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data science using QIIME 2
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To the Editor — Rapid advances in DNA-sequencing and bioinformatics technologies in the 

past two decades have substantially improved understanding of the microbial world. This 

growing understanding relates to the vast diversity of microorganisms; how microbiota and 

microbiomes affect disease1 and medical treatment2; how microorganisms affect the health 

of the planet3; and the nascent exploration of the medical4, forensic5, environmental6 and 

agricultural7 applications of microbiome biotechnology. Much of this work has been driven 

by marker-gene surveys (for example, bacterial/archaeal 16S rRNA genes, fungal internal-

transcribed-spacer regions and eukaryotic 18S rRNA genes), which profile microbiota with 

varying degrees of taxonomic specificity and phylogenetic information. The field is now 

transitioning to integrate other data types, such as metabolite8, metaproteome9 or 

metatranscriptome9,10 profiles.

The QIIME 1 microbiome bioinformatics platform has supported many microbiome studies 

and gained a broad user and developer community. Interactions with QIIME 1 users in our 

online support forum, our workshops and direct collaborations have shown the platform’s 

potential to serve an increasingly diverse array of microbiome researchers in academia, 

government and industry. Here, we present QIIME 2, a completely reengineered and 

rewritten system that is expected to facilitate reproducible and modular analysis of 

microbiome data to enable the next generation of microbiome science.

QIIME 2 was developed on the basis of a plugin architecture (Supplementary Fig. 1) that 

allows third parties to contribute functionality (https://library.qiime2.org). QIIME 2 plugins 

exist for latest-generation tools for sequence quality control from different sequencing 

platforms (DADA2 (ref.11) and Deblur12), taxonomy assignment13 and phylogenetic 

insertion14, which quantitatively improve the results over QIIME 1 and other tools (as 

detailed in the corresponding tool-specific publications). The plugins also support 
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qualitatively new functionality, including microbiome paired-sample and time-series 

analysis15 (which are critical for studying the effects of treatments on the microbiome), and 

machine learning16. Trained machine learning models can be saved for application to new 

data and interrogated to identify important microbiome features. Several recently released 

plugins, including q2-cscs17, q2-metabolomics18, q2-shogun19, q2-metaphlan2 (ref.20) and 

q2-picrust2 (ref.21), provide initial support for analysis of metabolomics and shotgun 

metagenomics data. We are currently working with teams developing bioinformatics tools 

for metatranscriptomics and metaproteomics, and we expect to add new plugins supporting 

these data types to the ecosystem shortly. Additionally, many of the existing ‘downstream’ 

analysis tools, such as q2-sample-classifier16, can already work with these data types 

individually or in combination if they are provided in a feature table. Thus, QIIME 2 has the 

potential to serve not only as a marker-gene analysis tool but also a multidimensional and 

powerful data science platform that can be rapidly adapted to analyze diverse microbiome 

features.

QIIME 2 provides many new interactive visualization tools facilitating exploratory analyses 

and result reporting. Static versions of interactive visualizations resulting from four worked 

examples are provided in Fig. 1. QIIME 2 View (https://view.qiime2.org) is a unique new 

service (Supplementary Methods) that allows users to securely share and interact with 

results without installing QIIME 2. The QIIME 2 visualizations presented in Fig. 1 are 

provided in Supplementary File 1 to allow readers to interact with QIIME 2 View. 

Corresponding worked QIIME 2 example code is provided in the Supplementary Methods.

Reproducibility, transparency and clarity of microbiome data science are guiding principles 

in QIIME 2 design. To this end, QIIME 2 includes a decentralized data-provenance tracking 

system: details of all analysis steps with references to intermediate data are automatically 

stored in the results. Users can thus retrospectively determine exactly how any result was 

generated (Fig. 2 illustrates a simplified provenance graph derived from the data provenance 

of Fig. 1b). QIIME 2 also detects corrupted results indicating that the provenance is no 

longer reliable and the results no longer contain information enabling reproducibility. The 

provenance of the visualizations presented in Fig. 1 can be interactively reviewed by loading 

the contents of Supplementary File 1 with QIIME 2 View, providing far more detailed 

information than can typically be provided in Methods text. QIIME 2 results are also 

semantically typed (Fig. 2), and actions indicate acceptable input types, clarifying the data 

that actions should be applied to and making complex workflows less error prone. Complex 

workflows can be created and shared by using Jupyter Notebooks22 or Common Workflow 

Language (CWL)23, and support for other workflow engines is currently in development.

Finally, QIIME 2 provides a software-development kit (https://dev.qiime2.org) that can be 

used to integrate it as a component of other systems (such as Qiita24 or Illumina BaseSpace) 

and to develop interfaces targeted toward users with different levels of computational 

sophistication (Supplementary Fig. 2). QIIME 2 provides the QIIME 2 Studio graphical user 

interface and QIIME 2 View, interfaces designed for end-user biologists, clinicians and 

policy-makers; the QIIME 2 application programming interface, designed for data scientists 

who want to automate workflows or work interactively in Jupyter Notebooks22; and q2cli 

and q2cwl, providing a command-line interface and CWL23 wrappers for QIIME 2, 
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designed for experts in high-performance computing. At present, computationally expensive 

steps support parallel computing at the individual-action level (for example, many actions 

including de-noising and taxonomy assignment support multiple threads). We are currently 

developing deeper integration with parallelism strategies available in third-party workflow 

engines, and workflow-level parallelism is currently possible through CWL.

There are many other powerful open-source software tools for microbiome data science, 

including mothur25, phyloseq26 and related tools available through Bioconductor27, and the 

biobakery suite20,21,28. The microbiome bioinformatics platform mothur is often compared 

to QIIME 1 and QIIME 2. A major difference between mothur and QIIME lies in the 

interactive visualizations: QIIME 2 provides many interactive visualization tools (several 

examples are provided in Fig. 1), whereas mothur focuses on generating data that can be 

easily loaded and visualized with other tools. The phyloseq tool focuses on microbiome 

statistical analysis and generating publication-ready visualizations but, unlike QIIME 2, 

begins with a feature or operational-taxonomic-unit table, leaving ‘upstream’ processing 

steps, such as sequence demultiplexing and quality control, to other processing pipelines, 

many of which (like phyloseq) are available through Bioconductor. The biobakery suite 

provides analytic functionality that complements that of QIIME 2, and we are actively 

working with biobakery developers to support interoperability by making their tools 

accessible as QIIME 2 plugins (for example, the q2-metaphlan2 plugin allows users to run 

MetaPhlAn2 through QIIME 2). QIIME 2 provides the only Python-based microbiome data-

science platform that supports retrospective data-provenance tracking to ensure 

reproducibility, multi-omics analysis support, interfaces geared toward different user types to 

enhance usability and an extensibility-focused design through the plugin architecture and 

software-development kit. We share feedback from users of QIIME 2 on these and other 

features in Supplementary Methods.

The tools described in the preceding paragraph are all interoperable through plugins, 

exchange of files in standard formats or using multi-language environments, such as Jupyter 

Notebooks22. For example, the BIOM format29 is supported by all of them. A diverse 

ecosystem of interoperable software is beneficial for the field, because it allows both 

experienced users to obtain multiple perspectives on their data and novice bioinformaticians 

to work in the programming environments that they are most comfortable with (for example, 

phyloseq allows users to work in R, whereas QIIME 2 allows users to work in Python). We 

plan to continue working with the developers of these tools, and with organizations such as 

the Genomics Standards Consortium, on plugins and standards to ensure interoperability, as 

well as developing tools to automatically import data from microbiome data-sharing 

platforms such as Qiita, the European Bioinformatics Institute (EBI) European Read Archive 

and the National Center for Biotechnology Information (NCBI) Sequence Read Archive.

Advances in microbiome research promise to improve many aspects of health and the world, 

and QIIME 2 will help drive those advances by enabling accessible, community-driven 

microbiome data science.
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Data availability

Data for the analyses presented in Fig. 1 are available as follows: Earth Microbiome Project 

data in Fig. 1a were obtained from ftp://ftp.microbio.me/emp/release1, and the American 

Gut Project (AGP) data were obtained from Qiita (http://qiita.microbio.me) study ID 10317. 

Sequence data in Fig. 1c are available in Qiita under study ID 10249 and the EBI under 

accession number ERP016173. Sequence data in Fig. 1b are available in Qiita under study 

ID 925 and the EBI under accession number ERP022167. Data in Fig. 1d are available in the 

q2-ili GitHub repository (https://github.com/biocore/q2-ili). Interactive versions of the Fig. 1 

visualizations can be accessed at https://github.com/qiime2/paper1.

Code availability

QIIME 2 is open source and free for all use, including commercial. It is licensed under a 

BSD three-clause license. Source code is available at https://github.com/qiime2. Help for 

QIIME 2 is provided at https://forum.qiime2.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. QIIME 2 provides many interactive visualization tools.
The products of four worked examples are presented here, and interactive versions of these 

screen captures are available in Supplementary File 1 and at https://github.com/qiime2/

paper1. Detailed descriptions and methods, including the commands used to generate each 

of these visualizations, are provided in Supplementary Methods. a, Unweighted UniFrac 

principal coordinate analysis plot containing 37,680 samples, illustrating the scalability of 

QIIME 2. Colors indicate sample type, as described by the Earth Microbiome Project 

ontology (EMPO). b, Interactive taxonomic composition bar plot illustrating the phylum-

level composition of microbial-mat samples collected along a temperature gradient in 

Yellowstone National Park Hot Spring outflow channels (Steep Cone Geyser). The many 

interactive controls available in this plot vastly decrease the burden of exploratory analysis 

over QIIME 1. c, Feature volatility plot (https://msystems.asm.org/content/3/6/e00219-18) 

illustrating the change in Bifidobacterium abundance over time in breast-fed and formula-

fed infants. Temporally interesting features can be interactively discovered with this 

visualization. Bar charts rank the importance (predictive power for time point) and mean 

abundance of all microbial features. These bar charts provide an interface for visualizing 

volatility plots (line plots) of individual features in the context of their importance and 

abundance; clicking on a bar will display the volatility plot of that feature and highlight in 

blue that feature’s importance and abundance in the bar charts below. d, Molecular 

cartography of the human skin surface. Colored spots represent the abundance of the small-

molecule cosmetic ingredient sodium laureth sulfate on the human skin. Sample data can be 

interactively visualized in three-dimensional models, thus supporting the discovery of spatial 

patterns.
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Fig. 2 |. QIIME 2 iteratively records data provenance, ensuring bioinformatics reproducibility.
This simplified diagram illustrates the automatically tracked information regarding the 

creation of the taxonomy bar plot presented in Fig. 1b. QIIME 2 results (circles) contain 

network diagrams illustrating the data provenance stored in the result. Actions 

(quadrilaterals) are applied to QIIME 2 results and generate new results. Arrows indicate the 

flow of QIIME 2 results through actions. TaxonomicClassifier and FeatureData[Sequence] 

inputs contain independent provenance (red and blue, respectively) and are provided to a 

classify action (yellow), which taxonomically annotates sequences. The result of the classify 

action, a FeatureData[Taxonomy] result, integrates the provenance of both inputs with the 

classify action. This result is then provided to the barplot action with a 

FeatureTable[Frequency] input, which shares some provenance with the 

FeatureData[Sequence] input, because they were generated from the same upstream 

analysis. The resulting visualization (Fig. 1b) has the complete data provenance and 

correctly identifies shared processing of inputs. This simplified representation was created 

manually from the complete provenance graph for the purpose of illustration. An interactive 

and complete version of this provenance graph (as well as those for other Fig. 1 panels) can 

be accessed through Supplementary File 1.
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