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Abstract

Single-laboratory studies conducted under highly standardized conditions are the gold stan-

dard in preclinical animal research. Using simulations based on 440 preclinical studies

across 13 different interventions in animal models of stroke, myocardial infarction, and

breast cancer, we compared the accuracy of effect size estimates between single-labora-

tory and multi-laboratory study designs. Single-laboratory studies generally failed to predict

effect size accurately, and larger sample sizes rendered effect size estimates even less

accurate. By contrast, multi-laboratory designs including as few as 2 to 4 laboratories

increased coverage probability by up to 42 percentage points without a need for larger sam-

ple sizes. These findings demonstrate that within-study standardization is a major cause of

poor reproducibility. More representative study samples are required to improve the external

validity and reproducibility of preclinical animal research and to prevent wasting animals and

resources for inconclusive research.

Author summary

Preclinical animal research is mostly based on studies conducted in a single laboratory

and under highly standardized conditions. This entails the risk that the study results may

only be valid under the specific conditions of the test laboratory, which may explain the

poor reproducibility of preclinical animal research. To test this hypothesis, we used simu-

lations based on 440 preclinical studies across 13 different interventions in animal models

of stroke, myocardial infarction, and breast cancer and compared the reproducibility of

results between single-laboratory and multi-laboratory studies. To simulate multi-labora-

tory studies, we combined data from multiple studies, as if several collaborating laborato-

ries had conducted them in parallel. We found that single-laboratory studies produced

large variation between study results. By contrast, multi-laboratory studies including as

few as 2 to 4 laboratories produced much more consistent results, thereby increasing

reproducibility without a need for larger sample sizes. Our findings demonstrate that

excessive standardization is a source of poor reproducibility because it ignores biologically

meaningful variation. We conclude that multi-laboratory studies—and potentially other

ways of creating more heterogeneous study samples—provide an effective means of
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improving the reproducibility of study results, which is crucial to prevent wasting animals

and resources for inconclusive research.

Introduction

Reproducibility of results from preclinical animal research is alarmingly low, and various

threats to reproducibility have been proposed, including a lack of scientific rigor, low statistical

power, analytical flexibility, and publication bias [1–8]. All of these biases undermine the sci-

entific validity of findings published in the scientific literature; however, empirical evidence

demonstrating a causal link between any of these aspects and poor reproducibility in preclini-

cal research is critically lacking. Moreover, an important aspect that has been almost

completely overlooked so far is the rigorous standardization of animal experiments. Impor-

tantly, while all other sources of poor reproducibility mentioned above represent violations of

good laboratory practice, standardization is considered good laboratory practice. Therefore,

both genetic standardization (animals) and environmental standardization (housing and hus-

bandry) are explicitly recommended by laboratory animal science textbooks [9] and are taught

in laboratory animal science courses as a means to guarantee both precision and reproducibil-

ity. However, standardization renders study populations more homogenous and the results

more specific to the specific standardized study conditions. Therefore, contrary to the com-

mon belief that standardization guarantees reproducibility (e.g., [9]), both theoretical [10–12]

and empirical [13–17] evidence indicate that rigorous standardization may generate spurious

results that are idiosyncratic to the specific standardized conditions under which they were

obtained, thereby causing poor reproducibility. This is because the response of an animal to an

experimental treatment (e.g., a drug) often depends on the phenotypic state of the animal,

which is a product of the genotype and the environmental conditions. Therefore, phenotypic

plasticity caused by gene-by-environment (G × E) interactions determines the range of varia-

tion (reaction norm) of an animal’s response [18]. Instead of incorporating such natural bio-

logical variation in the experimental design, laboratory animal scientists consider this

variation as a nuisance, which they aim to eliminate through rigorous standardization of both

genotype and environmental conditions [9]. However, because laboratories differ in many

environmental factors that affect the animals’ phenotype (e.g., noise, odors, microbiota, or per-

sonnel [13,19]), animals will always differ between laboratories due to G × E interactions, and

the variation of phenotypes between laboratories is generally much larger than the variation

within laboratories. This implies that whenever a study is replicated in a different laboratory, a

distinct sample of phenotypes will be tested. Therefore, instead of indicating that a study was

biased or underpowered, a failure to reproduce its results might rather indicate that the repli-

cation study was testing animals of a different phenotype [12,16]. Nevertheless, rigorously

standardized single-laboratory studies continue to be the gold standard approach to animal

research from basic exploratory research to late-phase preclinical testing.

A landmark study that brought this problem to the attention of the scientific community

for the first time was a multi-laboratory study by Crabbe and colleagues [13] investigating the

confounding effects of the laboratory environment and G × E interactions on behavioral strain

differences in mice. Despite rigorous standardization of housing conditions and study proto-

cols across 3 laboratories, systematic differences were found between laboratories, as well as

significant interactions between genotype and laboratory. The most direct way to account for

such between-laboratory variation is the use of multi-laboratory study designs. Such study

designs are common in medical research, especially for Phase III clinical trials [20], and
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increasingly also in psychological research [21,22]. While clinical multicenter studies are often

motivated by the need to recruit large samples, their potential for detecting confounding

effects has been recognized by the research community [23–25]. However, in preclinical ani-

mal research, the confounding effect of the laboratory is likely to be much stronger because

laboratory standards of housing and care strongly affect the animals’ phenotype. Nevertheless,

multi-laboratory studies are still very uncommon in preclinical animal research, despite recent

initiatives [26,27] promoting their implementation. The aim of this study is, therefore, to assess

how the heterogenization of study samples through multi-laboratory study designs affects the

outcome of preclinical animal studies, with the hypothesis that it improves the accuracy and

reproducibility of the results.

Results

To investigate how multi-laboratory designs alter the outcome and reproducibility of preclini-

cal animal studies, we simulated single-laboratory and multi-laboratory studies based on pub-

lished data of preclinical research obtained through the Collaborative Approach to Meta-

Analysis and Review of Animal Data from Experimental Studies (CAMARADES) database

[28,29]. In a first step, we selected 50 independent studies on the effect of therapeutic hypo-

thermia on infarct volume in rodent models of stroke. In a second step, we replicated the same

analysis with 12 further interventions in animal models of stroke, myocardial infarction, and

breast cancer. For the sake of clarity, and to reflect the progression of this study, we will first

present the analysis of the hypothermia data in full detail, followed by a summary of the analy-

sis of the 12 replicate data sets.

A random-effect meta-analysis of the 50 studies on hypothermia yielded an estimated mean

reduction of infarct volume by hypothermia of 47.8% (95% confidence interval [CI95] =

40.6%–55.0%). For the simulation of single-laboratory versus multi-laboratory studies, we

took this estimate as our estimate of the “true” effect. The existence of such an effect is corrob-

orated by the efficacy of hypothermia in clinical settings [30,31]. This conjecture allowed us to

compare the performance of different study designs by assessing how often and how accurately

the simulated studies predicted that effect. Specifically, we compared effect size estimates and

inferential statistics of single-laboratory studies to multi-laboratory studies including 2, 3, or 4

randomly selected laboratories, using the same sample size for all designs (Fig 1).

Given typical sample sizes in early preclinical animal research, we first simulated studies

with a sample size of 12 animals per treatment group (N = 24). By randomly selecting 1 study

and sampling 12 values from a Normal distribution with parameters as reported for the control

group, and likewise sampling another 12 values with parameters as reported for the treatment

group, we calculated an effect size estimate (mean difference) and a corresponding CI95 (Fig

1). Repeating this procedure 105 times, we found that, of such simulated single-laboratory

studies, the CI95 captured the true effect size (i.e., the summary effect size of the meta-analysis)

in only 47.9% of the cases (coverage probability [pc] = 0.48), and inferential tests failed to find

a significant effect in 17.6% of the cases (false negative rate [FNR] = 0.18). Therefore, although

the studies were sufficiently powered (>0.8) to detect a treatment effect, single-laboratory

studies failed to predict the true effect size accurately in more than half of the cases.

To simulate multi-laboratory designs, 2, 3, or 4 different studies were randomly drawn

from the pool of 50 studies, and proportionate numbers of sample values for both control and

treatment group were generated to run these multi-laboratory studies with the same overall

sample size as the single-laboratory studies (Fig 1). For the 2-laboratory design, pc increased to

0.73, for the 3-lab design to 0.83, and for the 4-laboratory design to 0.87, while the FNR

decreased to 0.14, 0.13, and 0.13, respectively. The increase in pc with increasing numbers of
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laboratories is a result of increased accuracy and reduced variation between effect size esti-

mates. These findings are illustrated in Fig 2A, showing exemplary forest plots based on 15

randomly selected simulations for each study design. As illustrated by the first panel, effect size

estimates of single-laboratory studies varied substantially, ranging from detrimental effects of

hypothermia on infarct volume (effect size<0) to the complete abolition of infarct through

hypothermia (effect size� 1). By contrast, multi-laboratory studies including 4 laboratories

produced effect size estimates very close to the true effect. The decrease of between-study vari-

ation in effect size estimates with increasing number of laboratories per study is illustrated by

the width of the summary confidence interval (shaded area), which reflects the reproducibility

of the results of the sampled studies.

We repeated this analysis with a smaller (N = 12) and a larger (N = 48) overall sample size

to cover a range of sample sizes commonly encountered in in-vivo research. This range would

comprise 7,339 (84%) of the 8,746 preclinical studies in the CAMARADES database. For

N = 12, we only investigated the 1-, 2-, and 3-laboratory conditions but not the 4-laboratory

condition because 12 animals cannot be distributed evenly over 4 laboratories and 2 experi-

mental conditions. For all 3 sample sizes, we found an increase in pc with increasing number

of participating laboratories (Fig 2B). Plotting pc against the mean width of the CI95 (Fig 2C)

shows that the increase in pc was associated with an increase in the width of the CI95 estimates,

yet the trade-off was reduced with increasing sample size (indicated by the steeper slopes for

larger sample sizes in Fig 2C). In line with this, increasing the number of participating labora-

tories affected the FNR, depending on sample size. Whereas for larger sample sizes (N = 24

Fig 1. Sampling scheme for simulated single-lab and multi-lab studies. For a single-lab study, 1 original study is
randomly selected from the study pool, and response values for control and treatment groups are generated by
sampling from a Normal distribution with parameters as reported in the original study. For the multi-lab study, several
original studies are selected, and values are sampled proportionate from the corresponding distributions. C, control
group; SP, study pool; T, treatment group.

https://doi.org/10.1371/journal.pbio.2003693.g001
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andN = 48) the FNR decreased with increasing number of laboratories, this trend was reversed

for N = 12, with the FNR increasing from 0.30 for 1 laboratory to 0.36 for 3 participating labo-

ratories (Fig 2D). Fig 2D suggests that a divide exists somewhere near FNR of 0.2: when sample

sizes were large enough for the single-laboratory design to achieve an FNR of 0.2 (reflecting

statistical power of 0.8), multi-laboratory designs reduced the FNR further. In contrast, when

statistical power of the single-laboratory design was below 0.8, multi-laboratory designs can

lead to an increase of the FNR.

To determine whether these findings generalize across experimental treatments, we repli-

cated this simulation study based on data for a further 12 interventions in animal models of

stroke, myocardial infarction, and breast cancer (N = 20–58 studies per intervention; Table A

in S1 Text). In all cases, we found an increase in pc with increasing number of participating

laboratories (Fig 3). We also replicated the finding that the FNR generally decreases in multi-

laboratory designs when statistical power is high but may increase when statistical power is

Fig 2. Results of resampling from studies on hypothermia in rodent models of stroke. (A) Forest plot of 15 randomly selected simulated studies for the 1-, 2-, 3-,
and 4-lab scenario and N = 24; dashed line: estimated true effect; shaded area: 95% CI for the effect size estimate based on the sampled studies. The red line
indicates a null effect (effect size of 0). (B) pc plotted against the number of participating laboratories forN = 12 (blue),N = 24 (orange), and N = 48 (grey). (C) pc
plotted against the average width of the 95% CI. (D) False negative rate plotted against number of laboratories. pc, coverage probability.

https://doi.org/10.1371/journal.pbio.2003693.g002
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low, though the exact level of statistical power above which FNR decreases in multi-laboratory

designs may vary (Fig D in S1 Text).

Because it is common practice to interpret effect sizes conditional on statistical significance

(for a critique of this, see, e.g., [3,32]), we calculated the proportion of studies reporting a “sta-

tistically significant” and “accurate” effect size estimate with a CI covering the true effect but

not 0, psa (see Fig 4A for definition), which can be regarded as a measure of external validity in

an ideal world without publication bias. As shown in Fig 4B, the external validity in terms of

the proportion of statistically significant and accurate effect size estimates (psa) increased sub-

stantially in almost all cases (Fig 4B). Increasing the number of participating laboratories intro-

duced heterogeneity and increased the total variance. In the absence of such effects, multi-

laboratory designs would not substantially alter effect size estimates and statistical inference.

However, heterogeneity among laboratories was large in all 13 data sets (median I2 = 85%,

Fig 3. Coverage probability plotted against the number of participating laboratories for N = 12 (blue), N = 24
(orange), and N = 48 (grey) for simulated studies for 12 additional intervention studies of mouse models of stroke,
myocardial infarction, and breast cancer. First row: tPA, trastuzumab, FK506, rosiglitazone 2, IL-1RA, cardiosphere DC;
second row: estradiol, humanMSC, MK-80, TMZ, c-kit CSC, rat BMSC (see Table A in S1 Text for details). BMSC, bone
marrow stem cell; CSC, cardiac stem cell; DC, derived cell; IL1-RA, interleukin 1 receptor antagonist; MSC, mesenchymal
stem cell; TMZ, temozolomide; tPA, tissue plasminogen activator.

https://doi.org/10.1371/journal.pbio.2003693.g003

Fig 4. Proportion of studies reporting significant and accurate effects. (A) Schematic of study outcomes. A study reporting both
ES estimates and inferential significant statements can lead to 1 of 4 outcomes. (α) The reported CI for the ES estimate (horizontal
blue line) includes the true ES, and the CI is not including 0, suggesting the existence of an effect; (β) the CI covers neither 0 nor the
true ES, suggesting the existence of an effect, though its magnitude is either over- or underestimated; (γ) the CI covers the true effect
but also 0—in this case “no significant” effect would be reported, and the ES estimate would be ignored or treated as nonrelevant
(which is often the case in underpowered studies); (δ) the CI includes 0 but not the true ES, leading again to a “nonsignificant”
result. Based on this, we can calculate the ratio of studies accurately estimating the true ES as psa = α / (α + β + γ + δ). (B) psa based
on 105 simulated samples for the hypothermia treatment of stroke (blue) and 12 further interventions (grey) for total sample sizes of
N = 12, 24, and 48 subjects and k = 1–4 laboratories. ES, effect size.

https://doi.org/10.1371/journal.pbio.2003693.g004
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range: 42%–97%, where I2 is the ratio of excess dispersion to total dispersion; Table 1, Table B

in S1 Text). In fact, taking a reaction norm perspective on animal traits, such environment-

dependent differences and the resulting interactions are expected to be ubiquitous [12,16].

Discussion

Using simulated sampling, we compared the outcomes of single- and multi-laboratory studies,

using the same overall number of animals, in terms of their accuracy of effect size estimates

(pc) and FNR. For these simulations, we chose to use a large sample of published data from

preclinical studies to guarantee that the results reflect real-life conditions. We found that pc

increased substantially with the number of participating laboratories, without causing a need

for larger sample sizes. This demonstrates that using more representative study samples

through multi-laboratory designs improves the external validity and reproducibility of preclin-

ical animal research.

Although higher pc and greater external validity come at the cost of higher uncertainty (i.e.,

wider CIs), this simply reflects the true uncertainty that exists when certain sources of varia-

tion are either unknown or unavoidable, which is usually the case in animal research. Of

course, we cannot exclude some bias among the study samples used for our simulation

approach (due to, e.g., lack of scientific rigor, publication bias). Both lack of scientific rigor

[33] and publication bias [34] have been found to inflate summary effect sizes in meta-analy-

ses. However, although this remains to be examined further, there is currently no evidence to

suggest that accounting for such risks of bias would reduce the variation among replicate stud-

ies, thereby invalidating our findings. Rather, our results suggest that eliminating these and

other risks of bias (e.g., low statistical power, analytical flexibility) is not sufficient to guarantee

reproducibility; the results will remain idiosyncratic to the specific laboratory conditions

unless these conditions are varied. Importantly, we see that increasing sample size to increase

statistical power does not help but makes things even worse: it produces results that are more

precise (smaller CIs) but less accurate (decreased pc) and therefore less reproducible. Relying

Table 1. Definitions of key terms used in this manuscript.

Key term Definition

Reproducibility The similarity of outcomes between replicate studies. This can be measured, e.g., by the CI95 of the
mean effect size estimates of a sample of replicate studies (depicted by the shaded area in Fig 2A).

FNR False negative rate: proportion of true positives that yield negative test outcomes. FNR = false
negative� (true positive + false negative).

FPR False positive rate: proportion of true negatives that yield positive test outcomes. FPR = false
positive� (false positive + true negative).

DOR Diagnostic odds ratio: ratio of the odds of the test being positive in the case of a true positive
relative to the odds of the test being positive in the case of a true negative. DOR = (true positive�
false positive)� (false negative� true negative).

pc Coverage probability: the probability with which the CI95 of an effect size estimate includes the
true effect size.

psa The proportion of studies reporting both a significant effect for α = 0.05 and a CI95 for the effect
size estimate that includes the true effect.

I2 I2 is a descriptive statistic of the ratio of excess dispersion to total dispersion.
I2 = (Q − df� Q) × 100%, where Q is the weighted sum of squares of study effect sizes and df gives
the degrees of freedom.

Abbreviations: CI95, 95% confidence interval; DOR, diagnostic odds ratio; FNR, false negative rate; FPR, false

positive rate; pc, coverage probability.

https://doi.org/10.1371/journal.pbio.2003693.t001
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on more representative study samples to improve the accuracy of effect size estimates may

therefore be a critical step on the way out of the current reproducibility crisis.

Taken together, our results indicate that multi-laboratory designs—and possibly other

means of systematic heterogenization of study samples—will increase the accuracy of results

and decrease inference errors, as long as the studies are sufficiently powered. As a consequence

of this, results will gain external validity and therefore be more likely to be reproducible.

Importantly, these improvements require neither many participating laboratories nor larger

sample sizes. In fact, the greatest improvement in pc was observed between single-laboratory

studies and studies involving 2 laboratories. As a rule of thumb, we suggest that multi-labora-

tory designs can improve inference and accuracy of effect size estimates, whenever sample size

is large enough to achieve statistical power of at least 0.8 for a 1-way ANOVA design (i.e., a sin-

gle-lab study). This suggestion is based on the finding that the trade-off between increased pc

and increased uncertainty (the width of the CIs) with increasing numbers of laboratories may

result in an increased FNR, which may override the positive effect of increased pc when sample

size is too small.

The effects that we show here are consistent with findings reported by IntHout and col-

leagues [35], who compared inference errors of a single highly powered study to those of sev-

eral low-powered studies, combined in a random-effects meta-analysis. These authors showed

that even low levels of heterogeneity can lead to increased false positive rates (FPRs) of single-

laboratory studies, while meta-analyses based on even just 2 randomly selected studies lead to

notably reduced FPRs. Comparing the effect of meta-analyses comprising 2 or 3 studies, InH-

out and colleagues found that the largest reduction in the FPR was observed when moving

from the interpretation of 1 to 2 studies, while meta-analyses with 3 studies performed very

similarly to those with only 2 studies [35]. This, too, is in line with our findings that the largest

increase in pc is found when contrasting single-laboratory studies with a multi-laboratory

study involving 2 participating laboratories. Furthermore, it mirrors recommendations issued

by the Food and Drug Administration (FDA) [36] and the European Agency for the Evalua-

tion of Medicinal Products (EMEA) [37] to replicate studies at least once (N = 2).

Besides known differences between the studies included in our analysis, such as the species

or strain of animals (i.e., genotype) or reported differences in animal husbandry and experi-

mental procedures, sources of variation included also many unknown and unknowable differ-

ences, such as the influence of the experimenter [38,39] or the microbiome [40], as well as

subtle differences in visual, olfactory, and auditory stimulation. All those factors might affect

treatment effects. Multi-laboratory designs are ideal to account for all of these sources of

between-laboratory variation and should therefore replace standardized single-laboratory

studies as the gold standard for late-phase preclinical trials [27].

However, logistic limitations may render multi-laboratory studies unsuitable for earlier,

more basic types of research. One approach that was recently proposed is to statistically

account for between-laboratory variation in single-laboratory studies by including a Treat-

ment by Laboratory (T × L) interaction term as a random factor in the analysis [16]. This

“Random Lab Model” (RLM) approach generates an adjusted yardstick against which treat-

ment effects are tested in single-laboratory studies. A recent analysis of multi-laboratory data

sets indicated that T × L adjustment can reduce spurious results and improve reproducibility

considerably without losing much statistical power [16]. Compared with simply lowering the

p-value of statistical significance across the board to, e.g., 0.005 as proposed by others [41,42],

T × L adjustment is more specific because it takes the true heterogeneity among different labo-

ratories into account. However, the RLM approach depends on reliable estimates of T × L

interaction, which for most animal studies are not readily available. Whether the strength of
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this interaction can at least be roughly estimated for specific research fields as proposed by Kaf-

kafi and colleagues [16] remains to be tested empirically.

Because multi-laboratory studies are logistically demanding and may not be appropriate for

more basic or exploratory studies, and because statistical approaches may be worrisome

because of questionable assumptions, an alternative approach would be to systematically het-

erogenize experimental conditions, thereby mimicking multi-laboratory studies within single-

laboratory studies [15]. For example, Karp and colleagues [17] found considerable phenotypic

variation between different batches of knockout mice tested successively in the same labora-

tory. Therefore, batch heterogenization might be a useful starting point for within-lab hetero-

genization. A proof-of-concept study demonstrated that heterogenization based on age and

housing condition of mice can improve the reproducibility of results [14], but an experimental

test indicated that such simple forms of heterogenization may not be effective enough to

account for the large variation between replicate studies in different laboratories [43]. In the

present study, the heterogeneity among the studies used for the simulations comprised both

environmental differences between laboratories and genetic differences between the different

strains or—in some cases—different species used. The heterogeneity found here may, there-

fore, be larger than in a planned multi-laboratory study based on a specific strain of animals

and harmonized environmental conditions. However, as shown here, such variation is real in

preclinical research, and the evidence base generated by meta-analysis commonly includes

such variation. An important future goal will therefore be to find practicable ways to mimic

between-laboratory variation within single-laboratory studies using controlled, systematic var-

iation of relevant genetic and environmental variables.

Standardization is often promoted also for ethical reasons because standardization reduces

variation in experimental results, and therefore fewer animals are needed per experiment to

achieve a desired level of statistical power. Using as few animals as possible for animal research

is an important goal of the 3Rs principles [44]. However, our findings show that reducing ani-

mals per experiment through standardization may be short sighted because it means trading

animals against the external validity and reproducibility of experimental results. Poor external

validity and poor reproducibility question the benefit of the research in the harm-benefit anal-

ysis of animal experiments, which could mean that although fewer animals may be used in a

standardized experiment, they may be wasted for inconclusive research [45]. As a conse-

quence, more replicate experiments may be needed—and therefore overall more animals—to

answer a given research question conclusively, which is clearly at odds with the 3Rs principles.

Materials andmethods

Data acquisition and simulated sampling

Parameter estimates for the simulations were extracted from the CAMARADES [27,46] data-

base, based on a list of a priori inclusion and exclusion criteria (Fig A in S1 Text, Table A in S1

Text). All included studies were of a 1-way ANOVA design, reporting mean estimates for a

control group and a treatment group along with standard deviations, but they differed in sev-

eral aspects of study protocol, including species or strain of animals, experimental procedure,

and outcome assessment. We therefore scaled the reported parameter values for each study by

dividing them by the mean estimate for the control group of that study. In order to simulate a

single-laboratory study, we randomly selected 1 study from the study pool and sampled 6, 12,

or 24 values from a Normal distribution with according parameter values for the control

group and another 6, 12, or 24 values from a Normal distribution with according parameter

values for the treatment group. For multi-laboratory studies with k laboratories, we randomly

selected k studies from the study pool and sampled 1/k of values from the distributions of each
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respective study. For each simulated study, we calculated the mean difference as effect size esti-

mate and performed a 1-way ANOVA for the 1-laboratory case and a fixed-effect 2-way

ANOVA with treatment and laboratory as main effects and α = 0.05 for inference for the

multi-laboratory setting. An extended discussion of alternative approaches for analyzing

data of multi-lab studies (pooled t tests, mixed-effect linear models) is given below. The

ANOVA outcome allowed us to estimate the FNR—i.e., the proportion of cases in which the

F-ratio test of the ANOVA did not indicate a significant difference between groups. To assess

the FPR (i.e., the proportion of cases in which the F-ratio test of the ANOVA did indicate a

significant difference between groups, even though there was none), we ran a second set of

simulations in which again we randomly selected original studies, but for which parameter

values for both control and treatment group were drawn from the same Normal distribution

with mean and standard deviation being set to the mean of the reported values for treatment

and control group. The FPR of the 2-way ANOVA stayed relatively close to 0.05 under all

conditions (Fig B in S1 Text, Fig C in S1 Text), corroborating the suitability of the test. As a

consequence, changes in the diagnostic odds ratio (DOR; Fig B in S1 Text, Fig C in S1 Text)

were mainly driven by the FNR. Simulations were first run in R 3.2.2. by LV and indepen-

dently replicated by BV using Mathematica 10.1. (Wolfram Research, www.wolfram.com;

see S1 and S2 Text for pseudocode and program code). Reported numbers and figures are

based on the simulations run in Mathematica. Random-effect meta-analyses on the original

data sets were carried out using the R package metafor1.9–9 [47] with restricted maximum

likelihood estimators.

Analysis of multi-laboratory studies

The design of multi-lab studies presented in this analysis is a 2-way ANOVA design with one

factor being the treatment with 2 levels—treatment or control—and the other factor being

the laboratory at which subjects were housed and tested. The interaction term was not

included. In the case of a single-lab study, this simplifies to a 1-way ANOVA design. Differ-

ent analysis schemes have been used in the past, and battles about the appropriate analysis

have been fought elsewhere [25,48,49]. The statistical analysis of multi-laboratory studies is

not the topic of this manuscript, and we deliberately abstained from discussing this issue in

the main text (but see S1 Text for an extended discussion). For didactical clarity, we have

chosen a fixed-effect ANOVA, though with respect to our focus, the same outcomes would

be retrieved if we simply performed a t test on the pooled (and scaled) data—as it was some-

times done in the past [49,50, but see 32,51 for a critique]—or if we treated laboratory as a

random factor in a linear mixed-effect model as it is more recently advocated [23,51–53] (Fig

D in S1 Text).

Supporting information

S1 Text. Supporting information, including inclusion/exclusion criteria for data sets, data

set summaries, supporting discussion of the inference method, supporting data, and anno-

tated code.

(PDF)

S2 Text. Mathematica code for simulated sampling.

(PDF)

S1 Code. Mathematica notebook with code for simulated sampling.

(NB)
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S1 Data. Data extracted from the CAMARADES database and used in this study.
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Experimental Studies.
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