
 Open access Journal Article DOI:10.1109/MS.2021.3073045

Reproducible Builds: Increasing the Integrity of Software Supply Chains
— Source link

Christopher C. Lamb, Stefano Zacchiroli

Institutions: French Institute for Research in Computer Science and Automation

Published on: 13 Apr 2021 - arXiv: Software Engineering

Topics: Software build, Source code, Executable and Software

Related papers:

 Identifying Bugs in Make and JVM-Oriented Builds.

 A model for detecting faults in build specifications

 A Practical Study on Code Static Analysis through Open Source based Tool Chains

 Formal Verification of a Component Platform

 Reifying Conguration Management for Object-Oriented Software

Share this paper:

View more about this paper here: https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-
5dvg95rdv1

https://typeset.io/
https://www.doi.org/10.1109/MS.2021.3073045
https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-5dvg95rdv1
https://typeset.io/authors/christopher-c-lamb-16fs2xkzk5
https://typeset.io/authors/stefano-zacchiroli-5g4fykt612
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/journals/arxiv-software-engineering-10mt6be3
https://typeset.io/topics/software-build-1lryj6s9
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/topics/executable-28d6uhle
https://typeset.io/topics/software-2ejyxl2f
https://typeset.io/papers/identifying-bugs-in-make-and-jvm-oriented-builds-nx7wvmq14z
https://typeset.io/papers/a-model-for-detecting-faults-in-build-specifications-1p0hqhqcmr
https://typeset.io/papers/a-practical-study-on-code-static-analysis-through-open-4upye1jzhv
https://typeset.io/papers/formal-verification-of-a-component-platform-gozpvh9s5l
https://typeset.io/papers/reifying-conguration-management-for-object-oriented-software-10vjic6ehq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-5dvg95rdv1
https://twitter.com/intent/tweet?text=Reproducible%20Builds:%20Increasing%20the%20Integrity%20of%20Software%20Supply%20Chains&url=https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-5dvg95rdv1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-5dvg95rdv1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-5dvg95rdv1
https://typeset.io/papers/reproducible-builds-increasing-the-integrity-of-software-5dvg95rdv1

HAL Id: hal-03196519
https://hal.archives-ouvertes.fr/hal-03196519

Submitted on 12 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reproducible Builds: Increasing the Integrity of
Software Supply Chains
Chris Lamb, Stefano Zacchiroli

To cite this version:
Chris Lamb, Stefano Zacchiroli. Reproducible Builds: Increasing the Integrity of Software
Supply Chains. IEEE Software, Institute of Electrical and Electronics Engineers, In press,
10.1109/MS.2021.3073045. hal-03196519

https://hal.archives-ouvertes.fr/hal-03196519
https://hal.archives-ouvertes.fr

Reproducible Builds:
Increasing the Integrity of
Software Supply Chains

Chris Lamb

Reproducible Builds

Stefano Zacchiroli

Université de Paris and Inria, France

Abstract—Although it is possible to increase confidence in Free and Open Source Software

(FOSS) by reviewing its source code, trusting code is not the same as trusting its executable

counterparts. These are typically built and distributed by third-party vendors, with severe

security consequences if their supply chains are compromised. In this paper, we present

reproducible builds, an approach that can determine whether generated binaries correspond

with their original source code. We first define the problem, and then provide insight into the

challenges of making real-world software build in a “reproducible” manner—this is, when every

build generates bit-for-bit identical results. Through the experience of the Reproducible Builds

project making the Debian Linux distribution reproducible, we also describe the affinity between

reproducibility and quality assurance (QA).

You can’t trust code that you did not

totally create yourself. [. . .] No amount

of source-level verification or scrutiny

will protect you from using untrusted

code.

— Ken Thompson (1984)

HOW CAN WE BE SURE that our software

is doing only what it is supposed to do? This

was the key takeaway from Ken Thompson’s

1984 Turing Lecture, “Reflections on Trusting

Trust” [1]. But with people today executing far

more software than they compile, the number of

users who “totally create” software they run has

dropped dramatically since then.

Let us narrow the issue to Free and Open

Source Software (FOSS), where all source code

is freely available. Hypothetically, users can ex-

amine the source of all the software they wish

to use in order to confirm it does not contain

spyware or backdoors—indeed, one of the orig-

inal promises of FOSS was that distributed peer

review [2] would result in enhanced end-user

security. However, whilst users can inspect source

code for malicious flaws, almost all software is

now distributed as pre-built binaries. This permits

nefarious actors to compromise end-user systems

by modifying ostensibly secure code during its

compilation or distribution.

For example, a Linux distribution might com-

pile “safe” software on compromised servers and

unwittingly spread malicious executables onto

countless systems. Other vectors include engi-

neers being explicitly coerced into incorporating

vulnerabilities, as well as the covert compromise

of developers’ computers (remotely or through

“evil maid” attacks [3]) so they unwittingly dis-

tribute tainted binaries via app stores and other

IEEE Software Published by the IEEE Computer Society © 2021 IEEE 1

channels.

Software supply-chain attacks are no longer

hypothetical scenarios. In December 2020, news

broke that attackers subverted the SolarWinds

Orion software to inject malicious code into

executables at build time, resulting in a se-

vere data breach across several US government

branches [4]. 174 similar attacks have been de-

tailed in the literature too [5]. Due to their poten-

tial impact, software supply chains have become

a high-value target in recent years, and this trend

appears to be accelerating.

Practical and scalable solutions to these at-

tacks are therefore urgently needed, and an ap-

proach known as reproducible builds is one such

countermeasure. However, it is only applicable

if the software sources are widely available—

although malware can be detected directly in

binaries [6], [7], doing so is inefficient when

source code is available for audit.

The key idea behind the reproducible builds

(R-B) approach is that, if we can guarantee that

building a given source tree always generates bit-

for-bit identical results, we can establish trust

in these artifacts by comparing outputs acquired

from multiple, independent builders.

In this paper, we present the R-B approach

from the perspective of software professionals.

We show how software users can benefit from

the increased trust in executables they run as well

as how developers and build engineers can help

make software reproducible. We also describe

the quality assurance (QA) tools available to

improve build reproducibility, highlighting how

they further mutually-beneficial goals such as

reducing build and test “flakiness” [8], [9]. This

paper is informed in large part by the experience

of the Reproducible Builds project (reproducible-

builds.org), a non-profit initiative that popularized

the R-B approach.

REPRODUCIBLE BUILDS
The core element of the reproducible builds

model is the following property:

Definition 1. The build process of a software

product is reproducible if, after designating a

specific version of its source code and all of its

build dependencies, every build produces bit-for-

bit identical artifacts, no matter the environment

in which the build is performed.

In other words, once we reach an agreement

on the exact software version(s) we wish to build,

anyone who builds that software should always

generate precisely the same artifacts.

Figure 1 shows how users can leverage this

property to establish trust in FOSS executables.

Software development happens upstream as usual

(e.g. on platforms such as GitHub and GitLab)

and, from there, source code reaches downstream

vendors such as Linux distributions and app

stores. These vendors then build binaries from

these sources, which are subsequently distributed

to end-users. Note that neither the distribution nor

the build process are completely trusted in this

scenario, reflecting the hostile environment of the

real world.

When software builds reproducibly, however,

we can still establish trust in these executables.

This is because users can corroborate whether

their newly-downloaded binaries are identical to

those that others have built themselves.

How this works is as follows: At the top of

the supply chain, trust in a specific version of a

piece of software is established through auditing

the source code or, more likely, by implicitly

trusting its developers (e.g. trusting version 5.11.5

of the Linux kernel as it is signed by Linus

Torvalds). Later, but before executing any binaries

they have downloaded, users can compare the

checksums of these files with the expected values

for that specific version, crucially aborting on any

mismatch.

These expected checksums could originate

from a limited set of trusted parties who publish

statements that building some specific source

code release results in a particular set of ex-

ecutables. However, another alternative is dis-

tributed consensus, where a loose-knit commu-

nity of semi-trusted builders independently an-

nounce their checksums. Normally, participants

in this scheme report identical checksums for

a given source code release, but in case of a

discrepancy (i.e. if some builders have been com-

promised), the checksum reported by ≥ 50% of

the builders may be the one to trust. Under this

verification scheme, the takeover at least 50% of

the builder community would be required to co-

erce users into running malicious binaries.

2 IEEE Software

https://reproducible-builds.org
https://reproducible-builds.org

Figure 1. The reproducible builds approach to increasing trust in executables built by untrusted third parties.

The end-user should reject the binary artifact from their software vendor, as its checksum (0xBAAD) does not

match the one built by multiple, independent third-parties (0x1337).

REPRODUCIBILITY IN THE SMALL

How hard is it to ensure that independent

builds always result in bit-for-bit identical ex-

ecutables? First, let us consider the software

vendor in Figure 1. Each build takes as its input

the source to be built, all of its build-time depen-

dencies, and the entire build toolchain including

the compiler, linker and build system. The build

produces a set of artifacts (executables, data,

documentation, etc.) as its output. Any change

in these inputs may legitimately affect its output.

However, even once all inputs have

been controlled for, the build may still be

unreproducible—that is, producing different

artifacts when the build is repeated. This results

from two main classes of problem: uncontrolled

build inputs and build non-determinism.

Uncontrolled build inputs occur when

toolchains allow the build process to be affected

by the surrounding environment. Common

examples include system time, environment

variables and the arbitrary build location on the

filesystem. Uncontrolled inputs can be seen as

analogous to breaking encapsulation in software

design; a tight coupling between a high-level

process and the low-level implementation details.

Build non-determinism occurs when aspects of

the build behave non-deterministically and these

“random” behaviours are encoded in the final

artifacts. For example, if the output is derived

in any way from the state of a pseudorandom

number generator or the arbitrary order of process

scheduling.

To address uncontrolled build inputs, it is

tempting to “jail” builds into sanitized environ-

ments that always present a canonical interface to

the underlying build system. Indeed, this was the

approach taken by early projects such as Bitcoin

and Tor (rbm.torproject.org). However, jails result

in slower build times and impose technical and

social restrictions on developers who may be

accustomed to choosing their tooling. Most jails

cannot address non-determinism issues either.

The ultimate and preferred solution is to en-

sure that any code run during the build only

depends on the legitimate build inputs (the source

being built, the build dependencies and the

toolchain), and that any non-deterministic behav-

ior does not affect the resulting artifacts.

We will now review some individual causes of

unreproducible builds and show how to address

them.

Build timestamps

Timestamps are, by far, the biggest source

of unreproducibility. It is a common practice

to explicitly embed dates into binaries via C’s

__DATE__ macro (see Listing 1), but many

tools record dates into build artifacts as well. For

example, help2man generates UNIX manual

pages directly from the output of --help, and

May/June 2021 3

https://rbm.torproject.org

Listing 1. The __DATE__ C preprocessor macro

“expands to a string constant that describes the date

on which the preprocessor is being run.”

void usage() {

fprintf (stderr,

"foo-utils version "

"3.141 (built %s)\n",

__DATE__);

}

in its default configuration, it embeds the current

date into generated files. As this value changes

from day-to-day, this results in an unreproducible

build. TEX’s \date macro also embeds the cur-

rent date, with similar implications for generated

documentation.

The value of these timestamps is extremely

limited, particularly as they don’t convey which

version of the software was actually built; after

all, older software can always be built later. Em-

bedded timestamps should therefore be avoided

entirely, but for cases where that is not possible

(e.g. in file formats that mandate their presence),

the Reproducible Builds project proposed the

SOURCE_DATE_EPOCH environment variable as

a way to communicate an acceptable timestamp

to build systems [10]. This typically represents

the last modification time of the source tree as

extracted from the software’s changelog file.

Build paths

The filesystem path where the build took place

is often embedded in generated binaries too,

usually via the __FILE__ preprocessor macro

(see Listing 2) or by assertion statements that

reference their corresponding line of code. Other

sources of build paths include logging messages,

locations of detached debug symbols, RPATH

entries in ELF binaries, and many other instances

that are intended, ironically, to assist the software

development process.

To help address this issue, the Reproducible

Builds project worked with the GNU GCC devel-

opers to introduce the -ffile-prefix-map

and -fdebug-prefix-map options which

support embedding relative (rather than absolute)

paths.

Listing 2. The __FILE__ C preprocessor macro

“expands to the name of the current input file”. This

results in non reproducibility when the program is built

from different directories, e.g. /home/lamby/tmp

vs. /home/zack/tmp.

fprintf (stderr,

"DEBUG: boop (%s:%s\n",

__FILE__, __LINE__);

Filesystem ordering

Contrary to the output of ls(1), the POSIX

Unix standard does not specify an ordering for

results returned by the underlying readdir(3)

system call. As a result, directories accessed

in naive “readdir order” may be processed

in a non-deterministic manner. If this arbitrary

ordering influences any build artifacts, the build

will not be reproducible.

For example, the build system of the PikePDF

library located its own source files using Python’s

glob routine. But as glob’s result value in-

herits the non-determinism of readdir(3),

PikePDF’s source files were linked in an arbitrary

order.

This is a particularly pernicious problem as

some filesystem implementations return different

orderings “more often” than others. To avoid

these issues, build systems should impose a deter-

ministic order on any directory iteration encoded

in its artifacts, e.g. via an explicit sort().

Archive metadata

.zip and .tar archives store timestamps and

user ownership information in addition to the

files themselves. However, if this metadata is

inherited from the surrounding build environment,

it will not be replicated when building elsewhere.

For example, if a .tar archive stores files as

belonging to the build user (e.g. lamby), another

user (e.g. zack) building the same software will

obtain a different result.

This can be avoided by instructing tools to

ignore on-disk values in favour of metadata cho-

sen by the build system (e.g. using tar(1)

with --owner=0 and --clamp-mtime=T),

or by normalizing metadata before archiv-

ing begins (e.g. by using touch(1) with

SOURCE_DATE_EPOCH as a reference times-

tamp).

4 IEEE Software

Listing 3. Perl’s hash type does not define an order-

ing of its keys, so a call to sort should be inserted

before keys %h to make it deterministic.

my %h = (a => 1, b => 2, c => 3);

foreach my $k (keys %h) {

print "$k\n";

}

Randomness

Even when the entire environment is con-

trolled for, many builds remain inherently non-

determinstic. For example, builds that iterate over

hash tables (such as Perl’s “hash” or the dict

type in Python < 3.7) exhibit arbitrary behaviour

as their respective elements are returned in an un-

defined order—the code in Listing 3, for example,

may print any combination of abc, bac, bca,

etc. This affects reproducibility if these results

form any part of the build’s artifacts.

Parallelism (such as via processes or threads)

can also prevent reproducibility if the arbitrary

completion order is encoded into build results

too. Similar to filesystem ordering, these issues

can be resolved by imposing determinism in key

locations, seeding any sources of randomness

to fixed values or sorting the results of hash

iterations and parallelized tasks before generating

output.

Uninitialized memory

Many data structures have undefined areas that

do not affect their operation. The FAT filesystem,

for example, contains unused regions that may

be filled with arbitrary data. In addition, modern

CPU architectures perform more efficiently when

data is naturally aligned, and the padding added to

ensure alignment can result in similarly undefined

areas. These regions containing “random” data

affect reproducibility when stored in build results.

One solution is to explicitly zero-out memory

regions that may persist in artifacts. For example,

Listing 4 shows a patch for GNU mtools that

ensures generated FAT directory entries do not

embed uninitialized memory.

REPRODUCIBILITY IN THE LARGE
Now that we know how to address some

individual reproducibility issues, we turn to the

problems that arise when making large software

Listing 4. A patch for GNU mtools ensuring that

a direntry_t struct does not contain uninitialized

memory.

--- a/direntry.c

+++ b/direntry.c

@@ -24,6 +24,7 @@

void initializeDirentry(

direntry_t *entry, Stream_t *Dir) {

+ memset(entry, 0, sizeof(direntry_t));

entry->entry = -1;

entry->Dir = Dir;

collections reproducible.

The Reproducible Builds project started in

2014 with the aim of making the Debian oper-

ating system (www.debian.org) completely repro-

ducible. This is a formidable goal, as not only is

Debian a extremely mature Linux distribution, it

is one of the largest curated collections of FOSS

software in general.

Seven years later, over 95% of the 30 000+

packages in Debian’s development branch can

now be built reproducibly, and as the Linux

distribution with the largest total number of repro-

ducible packages, it serves as an extremely rele-

vant case study. The evolution of this effort can

be found at wiki.debian.org/ReproducibleBuilds.

Adversarial rebuilding

Given its scale, Debian developers realized they

would need a programmatic way to test for re-

producibility. To this end, they developed a con-

tinuous integration (CI) [11] system which builds

each package in the Debian archive twice in a

row, using two independent build environments

that are deliberately configured to differ as much

as possible. For instance, the clock on the second

build is set 18 months in the future, and the

hostname, language, system kernel, etc., are all

varied so that if any environmental differences are

used as a build input, the two builds will differ as

a result. The large number of variations applied

(30+) can validate build reproducibility to a high

degree of accuracy.

To identify any reliance on non-deterministic

filesystem ordering, the R-B project also de-

veloped a FUSE-based [12] virtual filesystem

called disorderfs (salsa.debian.org/reproducible-

builds/disorderfs) which can provide a view of

May/June 2021 5

https://www.debian.org
https://wiki.debian.org/ReproducibleBuilds
https://salsa.debian.org/reproducible-builds/disorderfs
https://salsa.debian.org/reproducible-builds/disorderfs

Listing 5. An example .buildinfo file, recording both the environment and results of building Debian’s

black package. (Excerpt: see buildinfo.debian.net/sources/black/20.8b1-1 for the full version.)

Source: black

Version: 20.8b1-1

Checksums-Sha1:

9915459ae7a1a5c3efb984d7e5472f7976e996b1 2584 black_20.8b1-1.dsc

14bfd3011b795f85edbc8cc4dc034a91cfaa9bcd 111096 black_20.8b1-1_all.deb

69c3d4ae7115c51e7b00befe8b4afd5963601d66 285684 python-black-doc_20.8b1-1_all.deb

Checksums-Sha256: [...]

Build-Architecture: amd64

Installed-Build-Depends: autoconf (= 2.69-11.1), automake (= 1:1.16.2-4), [...],

gcc (= 4:10.2.0-1), [...], python3 (= 3.8.2-3), [...]

xz-utils (= 5.2.4-1+b1), zlib1g (= 1:1.2.11.dfsg-2)

a filesystem with configurable orderings. The R-

B CI system reverses the filesystem ordering

between the builds, revealing any dependency on

non-deterministic filesystem ordering.

Recording build information

As per Definition 1, a reproducible build must

always use the same original source, toolchain

and build dependencies, and to ensure these in-

puts can be replicated correctly, Debian devised

the .buildinfo file format.

Once a Debian package is built, the precise

source version and the versions of all its build

dependencies are recorded in a .buildinfo

file. This file also contain checksums of any

generated .deb artifacts, the Debian binary pack-

age format. (An example file may be found in

Listing 5.)

.buildinfo files are a crucial building

block for any process wishing to validate repro-

ducibility. A .buildinfo is produced during

an initial build and is then used to reconstruct a

second build environment. The build is repeated

within this second environment and the check-

sums from this latter build are compared with the

ones in the original .buildinfo—if they do

not match, the build is unreproducible or a build

host has been tampered with.

Users can employ .buildinfo files to

implement the consensus-driven approach out-

lined above, verifying downloaded packages

by comparing them against the checksums in

.buildinfo files distributed by Debian and

other builders. In this scenario, .buildinfo

files are cryptographically signed to represent a

build attestation, e.g. “I, Alice, given source X

and environment Y, have built a package with

checksum K.” Bob would verify that Alice really

made this claim, and then compare Alice’s K

against his downloaded file, potentially trusting

Alice’s K over any divergent (and likely mali-

cious) claim from Eve.

Debian currently hosts over 20 million

.buildinfo files in a number of experimen-

tal services. However, centralized distribution

schemes inherit many of the issues of the SSL

certificate authority ecosystem, particularly in

representing an obvious target to attack [13].

Decentralized alternatives remain a future chal-

lenge at this point, as does a practical consensus

mechanism to determine the “valid” checksum for

any given package.

Root cause analysis

As we have outlined, it is trivial to detect mis-

matches between builds simply by comparing the

checksums of their artifacts. However, it can be

extremely difficult to understand the root cause

of this difference.

Therefore, the R-B project developed diffo-

scope (diffoscope.org), a visual “diff” tool that

recursively unpacks a large number of archive

formats and translate tens of binary formats into

human-readable forms. As a result, it can display

the meaningful, code-level differences between,

for example, two compiled Java .class files,

even if they were contained in .tar in a .xz

(in a .deb in a .iso, etc.).

In most cases, diffoscope indicates which cat-

egory of fix is required to make a build re-

producible. For instance, when programs embed

build dates into their binaries, diffoscope clearly

6 IEEE Software

https://buildinfo.debian.net/sources/black/20.8b1-1
https://diffoscope.org

Figure 2. diffoscope recursively unpacks archives of many kinds and transforms various binary formats into

more human-readable forms in order to compare them.

highlights these date-based variations, and the

surrounding context tends to assist in identifying

which part of the original source code to fix.

An example diffoscope output is shown in Fig-

ure 2, where two versions of the dolfinx-doc

package differ. Here, diffoscope indicates that the

difference is in CMakeLists.txt, a generated

file which contains the same entries with a differ-

ent ordering between the two builds. This would

appear to be a filesystem ordering issue, solved

by the addition of an explicit sort. However, this

may be a problem affecting all software that uses

CMake, so the issue may be better addressed

there; alas, diffoscope cannot entirely replace a

software engineer’s judgement.

Quality Assurance (QA)

Adopting a methodical approach to verify the re-

producibility of builds can be highly complemen-

tary to QA efforts. This is because problems that

affect build reproducibility are often symptoms of

larger, systemic issues.

To begin with, systematic reproducibility test-

ing implies systematic build testing, so will easily

identify software that fail to build under any

circumstances. Other software will fail to build

only in the extreme environments designed to

test for reproducibility, but will become more

robust as a result of behaving well there. For

example, some software will fail to build in the

future due to hardcoded SSL certificates with

expiry dates—these are detected due to the build

environment’s artificial future clock. Others fail

to build in rarely-used timezones due to incorrect

assumptions about time offsets—the test suite

for the Ruby Timecop library failed in this way

(bugs.debian.org/795663).

Due to these serendipitous quality

improvements, addressing reproducibility

issues improves the correctness and robustness

of the Debian distribution as a whole. However,

even less-critical problems can be identified

through reproducibility testing as well. For

example, an issue in the Doxygen documentation

generator (bugs.debian.org/970431) led to broken

hyperlinks that linked to their build-time location

(e.g. /tmp/build/foo/usage.html)

instead of their run-time one

(/usr/share/doc/foo/usage.html).

This was trivial to identify with diffoscope, and

fixing it corrected broken documentation for

hundreds of end-users.

Reproducibility testing can even flag spuri-

ous content within documentation. For instance,

manual packages generated by executing an un-

derlying program can fail in several ways, of-

ten printing error messages that are mistak-

May/June 2021 7

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=795663
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=970431

Listing 6. An example ConfigData.pm. As it was

created at build time, all users shared the same

OpenIDConsumerSecret.

{

’cgibin’ => ’/usr/lib/cgi-bin/gbrowse’,

’conf’ => ’/etc/gbrowse’,

’databases’ => ’/var/lib/gbrowse/databases’,

’htdocs’ => ’/usr/share/gbrowse/htdocs’,

’OpenIDConsumerSecret’ => ’639098210478536’,

’tmp’ => ’/var/cache/gbrowse’

},

enly shipped as the package’s “documentation”

(e.g. bugs.debian.org/972635). These bugs are

difficult to detect if the failure does not occur

on a developer’s own machine, but they can be

easily spotted whilst testing for reproducibility as

the error messages are deliberately designed to

appear in different languages.

Even security issues can be discovered

whilst testing for reproducibility. In one ex-

ample, the GBrowse biological genome an-

notation viewer failed to build reproducibly

(bugs.debian.org/833885), and diffoscope identi-

fied a configuration file that contained a differ-

ent OpenIDConsumerSecret value between

builds (see Listing 6). Although this secret was

being securely generated, it was being created at

build time, so the same value was distributed to all

users of the package—the fix was to generate the

secret at installation time so that each deployment

possessed its own unique key. The mechanics

of reproducibility testing suggest that this issue

would not have been readily discovered another

way.

Community engagement

Although the causes of build unreproducibility

often reside within the source code of individual

projects, it is far more effective to detect issues

via centralized testing in distributions such as

Debian due to the uniform build interfaces these

large collections provide. Nevertheless, the social

norms of the FOSS community dictate that fixes

should be integrated upstream, instead of remain-

ing in distribution-specific patch sets.

To this end, the Reproducible Builds project

has contributed to hundreds of individual FOSS

projects, in addition to working with key

toolchains such as GCC, Rust, OCaml, etc.

This community-oriented approach ensures that

as many users as possible can benefit from the

specific advantages of reproducible builds, as

well as from the software quality improvements

achieved while pursuing that goal.

THE REPRODUCIBLE BUILDS
ECOSYSTEM

Taking Debian to its current state required

over seven years of cross-community work that

was spearheaded by the Reproducible Builds

project (reproducible-builds.org), a non-profit or-

ganisation that aims to increase the integrity of

software supply chains by advocating for and

implementing the approach outlined in this paper.

Although originating in Debian around 2014,

many other FOSS projects have joined the ini-

tiative such as Arch Linux, coreboot, F-Droid,

Fedora, FreeBSD, Guix, NixOS, openSUSE and

Qubes. One milestone of this joint effort is

Tails (https://tails.boum.org/), the operating sys-

tem used by Edward Snowden to securely com-

municate the NSA’s global surveillance activities

in 2013 [14]—Tails began releasing reproducible

ISO images in 2017 to improve end-user verifia-

bility and security.

The Reproducible Builds project has

also developed several tools (reproducible-

builds.org/tools) that facilitate various QA

processes related to reproducibility. Some of

these, such as diffoscope and disorderfs, have

been highlighted in this paper.

Increasing the security of open source soft-

ware is clearly a worthwhile goal, and software

professionals and organisations can always pro-

vide assistance. This is not only by addressing

any uncontrolled build inputs and sources of

non-determinism in the software they maintain,

but by working with the Reproducible Builds

project itself in terms of code, donations and other

traditional forms of community contribution.

CONCLUSION
In this article, we have outlined what it means

for software to build reproducibly and how that

property can be leveraged by end-users to es-

tablish trust in open source executables, even

when they are built by untrusted third parties. We

also surveyed several causes of unreproducibility

and located their causes in build systems and

8 IEEE Software

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=972635
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833885
https://reproducible-builds.org
https://https://tails.boum.org/
https://reproducible-builds.org/tools
https://reproducible-builds.org/tools

similar logic. We also described some of the

quality assurance (QA) processes and tools that

can be used to make large open source software

collections reproducible—using this model, the

Debian operating system has achieved 95% re-

producibility in over 30 000+ packages.

Additional work is still needed to address the

software that is not yet reproducible. In the case

of Debian, there are no insurmountable obstacles

preventing the project from reaching 100%—the

remaining 5% “only” need fixes similar in kind

to those already discussed. However, this has not

yet been achieved, partly because time and effort

are not inexhaustible or fungible resources in vol-

unteer communities, but also due to regressions

in previously-reproducible packages. Improved

awareness and prioritisation of reproducibility

amongst software developers would reduce the

incidence of such events.

Other challenges remain for the reproducible

builds ecosystem too. Cryptographically signed

artifacts are becoming more common, which can-

not be made reproducible without distributing

signing keys to builders. One solution is to adopt

detached signatures, but the addition of parallel

distribution channels for these (unreproducible)

files would require extensive changes to existing

software distribution channels.

The verification of open source software for

mobile devices also remains problematic. With

the notable exception of F-Droid, not only are

the build processes of the major app stores unre-

producible (or not even FOSS), the checksums of

artifacts are hidden from end-users, rendering any

distributed validation scheme impossible. Signifi-

cant usability and transparency improvements are

needed to make meaningful progress in this area.

Finally, we are left with the recursive ques-

tion of whether we can trust even reproducible

binaries without trusting where our compilers

and other toolchain components come from. To

address this, the parallel Bootstrappable Builds

(bootstrappable.org) project seeks to minimize the

amount of binary code required to bootstrap a

minimal C compiler—at time of publication, a

binary as small as 6 KB is enough to activate

a chain of steps from TCC [15] to GCC from

which almost all toolchains can then be obtained.

Ken Thompson would likely approve, whilst still

pointing out that 6 KB is too much untrusted

code.

ACKNOWLEDGMENTS
The authors would like to thank the Repro-

ducible Builds and the wider Debian community

for their feedback on this paper, as well as for

their invaluable work on increasing the trustwor-

thiness of free and open source software. The

authors also thank Giovanni Mascellani for their

insightful discussions on bootstrappable builds.

REFERENCES

1. Ken Thompson. Reflections on trusting trust. Commu-

nications of the ACM, 27(8):761–763, 1984.

2. Peter C. Rigby, Brendan Cleary, Frédéric Painchaud,

Margaret-Anne D. Storey, and Daniel M. Germán. Con-

temporary peer review in action: Lessons from open

source development. IEEE Software, 29(6):56–61,

2012.

3. Joanna Rutkowska and Alexander Tereshkin. Evil

maid goes after TrueCrypt. The Invisible Things Lab,

2009. https://theinvisiblethings.blogspot.com/2009/10/

evil-maid-goes-after-truecrypt.html.

4. Catalin Cimpanu. Third malware strain

discovered in SolarWinds supply chain attack.

ZDNet, 2021. https://www.zdnet.com/article/

third-malware-strain-discovered-in-solarwinds-supply-chain-attack/,

retrieved 2021-03-01.

5. Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael

Meier. Backstabber’s knife collection: A review of open

source software supply chain attacks. In DIMVA 2020:

The 17th International Conference on Detection of In-

trusions and Malware, and Vulnerability Assessment,

volume 12223 of Lecture Notes in Computer Science,

pages 23–43. Springer, 2020.

6. Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama

Iyengar. A survey on malware detection using data

mining techniques. ACM Computing Surveys (CSUR),

50(3):1–40, 2017.

7. Edward Amoroso. Recent progress in software security.

IEEE Software, 35(2):11–13, 2018.

8. Thomas Durieux, Claire Le Goues, Michael Hilton, and

Rui Abreu. Empirical study of restarted and flaky builds

on Travis CI. In MSR 2020: The 17th International

Conference on Mining Software Repositories. IEEE,

2020.

9. Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko

Marinov. An empirical analysis of flaky tests. In

Proceedings of the 22nd ACM SIGSOFT International

May/June 2021 9

https://bootstrappable.org
https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
https://www.zdnet.com/article/third-malware-strain-discovered-in-solarwinds-supply-chain-attack/
https://www.zdnet.com/article/third-malware-strain-discovered-in-solarwinds-supply-chain-attack/

Symposium on Foundations of Software Engineering,

pages 643–653, 2014.

10. Chris Lamb and Ximin Luo. SOURCE DATE EPOCH

specification. Technical report, Reproducible Builds

project, 2017. https://reproducible-builds.org/specs/

source-date-epoch/.

11. Mathias Meyer. Continuous integration and its tools.

IEEE Software, 31(3):14–16, 2014.

12. Bharath Kumar Reddy Vangoor, Vasily Tarasov, and

Erez Zadok. To FUSE or not to FUSE: performance of

user-space file systems. In 15th USENIX Conference

on File and Storage Technologies, FAST 2017, pages

59–72. USENIX Association, 2017.

13. Ben Laurie. Certificate transparency. Communications

of the ACM, 57(10):40–46, 2014.

14. Susan Landau. Making sense from Snowden: What’s

significant in the NSA surveillance revelations. IEEE

Secur. Priv., 11(4):54–63, 2013.

15. Fabrice Bellard. TCC: Tiny C compiler. https://bellard.

org/tcc/, 2003. Retrieved 2020-10-05.

Chris Lamb is a freelance programmer with over

fifteen of experience of developing open source soft-

ware. He has contributed to the Debian operating

system since 2006 and was elected to serve as

the Project Leader in 2017 and 2018. He is also a

director of the Open Source Initiative (OSI) as well as

Software in the Public Interest (SPI), Inc. Today, he is

now highly active in the Reproducible Builds project,

through which he has received a grant from the Linux

Foundation. Contact him at chris@chris-lamb.co.uk.

Stefano Zacchiroli is Associate Professor of Com-

puter Science at Université de Paris on leave at

Inria, France. He is co-founder and current CTO of

the Software Heritage project. He is a member of

the steering committee of the Reproducible Builds

project. He has served as Debian Project Leader over

the period 2010-2013. Contact him at zack@irif.fr.

10 IEEE Software

https://reproducible-builds.org/specs/source-date-epoch/
https://reproducible-builds.org/specs/source-date-epoch/
https://bellard.org/tcc/
https://bellard.org/tcc/

