using

a Molecular Imaging and Kinetic Analysis Toolbox (MIAKATTM [31]; Version no: 4.2.6)

based pipeline—herein referred to as pipeline A. Operator B independently analysed the

same dataset using an in-house developed pipeline using MATLAB [32]—herein referred

to as pipeline B.

The pipelines shared common procedures for pre-processing: the segmentation of the

whole lung and blood vessels were performed using ITK-SNAP (www.itksnap.org [33]),

and blood TACs were obtained from an ROI manually delineated within the descending

aorta (DA), drawn in the centre of the vessel to minimise the partial volume effect. Our

rationale for using the DA is based on previous work which revealed it to be preferable

in estimating kinetic rate constants [15] and based on its previous use [7]. The principle

differences between the pipelines are outlined in Table 1.

In pipeline A, subsequent analysis was performed using a MIAKAT-based pipeline:

MIAKAT software was modified for lung 18F-FDG kinetics by operator A. Importantly,

both pipelines used the same compartmental model as the basis to estimate the metabolic

rate of 18F-FDG (Kim) and the fraction blood volume (Vb)–the main outcome parameters

for this study.

In order to understand the drivers of any differences in the results, operator B inves-

tigated the salient parts of the analysis methodology, which led to the differences and

adjusted elements of pipeline B (described in the Further investigation section) to improve

agreement.

Table 1 Comparison of two analysis pipelines used to estimate metabolic rate of 18F-FDG to assess

pulmonary inflammation

Parameter Pipeline A Pipeline B: initial Pipeline B: final

Blood ROI size Circular, 5 pixel diameter, aortic
arch to variable

Circular, 8 pixel diameter,
25 slices beginning aortic
arch

As pipeline A

Lung ROI closing and ero-
sion operation

5 pixel diameter disc 3 pixel diameter disc As pipeline B initial

Input function model Exponential basis functions Tri- or biexponential fits As pipeline A

Time delay estimation Inside compartmental model
optimisation

Outside compartmental
model optimisation

As pipeline A

Time delay fitting Delays spanning −50 to 50 s
using 1-compartmental model
fitted for first 5 min—lowest
residual sum of squares

Additional parameter
within estimation of rate
constants

As pipeline A

Optimisation Local optimum Global optimum As pipeline A

Start point of optimisation K1 = 0.5, k2 = 0.2, k3 = 0.3, Vb =
0.1

Multiple start points gen-
erated finds best guess
(lowest objective function
value)

As pipeline A

The columns “Pipeline B: initial” and “Pipeline B: final” describes the parameters which were used in the initial evaluation and the

final settings used following adjustments to pipeline B respectively. The table highlights the key differences between the

implementations of the compartmental model. Parameters not included below were identical between the analysis pipelines.WL

= whole lung, DA = descending aorta, ROI = region of interest
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Statistics

Bland-Altman plots were used to compare the different outcome variables; medians,

inter-quartile ranges and correlations were also used. The Bland-Altman coefficient of

reproducibility is given by 2× SD; we expect 95% of the difference to be less than

this value. The differences in Kim and Vb between the two pipelines were plotted as a

histogram to ensure that a normal distribution was observed. To investigate group dif-

ferences the Hedge’s g effect was used, as a further complementary measure we used

the unpaired t test. Unless otherwise stated, significance is considered when P < 0.05.

The intra-observer repeatability was assessed using the coefficient of variation (COV) by

operator B using pipeline B.

Results

Initial results are shown in Fig. 3a; boxplots show the differences in Kim between COPD,

α1ATD and controls using the two pipelines. Although a systemic offset was observed

between the values obtained between the pipelines, this did not alter the overall group-

level conclusions: the Hedge’s g factor for the difference between COPD and HV was

−0.89 for pipeline A and−0.57 for pipeline B. Further, for pipelines A and B, no significant

difference was found between these groups using the two sample t test (p = 0.088 and p =

0.26, respectively). The variance in pipeline B was greater than pipeline A in the α1ATD

Fig. 3 Boxplot of group differences in Kim between the two analysis pipelines. (a) Initial comparison between

Kim between the two analysis pipelines. (b) Comparison between Kim between the two pipelines after all

adjustments to Pipeline B (see section Further investigation).COPD = Chronic Obstructive Pulmonary Disease,

A1ATD = α 1-antitrypsin deficiency patients, HV = Healthy Volunteer, _A = Pipeline A result, _B = Pipeline B result
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group (IQR = 0.0031 vs 0.0018, respectively). There was poor agreement in Kim on a sub-

ject level between the pipelines: Fig. 4a shows the Bland-Altman plot for Kim. The mean

difference in Kim between the two platforms was 0.0041 ml · cm−3 · min−1 with upper

and lower limits of agreement (uloa and lloa) of 0.00097 and 0.0072 ml · cm−3 · min−1

respectively; the correlation coefficient was 0.62. Figure 4a indicates a systematic rela-

tionship may exist between the difference and the mean values of Kim estimated using

the two pipelines. Following the approach suggested in [34] to reduce systematic bias,

we log transformed the data, giving a mean Kim of 1.8, lloa of 1.19 and uloa of 2.73

(after transformation back to the original scale). Although the transformation improved

Fig. 4 Bland-Altman plots comparing outcome parameters of a pulmonary compartmental model of
18F-FDG. (a) Kim -the metabolic rate constant of FDG. (b)Vb -the fractional blood volume. These are the initial

results using two different analysis pipelines. Adjustment of pipeline B led to improved agreement between

the pipelines (see Fig. 6))
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the situation, the agreement between pipelines is still poor. Figure 4b shows the Bland-

Altman plot for Vb. The mean difference in Vb was −0.0015 (uloa = 0.045, lloa =

−0.048); the correlation coefficient was 0.80. The Bland-Altman coefficients of repro-

ducibility were 0.0031 and 0.047 for Kim and Vb respectively. To assess the repeatability of

analysis, ten subjects (from COPD group) were analysed five times with pipeline B (oper-

ator B): the within subject SD of Kim was 8.28 × 10−4ml · cm−3 · min−1 and the COV

was 6.1%.

Further investigation

Subsequently, we sought to understand the drivers of the difference described above;

this section describes the steps we undertook. Firstly, visual inspection of the lung tissue

TACs from pipeline A and B revealed minimal differences. Further, the mean square error

(MSE) between lung TACs from pipeline A and pipeline B was 0.11±0.040; therefore, we

concluded that the lung TACs were not responsible for the differences.

Next, we undertook a visual inspection of the blood TACs, this revealed slight differ-

ences due to the ROI methodology (e.g. size and location) used by the two operators. To

improve agreement, we applied the same DA ROImethodology: in pipeline B, we reduced

the area of each ROI and ensured the same begin and end locations in the axial slice as

pipeline A. This led to an improvement in the visual comparison of the blood TACs and

a modest improvement in Kim (mean difference between was 0.0037ml · cm−3 · min−1

compared to the original value of 0.0041 ml · cm−3 · min−1). The modelling of the blood

TAC was then compared: we found the fitting of the input functions differed chiefly in

the early stage of the scan (< 5 min post-injection)—likely due to the inherent noise due

to short frame durations. In pipeline B, we altered the input function modelling to match

the approach adopted in pipeline A. Firstly, we applied the same fitting function: here, the

blood TAC is modelled by basis functions [35] with a varying number of exponentials; the

exponential model that best fits the blood TACwas found using a least squares algorithm.

With both pipelines using this approach, the Bland-Altman coefficients of reproducibility

were modestly improved (0.0023 for Kim and 0.034 for Vb).

The time delay estimation is also highly dependent on the initial time frames of the

input function; we found an association between the difference in outcome parameters,

particularly Vb, and the estimated time delay. The mean difference in time delay estima-

tion between pipeline A and B was 3 ± 5.3 s. To improve the agreement between the

estimated time delays for each subject, we replicated in pipeline B the method outlined in

[7] (used in pipeline A). Namely, a one compartmental model was fitted to the first 5 min

of the smoothed blood TAC and lung TAC. Then, a delay of ±50 s in 1s increments was

introduced and the delay was estimated by finding the minimum value of the residual sum

of squares on the model fit. The mean difference in time delay estimation was improved

to 0.76 ± 1 s. This improved the Bland-Altman coefficient markedly to 0.016 for Kim and

0.028 for Vb.

Various factors were adjusted in the optimisation algorithm including the function,

number of iterations, tolerance and initial parameter. But these were found to have less

influence on outcome parameters. Figure 5 summarises the incremental improvement

in agreement during each stage of the evaluation as we altered pipeline B. Follow-

ing all adjustments to pipeline B, the Bland-Altman plots are shown in Fig. 6; the

mean differences were Kim = 9.0 × 10−4 ml · cm−3 · min−1 and Vb = −0.0014 with
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Fig. 5 Cumulative Bland-Altman coefficients of reproducibility for Kim during the evaluation of pipeline A

and B. Pipeline B was altered at each stage to improve the agreement in Kim , each value represents the

cumulative effect of all preceding stages. ROI = region of interest

coefficients of reproducibility of 0.0015 and 0.027. The correlation was also improved:

for Kim, r = 0.86 and for Vb, r = 0.94. Figure 3b demonstrates the improve-

ment in agreement on a group level. Kim calculated using the adjusted pipeline B

had larger variability than pipeline A in the healthy control group (IQR = 0.0031

vs 0.0022, respectively); we did not observe any notable change in the other groups

(see Fig. 3).

Discussion

We investigated the reproducibility of pulmonary compartmental modelling of inflam-

mation using two independent analysis pipelines; Kim and Vb were the main outcome

parameters of this study, Kim was interpreted as a surrogate for lung inflammation. Two

independent operators used reconstructed dynamic PET and CT scans from the same 30

subjects. Initial results showed that the subject-level agreement in Kim and Vb was poor;

despite the application of the same kinetic model (i.e. Eqs. 1 and 2). Interestingly, this

did not change the overall interpretation of the group findings; the effect size between

groups was comparable using either pipeline. Further, it did not change the outcome

of statistical hypothesis testing between groups. Reproducibility of analysis is an impor-

tant pre-requisite for an imaging biomarker; the results of this evaluation demonstrate

the need for standardisation when applying compartmental modelling to assess lung

inflammation.

The excellent repeatability of pipeline B (COV = 6.1%) indicates that the poor

agreement between the pipelines is likely to be due to the implementation of the com-

partmental model. To investigate the salient stages responsible for the differences, we

used an incremental approach: beginning with the steps involved in generating the TACs

and all subsequent stages to estimate Kim and Vb. Visual comparison of the blood input

functions revealed that the largest differences seemed to be in the stages of extracting

and modelling the blood input functions. We determined that the salient factors were

the blood ROI methodology, input function modelling and time delay estimation. ROI

definition led to differences in estimates of concentration due to presence of the PVE -
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Fig. 6 Bland-Altman plots comparing outcome parameters of a pulmonary compartmental model of
18F-FDG using two independent analysis pipelines following adjustment of pipeline B. (a) Kim -the metabolic

rate constant of FDG. (b)Vb -the fractional blood volume. This should be compared to the initial results in Fig 4

neither pipeline applied corrections for PVE; it has been suggested this could also help

reduce bias in the kinetic parameters estimation [9], but this has yet to be confirmed in

human studies. Although adjusting the ROI size did improve the agreement between the

pipelines modestly, agreement was improved substantially by the subsequent modelling

of the input function.

Modelling the input function provides a means to minimise the noise and spillover

problems in PETmeasurements [36, 37]. Variousmodels exist, common examples include

the Feng model [36] and tri-exponential equations, which use regression to estimate the

best fit to the blood TAC. In these data, we found the fitting was particularly sensitive

to the first few time frames—corresponding to the images with the largest noise content.
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There are several proposed methods to calculate the time delay between the blood input

function and the tissue of interest. We found large differences in estimates of time delay

between pipelines A and B, given its sensitivity to the first few minutes of data collection

this is clearly exacerbated if the input functionmodels produce different fits in this region.

By adjusting the blood ROI definitions, the input function fitting method and the time

delay calculation in pipeline B, we were able to demonstrate better agreement between

the two pipelines (see Figs. 3b and 6). Such parameters are often not reported in the

“Methods” section of existing literature; these findings highlight the need for reporting

details of analysis methodology to facilitate the reproducibility of outcomes in compart-

mental models of the lung. Adjustment of pipeline B led to higher variability in Kim in the

HV group. It seems likely that this is due to the higher noise content in HV scans, which

may have led to more extreme differences in fitting of the IDIF. Future work is needed to

determine the importance of this variance in pulmonary compartmental models.

The POB ratio was calculated for each subject using discrete venous blood samples;

this allows the conversion of a blood input function to a plasma input function. Although

the same factors were used for both pipelines, we recognise that this may cause bias in

the outcome variables. We found the POB ratio to be very close to one (1.05 ± 0.03);

this agrees with previous findings that 18F-FDG equilibrates between erythrocytes and

plasma nearly instantaneously [38]. Further work should determine whether POB correc-

tions are necessary in quantitative 18F-FDG lung studies. Previous work has demonstrated

that the weighting factors chosen to describe the variance of dynamic PET data affects

the outcomes of compartmental modelling [27]; here, the weighting factors were identi-

cal in both pipelines and we did not explore the impact of different weighting schemes

but acknowledge this could be another key contributor which may improve reproducibil-

ity. Respiratory motion leads to both density variations in the lung and inaccuracies in the

attenuation correction applied to the PET image; both of these influence quantitative PET

and improvements have been suggested by use of an averaged CT scan when available [4].

Since we acquired the CT scans during free breathing, these inaccuracies may have an

influence on our quantitative PET data. This study investigated the reproducibility of pul-

monary compartmental models of dynamic 18F-FDG PET/CT; since both operators used

the same reconstructed datasets, this does not include within subject biological variabil-

ity or technical factors (e.g. scanner settings and reconstruction algorithms), which would

allow the overall reproducibility of pulmonary 18F-FDG scans to be evaluated. Never-

theless, with each operator using identical scans, we avoid the systematic variability in
18F-FDG uptake introduced by differences between hardware, reconstruction and acqui-

sition protocols [39]. We were able to assess the intra-observer agreement for pipeline B

(operator B); we found this to have excellent repeatability. We could not explore the inter-

observer effect as results from pipeline A, undertaken by operator A, were retrospectively

acquired. Yet, we were able determine which stages of compartmental modelling were

responsible for the low concordance observed between the pipelines.

Currently, there is no standard method of assessing pulmonary inflammation using

compartmental models of 18F-FDG and each centre may undertake such analyses using

their own bespoke approach. Our findings suggest that despite seemingly similar method-

ology, individual subject results are sensitive to several factors in the analysis; therefore,

care is needed when reporting the exact methods used. In our lung data, we identified that

the blood ROI methodology, IDIF modelling and time delay estimation were important
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drivers of reproducibility. In light of these findings, we suggest that any forthcoming

recommendations for reporting methodology incorporate these key features.

Conclusions

Reproducibility of pulmonary compartmental modelling of 18F-FDG PET-CT was eval-

uated in 30 subjects consisting of three groups: COPD patients, α1ATD patients and

healthy never smokers. Two operators analysed the imaging data using independent

software to estimate the metabolic rate constant of 18F-FDG and fractional blood vol-

ume. Initial comparisons showed good agreement in the overall conclusions at group

level; however, subject-level agreement was poor. We identified salient factors in the

analysis, which improved the agreement between the two analysis pipelines: blood ROI

methodology, input function modelling and time delay estimation. In a field where in-

house analyses are commonplace, these findings highlight the need for standardisation in

reporting of methods, which will help to improve the reproducibility.
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