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ABSTRACT

In an ideal world, all research papers would be runnable: sim-

ply click to replicate all results, using the same setup as the

authors. One approach to enable runnable network systems

papers is Container-Based Emulation (CBE), where an envi-

ronment of virtual hosts, switches, and links runs on a mod-

ern multicore server, using real application and kernel code

with software-emulated network elements. CBE combines

many of the best features of software simulators and hard-

ware testbeds, but its performance fidelity is unproven.

In this paper, we put CBE to the test, using our prototype,

Mininet-HiFi, to reproduce key results from published net-

work experiments such as DCTCP, Hedera, and router buffer

sizing. We report lessons learned from a graduate network-

ing class at Stanford, where 37 students used our platform to

replicate 16 published results of their own choosing. Our ex-

periences suggest that CBE makes research results easier to

reproduce and build upon.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer -

Communication Networks—Network Communications; D.4.8

[Operating Systems]: Performance—Simulation

Keywords

Reproducible research, container-based emulation

1. INTRODUCTION

The scientific method dictates that experiments must be re-

produced before they are considered valid; in physics and

medicine, reproduction is a part of the culture. In com-

puter science, reproduction requires open access to all code,

scripts, and data used to produce the results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

As Donoho noted,

“... a scientific publication is not the scholarship itself, it is

merely advertising of the scholarship. The actual scholarship is

the complete software development environment and the com-

plete set of instructions which generated the figures.”

Reproducible, runnable papers do not appear to be stan-

dard practice in network systems research,1 so calls from

Knuth [1], Claerbout [2], Donoho [3] and Vandewalle [4] for

reproducible experiments and results still resonate.

This paper advocates reproducible networking experi-

ments using Container-Based Emulation, which runs real code

on an emulated network using lightweight, OS-level virtual-

ization techniques combined with careful resource isolation

and monitoring. The approach provides the topology flexi-

bility, low cost, and repeatability of simulation with the func-

tional realism of testbeds. The performance fidelity of net-

work emulation is largely unproven, so we focus on explor-

ing the ability of CBE to reproduce experiments by compar-

ing performance results from our prototype, Mininet-HiFi,

with results published at top-tier networking conferences.

Our specific contributions include the following:

• Implementation of a Container-Based Emulator,

Mininet Hi-Fi,2 which enables reproducible network

experiments using resource isolation, provisioning,

and monitoring mechanisms (§3).

• Reproduced experiments from published networking

research papers, including DCTCP, Hedera, and Sizing

Router Buffers (§5).

• Practical lessons learned from unleashing 37 budding

researchers in Stanford’s CS244: Advanced Topics in Net-

working course upon 13 other published papers (§6).

To demonstrate that network systems research can indeed

be made repeatable, each result described in this paper can

be repeated by running a single script on an Amazon EC2 [5]

instance or on a physical server. Following Claerbout’s

model, clicking on each figure in the PDF (when viewed elec-

tronically) links to instructions to replicate the experiment

that generated the figure. We encourage you to put this pa-

per to the test and replicate its results for yourself.

1(or indeed Computer Science at large)
2Available at https://github.com/mininet.
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Simulators Testbeds Emulators

Shared Custom

Functional X X X

Realism

Timing X X X ???

Realism

Traffic X X X

Realism

Topology X (limited) X

Flexibility

Easy X X X

Replication

Low cost X X

Table 1: Platform characteristics for reproducible network

experiments.

2. GOALS

If we are to create realistic and reproducible networking ex-

periments, then we need a platform with the following char-

acteristics:

Functional realism. The system must have the same func-

tionality as real hardware in a real deployment, and should

execute exactly the same code.

Timing realism. The timing behavior of the system must

be close to (or indistinguishable from) the behavior of de-

ployed hardware. The system should detect when timing re-

alism is violated.

Traffic realism. The system should be capable of generat-

ing and receiving real, interactive network traffic to and from

the Internet, or from users or systems on a local network.

In addition to providing realism, the system must make it

easy to reproduce results, enabling an entire network experi-

ment workflow – from input data to final results – to be easily

created, duplicated, and run by other researchers:

Topology flexibility. It should be easy to create an experi-

ment with any topology.

Easy replication. It should be easy to duplicate an experi-

mental setup and run an experiment.

Low cost. It should be inexpensive to duplicate an experi-

ment, e.g. for students in a course.

Commonly used platforms in networking systems re-

search include simulators, testbeds, and emulators. Table 1

compares how well each platform supports our goals for re-

alism and reproducibility.

Simulators for networking advance virtual time as a result

of simulated events [6, 7, 8]. Their experiments are conve-

nient and reproducible, but models for hardware, protocols,

and traffic generation may raise fidelity concerns.

Testbeds for networking can be shared among many re-

searchers [9, 10, 11, 12] or specific to one project [13, 14, 15].

Though realistic, they cost money to build and keep running,

have practical resource limits (especially before paper dead-

lines), and may lack the flexibility to support experiments

with custom topologies or custom forwarding behavior.

Emulators for networking meet nearly all of our crite-
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Figure 1: Emulator realism suffers without adequate per-

formance isolation.

ria. Like testbeds, emulators run real code (e.g. OS ker-

nel, network applications) with interactive network traffic.

Like simulators, they support arbitrary topologies, their vir-

tual “hardware” costs very little, and they can be “shrink-

wrapped” with all of their code, configuration and data

into disk images to run on commodity virtual or physi-

cal machines. Full-System Emulation, e.g. DieCast [16] or

VMs coupled using Open vSwitch [17], uses one virtual ma-

chine per host. Container-Based Emulation (CBE), e.g. vir-

tual Emulab (vEmulab in this paper) [18], NetKit [19], Trel-

lis [20], CORE [21], Mininet [22] and many others, employs

lighter-weight OS-level containers that share a single kernel

to achieve better scalability than VM-based systems on a sin-

gle system [23, 22].

However, emulators, regardless of their type, may not pro-

vide adequate performance isolation for experiments. Fig-

ure 1 plots the TCP bandwidth for a simple benchmark

where two virtual hosts communicate at full speed over a

200Mb/s link. In the background, we vary the load on a

number of other (non-communicating) virtual hosts. On

Mininet, the TCP flow exceeds the desired performance at

first, then degrades gradually as the background load in-

creases. Though vEmulab correctly rate-limits the links, that

alone is not sufficient: increasing background load affects the

network performance of other virtual hosts, leading to unre-

alistic results. Ideally, the TCP flow would see a constant

throughput of 200Mb/s irrespective of the background load

on the other virtual hosts.

For experiments that are limited by network resource con-

straints (such as bandwidth or latency, as is usually the case

for networking research experiments), we conjecture that one

can accurately emulate and reproduce experiments on a net-

work of hosts, switches, and links by carefully allocating and

limiting CPU and link bandwidth, then monitoring the experi-

ment to ensure that the emulator is operating “within its lim-

its” and yielding realistic results.

The next section describes the architecture, performance

isolation features, and monitoring mechanisms of our

Container-Based Emulator, Mininet-HiFi.
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3. MININET-HIFI ARCHITECTURE

Mininet-HiFi is a Container-Based Emulator that we have

developed to enable repeatable, realistic network experi-

ments. Mininet-HiFi extends the original Mininet architec-

ture [22] by adding mechanisms for performance isolation,

resource provisioning, and monitoring for performance fi-

delity.

3.1 Design Overview

The original Mininet system [22] follows the approach

of systems such as Imunes [24] and vEmulab [18] which

use lightweight, OS-level virtualization to emulate hosts,

switches, and network links. The Linux container mechanism

(used by Mininet) follows the design of jails in BSD and zones

in Solaris by allowing groups of processes to have indepen-

dent views of (or namespaces for) system resources such as

process IDs, user names, file systems and network interfaces,

while still running on the same kernel. Containers trade the

ability to run multiple OS kernels for lower overhead and

better scalability than full-system virtualization.

For each virtual host, Mininet creates a container attached

to a network namespace. Each network namespace holds a vir-

tual network interface, along with its associated data, includ-

ing ARP caches and routing tables. Virtual interfaces connect

to software switches (e.g Open vSwitch [17]) via virtual Eth-

ernet (veth) links. The design resembles a Virtual Machine

server where each VM has been replaced by processes in a

container attached to a network namespace.

3.2 Performance Isolation

Mininet, as originally implemented, does not provide any

assurance of performance fidelity, because it does not isolate

the resources used by virtual hosts and switches. vEmulab

provides a way to limit link bandwidth, but not CPU band-

width. As we saw earlier, this is insufficient: a realistic em-

ulator requires both CPU and network bandwidth limiting

at minimum. In Mininet Hi-Fi, we have implemented these

limits using the following OS-level features in Linux:

Control Groups or cgroups allow a group of processes (be-

longing to a container/virtual host) to be treated as a sin-

gle entity for (hierarchical) scheduling and resource manage-

ment [25].3

CPU Bandwidth Limits enforce a maximum time quota

for a cgroup within a given period of time [26]. The period

is configurable and typically is between 10 and 100 ms. CPU

time is fairly shared among all cgroups which have not used

up their quota (slice) for the given period.

Traffic Control using tc configures link properties such as

bandwidth, delay, and packet loss.

Figure 2 shows the components of a simple hardware net-

3Resources optionally include CPU, memory, and I/O. CPU
caches and Translation Lookaside Buffers (TLBs) cannot cur-
rently be managed.
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Figure 2: A simple hardware network in a ∆ topology.
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Figure 3: Equivalent Mininet-HiFi network. Dashed lines

indicate performance isolation and monitoring features.

work, and Figure 3 shows its corresponding realization in

Mininet-HiFi using the above features.

Adopting these mechanisms in Mininet-HiFi solves the

performance isolation problem shown in Figure 1: the

“ideal” line is in fact the measured behavior of Mininet-HiFi.

3.3 Resource provisioning

Each isolation mechanism must be configured appropri-

ately for the system and the experiment. Fortunately, careful

provisioning — by splitting the CPU among containers and

leaving some margin to handle packet forwarding, based on

offline profiling — can yield a result that matches hardware.

We report benchmarks comparing Mininet-HiFi with a hard-

ware setup for multiple traffic types (UDP and TCP) and

topologies (single link, stars, and trees) in [27].

However, the exact CPU usage for packet forwarding

varies with path length, lookup complexity, and link load.

It is hard to know in advance whether a particular configu-

ration will provide enough cycles for forwarding. Moreover,

it may be desirable to overbook the CPU to support a larger
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Figure 4: Time multiplexing may cause delayed packet

transmissions and host scheduling.

experiment if some links are partially loaded. Mininet-HiFi

lets the experimenter allocate link speeds, topologies, and

CPU fractions based on their estimated demand, and can also

monitor performance fidelity to help verify that an experi-

ment is operating realistically.

3.4 Monitoring Performance Fidelity

Any Container-Based Emulator must contend with infi-

delity that arises when multiple processes execute serially on

the available cores, rather than in parallel on physical hosts

and switches. Unlike a simulator running in virtual time,

Mininet-HiFi runs in real time and does not pause a host’s

clock to wait for events. As a result, events such as transmit-

ting a packet or finishing a computation can be delayed due

to serialization, contention, and background system load.

Figure 4 compares the timing of a hardware network with

two hosts, A and B, sending two packets as part of one re-

quest over one link, against emulated versions on a single

processor. The bottom part of the figure shows an accurate

“HiFi” emulation, along with an inaccurate “LoFi” emula-

tion that has a coarser scheduler granularity and an interfer-

ing background process. The slanted lines show that packets

in the LoFi version have been delayed and their relative tim-

ing has changed, possibly compromising full link through-

put and performance fidelity.

To provide assurance that an experiment ran with suffi-

cient fidelity, we want to track when conditions like these

occur. Specifically, if the micro-scale scheduling and queue-

ing behavior closely matches hardware, as seen in the HiFi

trace, we expect the macro-scale system-level behavior to

also match hardware. More precisely, if Mininet-HiFi can

(a) start and complete the execution of virtual hosts on time

(i.e. within a small delay bound of the corresponding hard-

ware execution times), and (b) dequeue packets on time (i.e.

within a small delay bound of the corresponding switch de-

queue times), then we can expect high-fidelity results. These

are necessary conditions. Since Mininet-HiFi runs inside a

single clock domain, it can track the delays accurately.

Link and switch fidelity. We monitor network accuracy

by measuring the inter-dequeue times of packets. Since links

run at a fixed rate, packets should depart at predictable times

whenever the queue is non-empty. For each experiment de-

scribed in Section 5, we record these samples to determine

link and switch fidelity.

Host fidelity. Although CPU bandwidth limiting ensures

that no virtual host receives excessive CPU time, we also need

to determine whether each virtual host is receiving sufficient

time to execute its workload. We do so by monitoring the

fraction of time the CPU is idle. Empirically, we have found

the presence of idle time to be a good indicator of fidelity, as

it implies that a virtual host is not starved for CPU resources.

In contrast, the absence of idle time indicates that the CPU

limit has been reached, and we conservatively assume that

the emulator has fallen behind, fidelity has been lost, and the

experiment should be reconfigured.

Mininet-HiFi uses hooks in the Linux Tracing Toolkit [28]

to log these process and packet scheduler events to mem-

ory. We next describe the space of experiments suitable for

Mininet-HiFi, before testing whether it can actually replicate

experiments with high fidelity in §5.

4. EXPERIMENTAL SCOPE

In its current form, Mininet-HiFi targets experiments that

(1) are network-limited and (2) have aggregate resource re-

quirements that fit within a single modern multi-core server.

Network-limited refers to experiments that are limited by

network properties such as bandwidth, latency, and queue-

ing, rather than other system properties such as disk band-

width or memory latency; in other words, experiments

whose results would not change on a larger, faster server.

For example, testing how a new version of TCP performs

in a specific topology on 100 Mb/s links would be an ex-

cellent use of Mininet-HiFi, since the performance is likely

to be dependent on link bandwidth and latency. In contrast,

testing a modified Hadoop would be a poor fit, since MapRe-

duce frameworks tend to stress memory and disk bandwidth

along with the network.

Generally, Mininet-HiFi experiments use less than 100

hosts and links. Experiment size will usually be determined

by available CPU cycles, virtual network bandwidth, and

memory. For example, on a server with 3 GHz of CPU and

3 GB RAM that can provide 3 Gb/s of internal packet band-

width, one can create a network of 30 hosts with 100 MHz

CPU and 100 MB memory each, connected by 100 Mb/s

links. Unsurprisingly, this configuration works poorly for

experiments that depend on several 1 Gbps links.

Overall, Mininet-HiFi is a good fit for experiments that

benefit from flexible routing and topology configuration and
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have modest resource requirements, where a scaled-down

version can still demonstrate the main idea, even with imper-

fect fidelity. Compared with hardware-only testbeds [9, 10,

11, 12], Mininet-HiFi makes it easier to reconfigure the net-

work to have specific characteristics, and doesn’t suffer from

limited availability before a conference deadline. Also, if the

goal is to scale out and run hundreds of experiments at once,

for example when conducting a massive online course or tu-

torial, using Mininet-HiFi on a public cloud such as Amazon

EC2 or on the laptops of individual participants solves the

problem of limited hardware resources.

If an experiment requires extremely precise network

switching behavior, reconfigurable hardware (e.g. NetFP-

GAs) may be a better fit; if it requires “big iron" at large scale,

then a simulator or testbed is a better choice. However, the

Container-Based Emulation approach is not fundamentally

limited to medium-scale, network-limited experiments. The

current limitations could be addressed by (1) expanding to

multiple machines, (2) slowing down time [29], and (3) iso-

lating more resources using Linux Containers [30].

The next sections (§5 and §6) show the range of network-

limited network experiments that Mininet-HiFi appears to

support well. All are sensitive to bandwidth, queues, or la-

tency, and, to generate enough traffic to saturate links, are

necessarily sensitive to raw CPU.

5. EXPERIMENTAL EVALUATION

To evaluate and demonstrate Mininet-HiFi, this section de-

tails several reproducible experiments based on published

networking research. The first goal is to see whether results

measured on Mininet-HiFi can qualitatively match the re-

sults generated on hardware for a range of network-limited

network experiments. The second goal is to see whether the

monitoring mechanisms in Mininet-HiFi can indicate the fi-

delity of an experiment.

Each published result originally used a custom testbed,

because there was no shared testbed available with the de-

sired characteristics; either the experiment required custom

packet marking and queue monitoring (§5.1), a custom topol-

ogy with custom forwarding rules (§5.2), or long latencies

and control over queue sizes (§5.3). Each Mininet-HiFi re-

sult uses an Intel Core i7 server with four 3.2 GHz cores and

12 GB of RAM. If the corresponding results from the testbed

and server match, then perhaps the testbed was unnecessary.

For each experiment, we link to a “runnable” version;

clicking on each figure in the PDF (when viewed electroni-

cally) links to instructions to replicate the experiment.

5.1 DCTCP

Data-Center TCP was proposed in SIGCOMM 2010 as a

modification to TCP’s congestion control algorithm [14] with

the goal of simultaneously achieving high throughput and

low latency. DCTCP leverages the Explicit Congestion No-

tification [31] feature in commodity switches to detect and

A

B

C

Monitor Queue

RTT: 500µs

All links: 100 Mb/s

Figure 5: Topology for TCP and DCTCP experiments.

react not only to the presence of network congestion but also

to its extent, measured through the sequence of ECN marks

stamped by the switch.

To test the ability of Mininet-HiFi to precisely emulate

queues, we attempt to replicate an experiment in the DCTCP

paper showing how DCTCP can maintain high throughput

with very small buffers. We use the same publicly available

Linux DCTCP patch [32]. In both Mininet-HiFi and on real

hardware in our lab,4 we created a simple topology of three

hosts A, B and C connected to a single 100 Mb/s switch,

as shown in Figure 5. In Mininet-HiFi, we configured ECN

through Linux Traffic Control’s RED queuing discipline and

set a marking threshold of 20 packets.5 Hosts A and B each

start one long-lived TCP flow to host C. We monitor the in-

stantaneous output queue occupancy of the switch interface

connected to host C. Figure 6 shows the queue behavior in

Mininet-HiFi running DCTCP and from an equivalently con-

figured hardware setup. Both TCP and DCTCP show similar

queue occupancies in Mininet-HiFi and hardware, with a bit

more variation in Mininet-HiFi. The main takeaway is that

this experiment could be emulated using Mininet-HiFi.

Verifying fidelity: DCTCP’s dynamics depend on queue

occupancy at the switch, so the experiment relies on accu-

rate link emulation. As described earlier, Mininet-HiFi veri-

fies the link emulation accuracy by monitoring the dequeue

times on every link. An ideal 100 Mb/s link would take

121.1 µs to transmit a 1514 byte packet, while a 1 Gb/s link

would take 12.11 µs. We compute the percentage devia-

tion of inter-dequeue times from the ideal (121.1 µs for 100

Mb/s). That is, if xi is a sample, the percentage deviation is

100 × |xi − 121.1|/121.1. Figure 7 shows the complementary

CDF when we emulate links at 100 Mb/s and 1 Gb/s.

The htb link scheduler emulates 100 Mb/s well: the inter-

dequeue times are within 10% of an ideal link for 99% of

packets observed in a 2 s time window, and within 1% for

∼ 90% of packets. The scheduler falls behind for 1 Gb/s

links. The inter-dequeue time deviations are far from ideal

for over 10% of packets in the same 2 s time window. Though

not shown, the average bottleneck link utilization (over a pe-

riod of 1 s) drops to ∼ 80% of the what was observed on

hardware, and the CPU shows no idle time. This tells the

4We used the same Broadcom switch as the authors.
5As per [14], 20 packets exceeds the theoretical minimum
buffer size to maintain 100% throughput at 100 Mb/s.
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experimenter that, for this experiment, Mininet-HiFi can em-

ulate the links accurately at 100 Mb/s, but not at 1 Gb/s.

Scaling the experiment: The DCTCP paper showed ex-

perimental results for 1 Gb/s and 10 Gb/s bottleneck links,

but Mininet-HiFi could only emulate up to a 100 Mb/s link.

We expect 1 Gb/s would be attainable with some effort, but

10 Gb/s seems unlikely in the near term. A 10 Gb/s link de-

queues packets every 1.2 µs, which stretches the limits of to-

day’s hardware timers. In particular, we found that the best

timer resolution offered by Linux’s High Resolution Timer

(hrtimer) subsystem was about 1.8 µs, whose limits depend

on the frequency of the hardware clock, and its interrupt and

programming overheads.

5.2 Hedera

In our second example we use Mininet-HiFi to reproduce

results that were originally measured on a real hardware

testbed in Hedera [13], a dynamic flow scheduler for data

center networks, presented at NSDI 2010. With Equal-Cost

Multi-Path (ECMP) routing, flows take a randomly picked

path through the network based on a hash of the packet

header. ECMP hashing prevents packet reordering by ensur-

ing all packets belonging to a flow take the same path [33].

Hedera shows that this simple approach leads to random

hash collisions between “elephant flows” – flows that are

a large fraction of the link rate – causing the aggregate

throughput to plummet. With this result as the motivation,

Hedera proposes a solution to intelligently re-route flows

to avoid collisions, and thus, exploit all the available band-

width.

More specifically, as part of the evaluation, the authors

compare the throughput achieved by ECMP with that of

an ideal “non-blocking” network (the maximum achievable)

for 20 different traffic patterns (Figure 9 in the original pa-

per [13]). The authors performed their evaluation on a hard-

ware testbed with a k = 4 Fat Tree topology with 1 Gb/s

links. The main metric of interest is the aggregate through-

put relative to the full bisection bandwidth of the network.

To test the ability of Mininet-HiFi to emulate a complex

topology with many links, switches, and hosts, we replicate

the ECMP experiment from the paper. We use the same k = 4

Fat Tree topology and the same traffic generation program

provided by the Hedera authors to generate the same traffic

patterns. To route flows, we use RipL-POX [34], a Python-

based OpenFlow controller. We set the link bandwidths to

10 Mb/s and allocate 25% of a CPU core on our eight core

machine to each of 16 hosts (i.e. a total of 50% load on the

CPU). We set the buffer size of each switch to 50 packets per

port, our best estimate for the switches used in the hardware

testbed.

Figure 8 shows the normalized throughput achieved by

the two routing strategies – ECMP and non-blocking – with

Mininet-HiFi, alongside results from the Hedera paper for

different traffic patterns.The Mininet-HiFi results are aver-

aged over three runs. The traffic patterns in Figure 8(a) are all

bijective; they should all achieve maximum throughput for a

full bisection bandwidth network. This is indeed the case for

the results with the “non-blocking” switch. The throughput

is lower for ECMP because hash collisions decrease the over-

all throughput. We can expect more collisions if a flow tra-

verses more links. All experiments show the same behavior,

as seen in the stride traffic patterns. With increasing stride

values (1, 2, 4 and 8), flows traverse more layers, decreasing

throughput.
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Figure 8: Effective throughput with ECMP routing on a k = 4 Fat Tree vs. an equivalent non-blocking switch. Links are set

to 10 Mb/s in Mininet-HiFi and 1 Gb/s in the hardware testbed [13].

Remark: The ECMP results obtained on the Hed-

era testbed and Mininet-HiFi differed significantly for the

stride-1, 2, 4 and 8 traffic patterns shown in Figure 8(a).

At higher stride levels that force all traffic through core

switches, the aggregate throughput with ECMP should re-

duce. However, we found the extent of reduction re-

ported for the Hedera testbed to be exactly consistent with

spanning-tree routing results from Mininet-HiFi. We postu-

late that a misconfigured or low-entropy hash function may

have unintentionally caused this style of routing. After sev-

eral helpful discussions with the authors, we were unable to

explain a drop in the ECMP performance reported in [13].

Therefore, we use spanning tree routing for Mininet-HiFi

Hedera results for all traffic patterns. For consistency with

the original figures, we continue to use the “ECMP” label.

The Mininet-HiFi results closely match those from the

hardware testbed; in 16 of the 20 traffic patterns they are

nearly identical. In the remaining four traffic patterns

(randx2,3,4 and stride8) the results in the paper have

lower throughput because – as the authors explain – the com-

mercial switch in their testbed is built from two switching

chips, so the total buffering depends on the traffic pattern.

To validate these results, we would need to know the map-

ping of hosts to switch ports, which is unavailable.

The main takeaway from this experiment is that Mininet-

HiFi reproduces the performance results for this set of data-

center networking experiments. It appears possible to collect

meaningful results in advance of (or possibly without) set-

ting up a hardware testbed. If a testbed is built, the code

and test scripts used in Mininet-HiFi can be reused without

change.

Verifying fidelity: Unlike DCTCP, the Hedera experi-

ment depends on coarse-grained metrics such as aggregate

throughput over a period of time. To ensure that no virtual

host starved and that the system had enough capacity to sus-

tain the network demand, we measured idle time during the

experiment (as described in §3.4). In all runs, the system had

at least 35% idle CPU time every second. This measurement

indicates that the OS was able to schedule all virtual hosts

and packet transmissions without falling behind an ideal ex-

ecution schedule on hardware.

Scaling the experiment: In the Hedera testbed, machines

were equipped with 1 Gb/s network interfaces. We were un-

able to use Mininet-HiFi to replicate Hedera’s results even

with 100 Mb/s network links, as the virtual hosts did not

have enough CPU capacity to saturate their network links.

While Hedera’s results do not qualitatively change when

links are scaled down, it is a challenge to reproduce results

that depend on the absolute value of link/CPU bandwidth.

5.3 Sizing Router Buffers

In our third example we reproduce results that were mea-

sured on a real hardware testbed to determine the number

of packet buffers needed by a router. The original research

paper on buffer sizing was presented at SIGCOMM 2004 [35].

All Internet routers contain buffers to hold packets during

times of congestion. The size of the buffers is dictated by the

dynamics of TCP’s congestion control algorithm: the goal is

to make sure that when a link is congested, it is busy 100% of

the time, which is equivalent to making sure the buffer never

goes empty. Prior to the paper, the common assumption was

that each link needs a buffer of size B = RTT × C, where

RTT is the average round-trip time of a flow passing across

the link and C is the data-rate of the bottleneck link. The au-

thors showed that a link with n flows requires no more than

B =
RTT×C√

n
. The original paper included results from simu-

lation and measurements from a real router, but not for a real

network. Later, at SIGCOMM 2008, this result was demon-
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Figure 9: Buffer sizing experiment.

strated on a hardware testbed running on the Internet2 back-

bone.6

To test the ability of Mininet-HiFi to emulate hundreds

of simultaneous, interacting flows, we attempt to replicate

this hardware experiment. We contacted the researchers and

obtained results measured on their hardware testbed, then

compared them with results from Mininet-HiFi; the Mininet-

HiFi topology is shown in Figure 9(a). In the hardware ex-

periments, a number of TCP flows go from a server at Stan-

ford University (California) to at a server at Rice University

(Houston, Texas) via a NetFPGA [36] IPv4 router in the In-

ternet2 POP in Los Angeles. The link from LA to Houston is

constrained to 62.5 Mb/s to create a bottleneck, and the end-

to-end RTT was measured to be 87 ms. Once the flows are

established, a script runs a binary search to find the buffer

size needed for 99% utilization on the bottleneck link. Fig-

ure 9(b) shows results from theory, hardware, and Mininet-

HiFi. Both Mininet-HiFi and hardware results are averaged

over three runs; on Mininet-HiFi, the average CPU utiliza-

tion did not exceed 5%.

Both results are bounded by the theoretical limit and con-

firm the new rule of thumb for sizing router buffers. Mininet-

HiFi results show similar trends to the hardware results, with

some points being nearly identical. If Mininet-HiFi had been

available for this experiment, the researchers could have

gained additional confidence that the testbed results would

match the theory.

Verifying fidelity: Like the DCTCP experiment, the buffer

sizing experiment relies on accurate link emulation at the

bottleneck. However, the large number of TCP flows in-

creases the total CPU load. We visualize the effect of system

load on the distribution of deviation of inter-dequeue times

from that of an ideal link. Figure 9(c) plots the CDF of devia-

tions (in percentage) for varying numbers of flows. Even for

800 flows, more than 90% of all packets in a 2 s time inter-

6Video of demonstration at http://www.youtube.com/
watch?v=ykga6N_x27w.

val were dequeued within 10% of the ideal dequeue time (of

193.8 µs for full-sized 1514 byte packets). Even though inter-

dequeue times were off by 40% for 1% of all packets, results

on Mininet-HiFi qualitatively matched that of hardware.

Scaling the experiment: The experiment described in the

original paper used multiple hosts to generate a large num-

ber of TCP flows. To our surprise, we found that a single ma-

chine was capable of generating the same number (400–800)

of flows and emulating the network with high fidelity. While

results on Mininet-HiFi qualitatively matched hardware, we

found that the exact values depended on the version of the

kernel (and TCP stack).

6. PRACTICAL EXPERIENCES

After successfully replicating several experiments with

Mininet-HiFi, the next step was to attempt to reproduce as

broad a range of networking research results as possible, to

learn the limits of the approach as well as how best to re-

produce others’ results. For this task we enlisted students

in CS244, a masters-level course on Advanced Topics in Net-

working in Spring quarter 2012 at Stanford, and made repro-

ducing research the theme of the final project. In this sec-

tion, we describe the individual project outcomes along with

lessons we learned from the assignment.

6.1 Project Assignment

The class included masters students, undergraduate se-

niors, and remote professionals, with systems programming

experience ranging from a few class projects all the way to

years of Linux kernel development. We divided the class of

37 students into 18 teams (17 pairs and one triple).

For their final project, students were given a simple, open-

ended request: choose a published networking research pa-

per and try to replicate its primary result using Mininet-HiFi

on an Amazon EC2 instance. Teams had four weeks: one

week to choose a paper, and three weeks to replicate it. Ama-

zon kindly donated each student $100 of credit for use on
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Project Image Result to Replicate Outcome

CoDel [37]

The Controlled Delay algorithm (CoDel) improves on RED and tail-

drop queueing by keeping delays low in routers, adapting to bandwidth

changes, and yielding full link throughput with configuration tweaking.

replicated +

extra results

HULL [38]
By sacrificing a small amount of bandwidth, HULL can reduce average and

tail latencies in data center networks.
replicated

MPTCP [39]
Multipath TCP increases performance over multiple wireless interfaces ver-

sus TCP and can perform seamless wireless handoffs.
replicated

Over 3G and WiFi, optimized Multipath TCP with at least 600 KB of receive

buffer can fully utilize both links.

replicated,

w/differ-

ences

Outcast [40]

When TCP flows arrive at two input ports on a tail-drop switch and com-

pete for the same output port, the port with fewer flows will see vastly

degraded throughput.

replicated

The problem described for Outcast [40] occurs in a topology made to show

the problem, as well as in a Fat Tree topology, and routing style does not

necessarily alleviate the issue.

replicated +

extra results

Jellyfish [41]

Jellyfish, a randomly constructed network topology, can achieve good fair-

ness using k-shortest paths routing, comparable to a Fat Tree using ECMP

routing, by using MPTCP.

replicated +

extra results

Jellyfish, a randomly constructed network topology, can achieve similar

and often superior average throughput to a Fat Tree.
replicated

DCTCP [14]

Data Center TCP obtains full throughput with lower queue size variabil-

ity than TCP-RED, as long as the ECN marking threshold K is set above a

reasonable threshold.

replicated

Hedera [13]

The Hedera data center network flow scheduler improves on ECMP

throughput in a k = 4 Fat Tree, and as the number of flows per host in-

crease, the performance gain of Hedera decreases.

replicated

Init CWND [42]
Increasing TCP’s initial congestion window can significantly improve the

completion times of typical TCP flows on the Web.
replicated

Increasing TCP’s initial congestion window tends to improve performance,

but under lossy network conditions an overly large initial congestion win-

dow can hurt performance.

replicated

Incast [43]
Barrier-synchronized TCP workloads in datacenter Ethernets can cause sig-

nificant reductions in application throughput.

unable to re-

produce

DCell [44]
DCell, a recursively-defined data center network topology, provides higher

bandwidth under heavy load than a tree topology.

replicated +

extra results

The routing algorithm used for DCell can adapt to failures. replicated

FCT [45]
The relationship between Flow Completion Time (FCT) and flow size is not

ideal for TCP; small flows take disproportionately long.
replicated

TCP Daytona [46]
A misbehaving TCP receiver can cause the TCP sender to deliver data to it

at a much higher rate than its peers.
replicated

RED [47]
Random Early Detection (RED) gateways keep average queue size low

while allowing occasional bursts of packets.

unable to re-

produce

Table 2: Student projects for CS244 Spring 2012, in reverse chronological order. Each project was reproduced on Mininet-

HiFi on an EC2 instance. The image for each project links to a full description, as well as instructions to replicate the full

results, on the class blog: http://reproducingnetworkresearch.wordpress.com.
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EC2. Each team created a blog post describing the project, fo-

cusing on a single question with a single result, with enough

figures, data, and explanation to convince a reader that the

team had actually reproduced the result – or discovered a

limitation of the chosen paper, EC2, or Mininet-HiFi. As an

added wrinkle, each team was assigned the task of running

another team’s project to reproduce their results, given only

the blog post.

6.2 Project Outcomes

Table 2 lists the teams’ project choices, the key results they

tried to replicate, and the project outcomes. If you are view-

ing this paper electronically, clicking on each experiment im-

age in the table will take you to the blog entry with instruc-

tions to reproduce the results. Students chose a wide range

of projects, covering transport protocols, data center topolo-

gies, and queueing: MPTCP [48, 39], DCTCP [14], Incast [43],

Outcast [40], RED [47], Flow Completion Time [45], Hed-

era [13], HULL [38], Jellyfish [41], DCell [44], CoDel [37], TCP

Initial Congestion Window [42], and Misbehaving TCP Re-

ceivers [46]. In eight of the eighteen projects, the results were

so new that they were only published after the class started

in April 2012 (MPTCP Wireless, Jellyfish, HULL, TCP Out-

cast, and CoDel).

After three weeks, 16 of the 18 teams successfully repro-

duced at least one result from their chosen paper; only two

teams could not reproduce the original result.7 Four teams

added new results, such as understanding the sensitivity of

the result to a parameter not in the original paper. By “re-

produced a result”, we mean that the experiment may run

at a slower link speed, but otherwise produces qualitatively

equivalent results when compared to the results in the pa-

pers from hardware, simulation, or another emulated sys-

tem. For some papers, the exact parameters were not de-

scribed in sufficient detail to exactly replicate, so teams tried

to match them as closely as possible.

All the project reports with the source code and

instructions to replicate the results are available at

reproducingnetworkresearch.wordpress.com, and we

encourage the reader to view them online.

6.3 Lessons Learned

The most important thing we learned from the class is that

paper replication with Mininet-HiFi on EC2 is reasonably

easy; students with limited experience and limited time were

able to complete a project in four weeks. Every team success-

fully validated another team’s project, which we credit to the

ability to quickly start a virtual machine in EC2 and to share

a disk image publicly. All experiments could be repeated by

another team in less than a day, and most could be repeated

in less than an hour.

7The inability to replicate RED could be due to bugs in net-
work emulation, a parameter misconfiguration, or changes
to TCP in the last 20 years; for Incast, we suspect configura-
tion errors, code errors, or student inexperience.

The second takeaway was the breadth of replicated

projects; Table 2 shows that the scope of research questions

for which Mininet HiFi is useful extends from high-level

topology designs all the way down to low-level queueing be-

havior. With all projects publicly available and reproducible

on EC2, the hurdle for extending, or even understanding

these papers, is lower than before.

When was it easy? Projects went smoothly if they primar-

ily required configuration. One example is TCP Outcast. In

an earlier assignment to learn basic TCP behavior, students

created a parking-lot topology with a row of switches, each

with an attached host, and with all but one host sending

to a single receiver. Students could measure the TCP saw-

tooth and test TCP’s ability to share a link fairly. With many

senders, the closest sender to the receiver saw lower through-

put. In this case, simply configuring a few iperf senders and

monitoring bandwidths was enough to demonstrate the TCP

outcast problem, and every student did this inadvertently.

Projects in data center networking such as Jellyfish, Fat

Tree, and DCell also went smoothly, as they could be built

atop open-source routing software [49, 34]. Teams found it

useful to debug experiments interactively by logging into

their virtual hosts and generating traffic. A side benefit of

writing control scripts for emulated (rather than simulated)

hosts is that when the experiment moves to the real world,

with physical switches and servers, the students’ scripts can

run without change [22].

When was it hard? When kernel patches were unavail-

able or unstable, teams hit brick walls. XCP and TCP Fast

Open kernel patches were not available, requiring teams to

choose different papers; another team wrestled with an un-

stable patch for setting microsecond-level TCP RTO values.

In contrast, projects with functioning up-to-date patches (e.g.

DCTCP, MPTCP, and CoDel) worked quickly. Kernel code

was not strictly necessary – the Misbehaving TCP Receivers

team modified a user-space TCP stack – but kernel code leads

to higher-speed experiments.

Some teams reported difficulties scaling down link speeds

to fit on Mininet-HiFi if the result depended on parameters

whose dependence on link speed was not clear. For example,

the Incast paper reports results for one hardware queue size

and link rate, but it was not clear when to expect the same

effect with slower links, or how to set the queue size [43]. In

contrast, the DCTCP papers provided guidelines to set the

key parameter K (the switch marking threshold) as a function

of the link speed.

7. RELATED WORK

Techniques and platforms for network emulation have

a rich history, and expanded greatly in the early 2000s.

Testbeds such as PlanetLab [10] and Emulab [12] make

available large numbers of machines and network links

for researchers to programmatically instantiate experiments.

These platforms use tools such as NIST Net [50], Dum-

mynet [51], and netem [52], which each configure net-
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work link properties such as delays, drops and reorder-

ing. Emulators built on full-system virtualization [53], like

DieCast [16] (which superseded ModelNet [54]) and several

other projects [55], use virtual machines to realistically em-

ulate end hosts. However, VM size and overhead may limit

scalability, and variability introduced by hypervisor schedul-

ing can reduce performance fidelity [56].

To address these issues, DieCast uses time dilation [29], a

technique where a hypervisor slows down a VM’s perceived

passage of time to yield effectively faster link rates and bet-

ter scalability. SliceTime [56] takes an alternate synchronized

virtual time approach – a hybrid of emulation and simula-

tion that trades off real-time operation to achieve scalabil-

ity and timing accuracy. SliceTime runs hosts in VMs and

synchronizes time between VMs and simulation, combining

code fidelity with simulation control and visibility. FPGA-

based simulators have demonstrated the ability to replicate

data center results, including TCP Incast [43], using simpler

processor cores [57].

The technique of container-based virtualization [23] has be-

come increasingly popular due to its efficiency and scalabil-

ity advantages over full-system virtualization. Mininet [22],

Trellis [20], IMUNES [24], vEmulab [18], and Crossbow [58]

exploit lightweight virtualization features built for their re-

spective OSes. For example, Mininet uses Linux contain-

ers [30, 25], vEmulab uses FreeBSD jails, and IMUNES uses

OpenSolaris zones.

Mininet-HiFi also exploits lightweight virtualization, but

adds resource isolation and monitoring to verify that an ex-

periment has run with high fidelity. In this paper, we have

demonstrated not only the feasibility of a fidelity-tracking

Container-Based Emulator on a single system, but also have

shown that these techniques can be used to replicate previ-

ously published results.

8. DISCUSSION

We envision a world where every published research work

is easily reproducible.8 The sheer number and scope of the

experiments covered in this paper – 19 successfully repro-

duced – suggest that this future direction for the network sys-

tems research community is possible with Container-Based

Emulation. CBE, as demonstrated by Mininet-HiFi, meets

the goals defined in Section 2 for a reproducible research

platform, including functional realism, timing realism, topol-

ogy flexibility, and easy replication at low cost.

Sometimes, however, CBE can replicate the result, but not

the exact experiment, due to resource constraints. A single

server running in real time will inevitably support limited

aggregate bandwidth, single-link bandwidth, and numbers

of processes. When scaling down an experiment, the right

parameters may not be clear, e.g. queue sizes or algorithm

8Technical societies such as the ACM and IEEE can facilitate
reproducible research by providing persistent online reposi-
tories for runnable papers.

tunables. A different result from the scaled-down version

may indicate either a configuration error or a not-so-robust

result, and the truth may not reveal itself easily.

We intend to build on the work of others to overcome these

limits to experiment scale. In the space dimension, Model-

Net [54] and DieCast [16] scale emulation to multiple servers.

There are research challenges with using this approach in the

cloud, such as measuring and ensuring bandwidth between

machines with time-varying and placement-dependent net-

work performance. In the time dimension, Time Dilation [29]

and SliceTime [56] show methods to slow down the time per-

ceived by applications to run an experiment with effectively

larger resources. Perhaps our fidelity measurement tech-

niques could enable a time-dilating CBE to adapt automat-

ically and run any experiment at the minimum slowdown

that yields the required level of fidelity.

As a community we seek high-quality results, but our re-

sults are rarely reproduced. It is our hope that this paper

will spur such a change, by convincing authors to make their

next paper a runnable one, built on a CBE, with public re-

sults, code, and instructions posted online. If enough authors

meet this challenge, the default permissions for network sys-

tems papers will change from “read only” to “read, write

and execute” – enabling “runnable conference proceedings”

where every paper can be independently validated and eas-

ily built upon.
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