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Abstract

Challenges are achieving broad acceptance for addressing many biomedical questions and enabling tool

assessment. But ensuring that the methods evaluated are reproducible and reusable is complicated by the diversity

of software architectures, input and output file formats, and computing environments. To mitigate these problems,

some challenges have leveraged new virtualization and compute methods, requiring participants to submit cloud-

ready software packages. We review recent data challenges with innovative approaches to model reproducibility

and data sharing, and outline key lessons for improving quantitative biomedical data analysis through crowd-

sourced benchmarking challenges.

Introduction
The role of the algorithm in biomedical research has

been growing steadily, propelled by technological ad-

vances in the high-throughput capture of molecular, cel-

lular, and clinical states. The complexity and volume of

diverse data types—spanning omics, imaging, and clin-

ical phenotyping—require similarly complex pipelines

and algorithms for processing and interpretation.

Despite the central role of algorithms in supporting the

biomedical research community, mechanisms for their

distribution, evaluation, and comparison are lacking.

Today, the predominant paradigm for algorithm assess-

ment is self-reporting, a conflict of interest known as the

“self-assessment trap” [1]. By definition, self-assessment

of an algorithm is highly biased and can mask critical

problems such as overfitting, incomplete documentation,

software portability, and poor generalizability. These is-

sues collectively impede the successful utilization and

translation of algorithms in the lab and the clinic.

Crowd-sourced data challenges are an increasingly

popular mechanism to address the aforementioned

shortcomings of method development. Data challenges

incentivize teams to work on complex problems, and

provide a robust and unbiased framework for assessing

the performance of resulting methods [2]. The DREAM

Challenges are an example of a data challenge commu-

nity focused on the rigorous assessment of biomedical

tools and algorithms, with over 50 completed challenges

over the last decade [3]. As DREAM has evolved with its

communities, it has needed to confront a critical prob-

lem—many current algorithmic problems cannot be eas-

ily evaluated using open data. Rather, concerns around

data size and privacy are making it increasingly difficult to

transfer datasets to participants for their evaluation. To re-

solve this problem, several alternative forms of data sharing

have been explored, and a paradigm described as “model

to data” (M2D) has emerged [4] and Fig. 1). In M2D, the

underlying dataset remains hidden from users; rather,

models are moved to the data for execution and evaluation

in protected compute environments. In addition to solving

model reproducibility problems, model to data challenges

enable assessment of models on future (i.e., prospective)

data sets and facilitate continuous benchmarking as new

models and data sets emerge.
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DREAM has now successfully completed several M2D

challenges, demonstrating the feasibility and utility of this

paradigm. Each M2D challenge has revealed unique logis-

tical and technological hurdles associated with data storage

and access, scalability of compute resources, modularity of

pipelines and algorithms, and the complexity of training

models in a cloud environment. These challenges have also

revealed important lessons on how to leverage cloud and

virtualization technologies, how to utilize protected and

sensitive data, and how to engage communities in solving

complex biomedical problems. Here, we review five M2D

challenges covering a broad range of scientific questions

and data types. We highlight key lessons on benchmarking,

challenge execution, model reproducibility, and data shar-

ing. These lessons provide concrete steps for optimizing

future cloud-based biomedical data challenges and also

serve as a roadmap for creating a distributed benchmark-

ing ecosystem that connects algorithms to data.

M2D challenges overview
The M2D challenges examined here address a common

problem: how to facilitate the training and evaluation of

algorithms on hidden data at scale using cloud re-

sources. This problem is addressed in different ways, de-

pending on the unique technical and scientific

constraints of each challenge. The variety of approaches

is summarized in Fig. 2 across five areas: (i) cloud envir-

onment, (ii) compute requirement, (iii) data generation

method, (iv) data type, and (v) form of submitted model

(algorithm). Here, we briefly introduce each of the chal-

lenges before describing the lessons learned with respect

to implementation of the M2D paradigm.

Digital Mammography Challenge

The Digital Mammography (DM) DREAM Challenge

was a data challenge designed to develop and assess

algorithms for improved breast cancer detection [5].

The DM Challenge encouraged the use of deep learning

methods applied to a large image repository of screen-

ing mammograms, with the goal of reducing the ~ 10%

false-positive rate of screening mammography [6]. The

Challenge asked participants to train and validate

models that identify women with breast cancer using a

hidden data cohort of screening images and limited

demographic information.

The Challenge utilized multiple independent data co-

horts for training and validation (see Table 1), with

Kaiser Permanente Washington contributing the pri-

mary challenge cohort. The condition of use for all im-

ages dictated that the images could not be distributed

directly to participants, thereby requiring the M2D para-

digm whereby participants submitted containerized

models to challenge organizers. Participants were able to

submit three containerized pipelines for handling data

pre-processing, model training, and model prediction

which were then run by the challenge organizers within

protected cloud environments (see Table 2). Given the

large data sets and deep learning requirements, compu-

tational resources available to participants included ac-

cess to GPUs and large storage capacity. The Challenge

resulted in 57 teams submitting 310 models during the

7 months of the Challenge. These models established

the first-ever benchmarks of deep learning methods for

detecting cancer from screening mammograms, with

results to be published in a forthcoming manuscript.

Fig. 1 Challenge cycle overview. For each challenge, participants can form teams of one or more individuals. Challenge teams work together to

develop a model (depicted as open box), train their model on training data (purple cylinders) provided by the challenge organizers, containerize their

model (closed box with outline), and submit their model to the challenge container repository. Submitted models are run on validation data (green

cylinders) on a cloud computing system by the challenge organizers. Once predictions produced by the models are evaluated and scored, results are

made available to the challenge teams. Teams can use this information to make improvements to their model and resubmit their optimized model
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Multiple Myeloma Challenge

Multiple myeloma (MM) is a cancer of the plasma cells

in the bone marrow, and therapeutic strategies and clin-

ical course depend on a complex interplay of clinical

and molecular features. Risk-based therapy is becoming

standard of care, creating an urgent need for precise risk

stratification model to assist in therapeutic decision-

making. The MM DREAM Challenge aimed to acceler-

ate the development and evaluation of such risk models.

Previous MM risk models using clinical, genomic, and

transcriptomic data have been published [7, 8], yet no ob-

jective and systematic assessment of these models has

been conducted and none of these has yet been adopted

for routine clinical use.

The MM Challenge was structured to provide partici-

pants access to large and robust data sets for model

training, while utilizing unpublished and proprietary data

for unbiased model validation. Validation data sets were

acquired from commercial and academic entities on the

condition that the data sets could not be directly shared

with challenge participants. Consequently, teams were

required to submit fully trained and Dockerized models

that could be applied to these validation data sets, which

included combinations of clinical, genomic, and tran-

scriptomic data. Models were then scored according to

their ability to predict disease-free survival in multiple

patient cohorts. Well-regarded published models based

on gene expression or genomic variants were used as

state-of-the-art benchmarks, while simpler models

based on age and MM stage were used to provide a

lower bound on expected performance. The 427 models

submitted by 73 teams were compared against these

benchmarks and against one another, with the best-

performing ones significantly outperforming existing

models and identifying novel gene candidates for

follow-up studies.

SMC-Het: ICGC-TCGA Tumor Heterogeneity Challenge

Subclonal reconstruction is the quantification and geno-

typing of each individual cell population within a tumor.

SMC-Het was a global effort to improve methods in this

field, including evaluation of the use of somatic variants

to identify the different subclones in the sample, assign

mutations to these different subpopulations, and recon-

struct the evolutionary tree of these subpopulations. To

accomplish this, the organizers of this DREAM

Fig. 2 Challenge features. Challenges used cloud computing services for running and evaluating models including Google Cloud Platform,

Openstack, Amazon Web Services, and IBM Cloud. Models were designed to run using either CPUs or GPUs. The type of data used in running

and evaluation of models was either real data (obtained from patients or cell lines) or simulated using a computer algorithm. Challenges used

genomic data, such as DNA sequencing, RNA sequencing, and gene expression; clinical phenotypes; and/or images. Models could be submitted

to a challenge in the form of a galaxy workflow, docker image, or CWL (Common Workflow Language) workflow
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Challenge created simulated tumors with known tumor

evolutionary histories, accepted Docker containers from

participants, and scored the methods on new simulated

tumors. The methods were able to be rescored as im-

provements were made to the tumor heterogeneity

simulator itself [9].

Participants were provided custom Google Cloud VM

images running Galaxy and Planemo to allow them to de-

velop analysis pipelines. Contestants were given examples

of the input data, consisting of somatic variant VCF and

copy number alteration files, along with the result files.

These files were small enough so that they could be pack-

aged on the VM image along with the development soft-

ware. A copy of the evaluation and scoring code was also

packaged as a Galaxy tool. This allowed users to quickly

cycle between developing tools and evaluating their results

on a set of training files. Once contestants were ready to

submit, a submission system was built directly into the

VM, accessible via a command-line utility or a website

running on the VM. This utility would package the partic-

ipants Galaxy tools and workflow, as well as extract

Docker container images from the VM, and copy them all

to Synapse Challenge Platform, before creating a submis-

sion entry in the evaluation queue. By the challenge’s

close, the organizers received 76 entries from 31 teams.

SMC-RNA: ICGC-TCGA RNA-Seq Challenge

The transcribed genome serves a multitude of functions

within a cell including carrying the information to en-

code proteins and serving as regulatory components.

Coding and noncoding RNA have been demonstrated to

play an important role in cancer. Dysregulation of RNA

expression and formation of chimeric fusion proteins are

both common features in tumor cells. Next-generation

sequencing can both quantify RNA abundance and de-

fine its structure, allowing simultaneous identification

and quantitation of chimeric transcript and protein

products not present in normal cells, which can be used

Table 2 Summary of models and teams for challenges

Challenge Cloud platforms Model format # of models # of teams

Digital Mammography AWS, IBM Softlayer Docker 310 57 teams

Multiple Myeloma AWS Docker 180 71

SMC-Het ISB-CGC (Google) Galaxy, Docker 58 31

SMC-RNA ISG-CGC (Google) CWL, Docker 141 16

Proteogenomic AWS Docker 449 68

Number of participants from each challenge, as well as model types and submission counts

Table 1 Challenge data characteristics

Challenge Data types Data cohorts N samples Size Open

Digital Mammography Human clinical Imaging Kaiser Permanente 80k patients (640k images) 13 TB No

MSSM 1k (15k) .3 TB No

Karolinska 69k (663k) 13.2 TB No

UCSF 42k (500k) 10 TB No

CRUK 7 k No

Total 200k (1818k) 36.5 TB

Multiple Myeloma Human clinical; gene expr; DNAseq; Cytogenetics MMRF 797 11 GB Yes

PUBLIC 1444 1 GB Yes

DFCI 294 76 GB No

UAMS 463 6 GB No

M2Gen 105 41 GB No

Total 3103 135 GB

SMC-Het All 76 22 GB No

SMC-RNA Simulated; Human clinical; RNA-seq Training 31 290 GB Yes

Test 20 197 GB Yes

Real 32 265 GB No

Data cohorts describe the source of the data used in the challenge. MSSMMount Sinai School of Medicine, UCSF University of California San Francisco, CRUK Cancer Research

UK, MMRFMultiple Myeloma Research Foundation, DFCI Dana-Farber Cancer Institute, UAMS University of Arkansas for Medical Sciences, Training synthetically generated data

provided to participants, Test synthetically generated data held-out data, Real cell lines spiked in with known constructs. The number of samples in digital mammography

includes the number of patients and the number of images in parentheses. Open indicates whether the data was publicly available to participants
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as diagnostic markers (e.g., TMPRSS2-ERG in prostate

cancer) or drug targets (e.g., BCR-ABL in CML). The

SMC-RNA DREAM Challenge was an effort to improve

standardization, reproducibility, and accuracy of RNA-Seq

methods. Participants were provided Illumina-based RNA

sequencing from simulated tumor samples and evaluated

on their ability to quantify isoform abundance and to de-

tect chimeric fusion transcripts.

The SMC-RNA Challenge provided participants the flexi-

bility to choose their development environment through ei-

ther the ISB Cancer Genomics Cloud or Seven Bridges

Cancer Genomics Cloud. For participants who used ISB-

CGC, the challenge provided access to training data on a

Google storage bucket as well as custom Google VM im-

ages to use for their development environment. On SBG-

CGC, training data was made accessible on a public project

that users could clone and use in conjunction with the

Seven Bridges Software Development Kit. Training data,

which consisted of Illumina-based sequence FASTQ files,

was synthetically generated in the same way as testing data.

In order to standardize the submissions and evaluation of

the methods, participants were required to define a CWL

workflow for their tool and package their runtime environ-

ment using a Docker container. ISB-CGC participants were

responsible for writing their own tool definition and work-

flow in CWL. The submission process consisted of pushing

their Docker container to a public repository and submit-

ting a merged CWL workflow (which references the

Docker image) to Synapse. On SBG-CGC, participants were

able to utilize the Rabix tool and workflow editors to both

describe the tool and string together multiple tools into a

workflow. For submission, participants shared a successfully

completed task. The evaluation framework consisted of two

steps: running submitted methods on test data using ISB-

CGC and scoring their performance. The organizers re-

ceived 76 submissions from 14 teams for fusion detection

and 65 from 8 teams for isoform quantification.

Proteogenomic Challenge

The NCI-CPTAC DREAM Proteogenomics Challenge

(Proteogenomics Challenge) aimed to use the commu-

nity to develop computational tools to predict the prote-

ome and phospho-proteome from genomics and

transcriptomics as a means to understand the associ-

ation between genome, transcriptome, and proteome in

tumors. Measuring the proteome is very challenging, but

recent rapid technology developments in mass spec-

trometry are enabling increasing deep and accurate pro-

teomics analysis. The characterization and analyses of

alterations in the proteome, such as phosphorylation,

provide additional insight into the functionality of pro-

teins and their deregulation in cancer. Collectively,

(phospho) proteomic has the promise to shed light into

the complexities of cancer and may improve

development of both biomarkers and therapeutics. This

challenge asked participants to find new methods for im-

puting missing values in proteomic data, predict protein

abundances, and identify phosphorylation events from

genomic data.

This Proteogenomics Challenge used public and novel

proteogenomic data to answer fundamental questions

about how different levels of biological signal relate to

one another. The challenge was built using a collection

of tumor/normal pairs, with matched genomic, tran-

scriptomic, and proteomic characterization for breast

and ovarian cancer, large part of which had not yet been

released to the public. Data was provided by the CPTAC

(National Cancer Institute’s Clinical Proteomic Tumor

Analysis Consortium). Since the novel data could not be

directly shared with the challenge participants, teams

were required to submit fully trained and Dockerized

models that could be applied to this data. The challenge

attracted methods from 68 teams with 449 submissions

over the three sub-challenges.

Lessons learned
Increased demands on participant to construct

reproducible models

In traditional challenge formats, participants download

test data sets, run their method, and upload the outputs

of their models to challenge organizers. While simple

and convenient to participants, this format does not take

advantage of the considerable strengths associated with

M2D that includes the ability (i) to easily disseminate

models to the public, (ii) to perform post hoc experi-

ments and new analyses after the closure of the chal-

lenge, (iii) to evaluate performance in newly obtained

data sets, and (iv) to develop and experiment with en-

semble models. Naturally, there is a trade-off with the

additional complexity and overhead required to host—

and participate in—a M2D challenge compared to a

traditional data challenge. However, while there is an in-

creased upfront burden on participants which may nega-

tively impact participation, this is offset by the greater

flexibility and rigor that M2D bring to challenges. How-

ever, as familiarity with virtualization and workflow

technologies continues to grow—and as the technology

itself matures—we expect that these burdens on partici-

pants will substantially decrease.

Importance of designing challenges in conjunction with

data contributors

Every benchmarking challenge relies on input datasets, and

obtaining unpublished validation data requires close collab-

oration with researchers generating the data. There may be

a number of concerns around access and security of that

data. Among these is the desire of data contributors to have

the first opportunity to publish key scientific results from
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their data. This can at times conflict with the need to keep

datasets private to ensure an unbiased benchmarking chal-

lenge. Additionally, challenge validation data may be com-

posed of multiple cohorts each originating from a separate

data contributor, as was the case in the Multiple Myeloma

Challenge. In such cases, these data contributors may view

each other as competitors, and additional care must be

taken to ensure such validation data is protected. To ensure

the trust of data contributors, we developed guidelines re-

garding permissible summary statistics or sample character-

istics participants could return and audited these

accordingly. To further protect validation data in both the

Digital Mammography and Multiple Myeloma challenges,

we applied a strict size limit to output logs. To drive

method development, participants need easy access to

training data with clear information about the “truth.” In

many cases, the most viable method is to develop synthetic

models to generate training data. For example, in the case

of the SMC-RNA Challenge, several rounds were scored

using synthetic FASTQ files that could be provided to par-

ticipants with minimal concerns around data privacy.

Develop robust strategies for generating training data

The selection of training and debugging data is a com-

plex issue, and each challenge has had to adopt custom-

ized approaches depending on data availability. For

some challenge data, there were no privacy issues and

training data—a subset of the full data set—could be

shared directly with participants, as was done for the

Proteomics Challenge. Others challenges have used sim-

ulated data to bypass these issues—as in the SMC-RNA

Challenge. While simulated datasets may not completely

recapitulate the underlying biology, they can provide a

baseline on known and expected qualities of the data

and can assist in developing robust computational pipe-

lines. For the DM Challenge, none of the primary chal-

lenge data could be disseminated to participants. To

help with model training, challenge participants could

submit Dockerized containers that were permitted to train

models using a subset of the imaging data. Limited feed-

back was returned to participants from method logging,

but this required careful scrutiny by challenge organizers

to ensure no sensitive data was leaked through the

returned log files. Many teams in the DM Challenge uti-

lized public datasets for training seed models and then

used the private challenge data for further optimization.

Monitoring, rapid correction, and feedback to participants

A public-facing challenge is a complex interaction that

involves providing documentation to users, accepting

work products, and making sure outputs are compatible

and that novel methods from external parties will func-

tion correctly within a pre-set evaluation system. Each of

these steps can contain novel software-development,

algorithmic, or scientific work. Consequently, challenge

procedures need to be put in place that will mitigate

common failures that include (1) carefully documenting

the input data format and requirements for the model

output format, (2) providing a small, representative data

set which participants can download and test with their

code prior to submission, (3) providing a mechanism for

rapid assessment and feedback of execution errors using

a reduced size dataset, and (4) performing upfront valid-

ation prior to initiating computational expensive and

long-running jobs. When running computational models

in the cloud, we are asking participants to give up the

close, interactive exploration of data they might nor-

mally pursue when tinkering with novel algorithmic ap-

proaches and to troubleshoot potential defects in their

code. In the event that an algorithm fails to execute, pro-

viding log files back to the participants may assist in

diagnosing and fixing errors. However, this has the po-

tential to leak data or sensitive information and must be

tightly controlled. Consequently, if log files must be

returned to participants, we recommend using simulated

or “open” data for testing and troubleshooting models.

Estimating and managing computational resources

For many challenges, computational methods can have

non-trivial run times and resource requirements (see

Fig. 3). For example in the SMC-RNA Challenge, methods

can average 4 h per tumor. When doing the final compu-

tational runs, every method submitted needs to be run

against every testing set. This can quickly lead to thou-

sands of computational jobs that cost several thousand

dollars, all of which is now run at the cost of the challenge

organizers. In a number of different challenges, runtime

caps had to be put into place to eliminate methods that

took multiple days to complete. In the case of the SMC-

Het Challenge, methods were limited to a budget of $7/

tumor. A high memory machine cost $0.60 an hour,

which equated to ~ 12 h of compute time for memory-

intensive algorithms. In some challenges, preemptable ma-

chines were used for evaluation, because of their lower

costs. But these types of VMs work better for short run-

ning methods, that can complete before the cloud pro-

vider preempt the system. Efforts such as the Digital

Mammography challenge, in which both model evaluation

and training are performed in the cloud, require signifi-

cantly increased compute resources. In this case, we lim-

ited compute budgets to 2 weeks per team per round for

model training, with four rounds in the challenge. The

high-end GPU servers cost several dollars per hour to rent

from cloud providers. Not knowing in advance how many

participants would join, we faced the risk of running out

of computational resources. From this perspective, it is far

less risky to ask participants to provide their own compu-

tation but, of course, this is only feasible when data
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contributors agree to let participants download training

data. In short, when organizing a challenge, care must be

taken to only commit to run the training phase when it is

truly necessary for business reasons, such as sensitivity of

training data.

Increased flexibility to evolve and adapt a challenge over

time

During the active phase of the challenge, and even post

analysis, there is a great deal of additional thought and

analysis that goes into the evaluation data and the evalu-

ation criteria. In some cases, there are evaluations that

need to be made to the dataset, based on characteristics

found during the challenge. Fixing these systems during

the running of the challenge is inevitable, but every dis-

ruption disincentivizes participants from continuing

work on the challenge and may limit the moral authority

of the challenge to drive community-evolution. In previ-

ous challenges, if there was an issue with the testing

data, it was impossible to adjust it and send back to

users for new analysis. But with portable code, it be-

comes possible to modify the testing set, rerun methods,

and evaluate. The SMC-Het Challenge faced the prob-

lem that there were no well-accepted standards for the

scoring of complex phylogenetic relationships in can-

cer. This created a need for development of new

methods for model simulation and scoring [10], and

these greatly increase the risk of unexpected errors, edge-

cases or performance degradations. Because the partici-

pants submitted reproducible code, their methods could

be reevaluated using newly generated models and evalu-

ation methods.

Model distribution and re-use

Docker containers have a very modular format for distri-

bution, and there exist several different repositories that

allow for users to download the software image with a

single command. However, this is only one component

of distribution; there is also a need for systems that docu-

ment how to invoke the tool, with descriptions of

command-line formatting, tunable parameters and ex-

pected outputs. If these descriptions are machine parseable,

they can be deployed with workflow engines that manage

large collections of tasks. In the case of SMC-Het, the

chain of commands was documented using the standards

from the Galaxy Project [11]. For the SMC-RNA Chal-

lenge, these descriptions were made using the Common

Workflow Language (CWL) [doi:https://doi.org/10.6084/

m9.figshare.3115156.v2]. These systems allow for auto-

mated deployment, and are used as part of the evaluation

framework deployed by challenge organizers. Because of

this, two of the winning methods from the SMC-RNA

Fusion calling challenge have been integrated into the

NCI’s Genomic Data Commons [12] (GDC) standard ana-

lysis pipeline, and are now being applied to a number of

datasets including TARGET, CPTAC, MMRF and TCGA.

Future of data challenges and cloud-centric
analysis
The purpose and scope of data challenges are quickly

evolving in response to a rapidly maturing compute eco-

system, the growing popularity of challenges to solve com-

plex problems, and the use of challenges to demonstrate

and advertise technical competencies. Most importantly,

challenges provide a robust and unbiased mechanism for

assessing the best approach to solving quantitative

A B

Fig. 3 a) Distribution of model run times across M2D Challenges. b) Comparison between CPU and disk usage among the M2D Challenges. CPU

time is in the total wall time for running a single entry against all test samples used for benchmarking. Disk usage is the size of the testing set in

GB. The diagonal line represents the point at which the cost of download egress fees and the cost of compute are equivalent. Below the line a

M2D approach is theoretically cheaper
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problems. This is increasingly important in a world where

algorithms are playing critical roles in biomedical decision

making. The ability to objectively track the performance

of algorithms over time - across a wide array of data co-

horts - can play an important role in establishing confi-

dence that algorithms are achieving their purported goals.

Below, we outline some of the innovative and exciting

directions for future data challenges, and biomedical

analysis more broadly.

Bridging the translation gap

One key bar algorithm developers need to pass to induce

their tool or algorithm to be broadly adopted is believ-

ability: does the algorithm achieve its purported claims.

In this regard, a bottleneck in most of biomedicine is

not the lack of algorithms, but instead the lack of vali-

dated and verified algorithms. This lack of validation is a

major contributor to the failure of tools to move beyond

the research setting into a context that can more directly

impact human health (i.e., the translational gap). Data

challenges solve this problem by developing benchmarks

and objective standards for tool evaluation. Challenges

reveal the strengths and weaknesses of competing ap-

proaches to solving domain-specific problems, and in

doing so, can accelerate the selection and adoption for

tools to use in the lab and the clinic. Utilizing the M2D

approach, the ability to capture methods and replay

them in a controlled environment provides the oppor-

tunity to close the gap to direct patient care.

Distributed benchmarking ecosystem

Some of the most highly impactful biomedical data is

not readily shareable due to concerns around privacy,

personal health information, or intellectual property

risks. Well-known examples of such data include clinical

trial data, electronic healthcare records (EHR), and gen-

etic data. The inability to access these critical datasets

further contributes to the translational gap. We can im-

agine, and are developing toward, a frictionless bench-

marking ecosystem whereby algorithms are regularly

distributed to private clouds and protected data reposi-

tories for evaluation on hidden data. Such a system

would enable real-time assessment of an algorithm’s

performance, and allow this performance to be tracked

over time as new data becomes available. Moreover, by

distributing an algorithm over many such repositories,

differences in performance as a result of collection biases

or population differences could be assessed, and be used

to determine an algorithm’s generalizability. Indeed,

DREAM has already begun piloting such approaches

with the recently launched EHR DREAM Challenge [13],

which will allow participants to develop and assess pre-

dictive clinical algorithms across multiple healthcare sys-

tems’ data repositories. We intend to use this Challenge

to demonstrate the feasibility and value of a secure and

distributed benchmarking system.

Enabling a cloud-centric future for biomedical research

As the rapid expansion of data generation continues, re-

search projects will be increasingly reliant on distributed

cloud-based systems for data processing and analysis.

Solutions that involve a single lab distributing a package

of tools and documentation for running on a single data-

set or running a low throughput web server will not

scale. Without standards for packaging and documenting

how to invoke tools, the frictional cost of transferring

software slows down the movement of methods into

new cloud resources. Analytical methods need to be

packaged using modern cloud-based solutions so that

new methods can be quickly moved to new data and de-

ployed by new groups. M2D encapsulates this shifting

paradigm, where algorithms are brought to data in a sys-

tematic and scalable way. As this paradigm becomes

more widely implemented—not only for data challenges

but as the predominant architecture for biomedical and

genomic data hosting and data commons—we envision a

future in which the barriers between algorithms and data

are substantially reduced, thereby accelerating biomed-

ical insights and applications.

Conclusion

As the role of algorithms and software tools within the

biomedical sciences grows, there is a concomitant need

to rigorously evaluate and benchmark their performance.

By utilizing cloud-based infrastructure and virtualization

software, this is achievable like never before. The data

challenges described herein are proof-of-concepts suc-

cessfully demonstrating how large, complex, and sensi-

tive biomedical data can be used to address scientific

questions and benchmark methods. These challenges

have also presented an alternative paradigm with respect

to data access, algorithm reproducibility, community

participation, and objective evaluation. As cloud plat-

forms expand their services at ever cheaper costs, and as

biomedical institutions improve federated and integrated

capabilities across sites, data challenges and algorithm

benchmarking are likely to become important fixtures in

the biomedical landscape.
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