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Abstract
The rigorous testing of hypotheses on suitable sample cohorts is a major limitation in translational
research. This is particularly the case for the validation of protein biomarkers where the lack of
accurate, reproducible and sensitive assays for most proteins has precluded the systematic
assessment of hundreds of potential marker proteins described in the literature.

Here, we describe a high throughput method for the development and refinement of selected
reaction monitoring (SRM) assays for human proteins. The method was applied to generate such
assays for more than 1000 cancer-associated proteins, which are functionally related to candidate
cancer driver mutations. We used the assays to determine the detectability of the target proteins in
two clinically relevant samples, plasma and urine. 182 proteins were detected in depleted plasma,
spanning five orders of magnitude in abundance and reaching below a concentration of 10 ng/mL.
The narrower concentration range of proteins in urine allowed the detection of 408 proteins.
Moreover, we demonstrate that these SRM assays allow the reproducible quantification of 34
biomarker candidates across 84 patient plasma samples. Through public access to the entire assay
library, which will also be expandable in the future, researchers will be able to target their cancer-
associated proteins of interest in any sample type using the detectability information in plasma and
urine as a guide. The generated reference map of SRM assays for cancer-associated proteins is a
valuable resource for accelerating and planning biomarker verification studies.
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Introduction
The identification of validated disease biomarkers for diverse clinical needs such as
prognosis, diagnosis, and patient stratification to follow and guide therapies is a
predominant line of inquiry in translational research (1, 2). To establish the value of a
protein biomarker it is imperative to reliably identify and reproducibly quantify the protein
of interest over multiple samples (3). Due to advances in proteomic and genomic
technologies, long lists of biomarker candidates have been generated that contain proteins
hypothesized to change in abundance relative to specific diseases or disease states.
However, subsequent hypothesis testing in large cohorts of patient specimens needs to be
performed in order to verify the clinical utility of such biomarker candidates (4). The
preferred specimens for biomarker testing are easily sampled body fluids like plasma and
urine (2, 4-6). However, the highly complex proteomes of plasma and urine pose technical
challenges for analysis (7, 8). This applies particularly to the verification of biomarker
candidates, a process that requires the accurate, sensitive, and reproducible quantification of
multiple proteins in complex backgrounds over large cohorts of patients’ specimens (9).

Traditionally, such hypothesis testing has been accomplished using affinity-based assays,
such as enzyme-linked immunosorbent assays (ELISA). Major constraints of this approach
are the limited availability of validated ELISA for the majority of human proteins, the
expensive and time-consuming development of de novo assays and the difficulty of assay
multiplexing (10). These limitations preclude the timely verification of the rapidly
increasing number of candidate proteins that are derived from high-throughput proteomic
and genomic screens (11). Additionally, computational approaches are emerging that use
data integration and network inference to generate sets of biomarker candidates (12-17) that
further increase the number of candidate proteins that need to be experimentally verified.
Therefore, it is anticipated that the rate of hypothesis generation for biomarker research will
further increase and consequently, a well-matched analytical platform that allows rapid and
high-throughput hypothesis testing is needed.

Targeted mass spectrometry (MS) via SRM has emerged as an alternative to affinity-based
measurements of defined protein sets (5, 10, 18-22). The main advantage of SRM is the
capacity for faster and cost-efficient assay development (23). SRM has also the feature of
being able to quantify multiple proteins in parallel (multiplexing) at a low limit of detection
and high accuracy. Additionally, it has been shown that protein quantification by SRM in
complex samples using predefined assay coordinates is reproducible across different
laboratories and instrument platforms (24). Consequently, SRM-based hypothesis testing is
ideally matched with high-throughput hypothesis generation and has the potential to bridge
the gap between generating lists of candidates and evaluating their clinical utility (9).

There are two major challenges facing the implementation of SRM in a biomarker
verification pipeline. The first is the generation of high quality SRM assays for sets of
biomarker candidates, which can include several hundred proteins. Picotti et al. developed a
high-throughput method for SRM assay development that is based on the use of crude
synthetic peptide libraries as a reference for validating SRM assays (23). Once such an assay
has been developed it becomes universally applicable. Therefore, publicly accessible
repositories have been generated that contain SRM assays (25). The second challenge is the
reliable identification and quantification of several hundred proteins in the sample of
interest, usually complex body fluids (10, 20). Recently, two novel data analysis tools,
mProphet (26) and SRMstats (27) have been developed to assist in the identification and
quantification of peptides and proteins measured by SRM. mProphet is an automated tool
that allows the objective and reliable association of groups of SRM signals with their
corresponding peptide sequences in complex samples, with and without isotope-labeled
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internal standards (26). SRMstats is a statistical modeling framework for protein
significance analysis based on linear mixed effects models specifically adapted for the SRM
data structure (27). Therefore, major bottlenecks impeding the wide use of SRM technology
have recently been alleviated.

In this study, we generated a resource of SRM assays for more than 1000 proposed protein
biomarker candidates that have been previously associated with cancer. Using a protein
functional network, we demonstrate that these proteins are enriched among the interaction
partners of genes mutated in cancer. The SRM assays developed via high-throughput peptide
synthesis and MS were subsequently applied to determine the detectability of the targeted
peptides in clinically relevant samples. Furthermore, we demonstrated the applicability of
the assays to reproducibly and accurately quantify biomarker candidates across a large
number of patient specimens. This resource of definitive SRM assays for cancer-associated
proteins enables and accelerates clinical SRM-based biomarker verification studies.

Results
A comprehensive list of cancer-associated proteins

Our goal was to select a comprehensive list of proteins that have been previously implicated
in cancer. Polanski and Anderson compiled an evidence-based list of 1261 proteins, which
are differentially expressed in cancer (cancer-associated proteins, CAPs) (28). To compile
this list, the authors found reported abundance changes observed at the protein level in
human plasma or tissue. They also accepted reported cases with changes at the DNA (ploidy
changes) or RNA level in affected tissue. Furthermore, the selection was derived from
various sample types and technology platforms. Of the 1261 proteins, we selected 1130,
which could be unambiguously associated with UniProt identifiers (http://
www.uniprot.org/). We added FDA-approved protein markers if they were not already
included in the target list of CAPs (8). In total, the list of CAPs selected for SRM assay
development consisted of 1172 proteins (Table S1).

Relation of cancer-associated proteins to candidate cancer driver mutations
It has been demonstrated that cancer origin and progression is driven not by single gene
mutation or expression changes, but by coordinated changes in variable subsets of genes
(29). Although diverse genomic alterations are observed in different individuals with tumors
of the same clinical type, sets of mutated genes can function in the same signaling pathway
or sub-network leading to similar or identical phenotypes (12). Proteins that are functionally
related to the mutated genes in a sub-network or pathway can potentially be used as a
biomarker for the state of pathways or sub-networks perturbed by gene mutations.
Therefore, we investigated the functional relationship of CAPs to candidate cancer driver
mutations (CDMs), which have been discovered by unbiased whole exome sequencing of
multiple human cancers. We compiled a list of 379 CDMs from the whole exome
sequencing data of 7 different cancer types (30-35). Their sub-network in the Reactome
Functional Protein Interaction Network (RFIN) (36) was examined for the presence of
CAPs. Further, we investigated the enrichment of CAPs among the functional interaction
partners of CDMs. 43 out of the 1172 CAPs have also been discovered as CDMs by
unbiased whole exome sequencing (Table 1). Including the functional interaction partners of
CDMs we obtained 608 CAPs that have a direct functional relationship to CDMs (Table 1).
We determined that the CAPs are significantly enriched in the sub-network of CDMs
compared to random networks of the same size and degree distribution (p-value 4.3e−11)
(Table 1) (37). These results demonstrate that the selected target proteins are not only
interesting as potential cancer biomarkers but are also relevant for studying perturbed
protein networks by genetic mutations that drive cancer development.
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Selection of representative peptides for cancer-associated proteins
The selection of peptides that uniquely represent the target proteins in the proteome
(proteotypic peptides, PTPs) is an important step in the development of SRM assays (38,
39). For each protein, we aimed for five tryptic peptides with favorable MS properties and
unique occurrence within the human proteome. We primarily used empirical evidence of MS
detectability for PTP selection. Therefore, we prioritized peptides for each target protein that
have been previously detected in large-scale shotgun MS data collections, namely the
Human Peptide Atlas (PA), Human Plasma PA (40, 41) and an extensive dataset produced
by in-depth fractionation and MS sequencing of human cell lysates (42). If no or insufficient
empirical evidence was available, we computationally predicted PTPs using criteria that
have been shown to favor detection by MS (39, 43). In total 5426 peptides were selected to
represent the 1172 CAPs (Table S2). 2948 peptides (54%) have been previously observed in
shotgun proteomic datasets and 2478 peptides (46%) were predicted (Fig. S1). The majority
of the protein targets, numbering 1002, were covered by 5 peptides. 93% of the selected
peptides were unique to their respective protein, indicating a high likelihood of developing a
specific assay for the majority of proteins.

Development of SRM assays for cancer-associated proteins
We developed SRM assays intended for the identification and quantification of CAPs in
various sample types and protein backgrounds. Such assays consist of the mass, charge state
distribution and chromatographic retention time of the precursor ion and the mass, charge
state distribution and relative intensity of the fragment ion signals (25). To establish the
assays we used a multi-step process. The first step was the acquisition of full fragment ion
spectra for the target peptides using chemically synthesized peptide libraries as described by
Picotti et al. (23) (Fig. 1A). Overall, 6787 fragment spectra were confidently assigned to
4821 out of the 5426 synthesized peptides (89%) and used to extract the SRM assay
coordinates. In the second step, SRM assay coordinates were refined by determining the
precise relative fragment ion signal intensities and the indexed retention time (iRT) (44) in
SRM acquisition mode (Fig. 1B), thereby providing important information for scheduling
SRM measurements as well as for scoring the SRM data (26). Finally, SRM assays showing
a low quality in SRM mode were eliminated by manual inspection. The overall success rate
of assay generation at the peptide level was 74% (3996 peptides) and 99% (1157 proteins) at
the protein level. For the majority of the CAPs (80%), refined assays are available to target
at least three peptides per protein (Fig. 2). Each refined SRM assay was defined by the iRT
of the peptide and the relative intensity ratios of its 5 most intense transitions (Table S3).
Thus, the generated SRM assays constitute a high quality map for CAPs that can be applied
to any biological sample of interest.

Detection of cancer-associated proteins in depleted plasma and urine using SRM
To generate a resource for accelerating the verification of CAPs as potential biomarkers, we
determined the detectability of the target proteins in widely used clinical samples using the
SRM coordinates determined above. We applied the generated SRM assays to human urine
and depleted plasma using label-free SRM, i.e. without addition of internal standards (Fig.
1C and Supplementary Result 1). Such measurements in complex samples record numerous
interfering transition signals and it is challenging to distinguish between true and false
assignments by manual inspection of the data (45, 46). To minimize the number of false
positive peptide identifications we evaluated the resulting data using the mProphet software
tool, which was modified compared to the original publication to account for the iRT
deviation as an additional score in the combined scoring function (26, 44).
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Plasma Results—In the depleted plasma sample 302 peptides corresponding to 182
proteins were detected with an FDR of 2% and a sensitivity of 70% (Fig. S2A, B and Table
S4). We investigated the concentration range of the detected proteins in depleted plasma
using estimated concentrations based on spectral counts derived from Human Plasma PA
(41) (Table S1). The detected proteins span five orders of magnitude in plasma reaching a
limit of detection (LOD) below 10 ng/mL (Fig. 3A). The distribution of detected CAPs over
the concentration range confirms the limited detectability by mass spectrometry for low-
abundance proteins in plasma. However, using SRM, we made 83 novel protein
observations among the 182 detectable CAPs in plasma in comparison to the 187 CAPs
previously observed in the Human Plasma PA by data dependent analysis in crude or
depleted plasma (Fig. 3B). In contrast, 88 out of 187 CAPs listed in the Human Plasma PA
were not detected using SRM, of which 19 have an estimated concentration above 100 ng/
mL. To study the effect of depletion on the detectability of CAPs in plasma, we targeted the
SRM assays in a crude plasma digest. Only 73 proteins were detected in the crude digest
and, as expected, these proteins were mostly high-abundance plasma proteins (Fig. S3 and
Table S5). The abundance of the 73 proteins ranged from 1.6 mg/mL to 35 ng/mL (Fig. S3).
These results demonstrate the increased sensitivity of detecting low abundance proteins in
plasma using a simple sample preparation such as depletion of the high abundance proteins.
However, for detecting a higher number of proteins in the low ng/mL concentration range
additional sample preparation steps are needed to decrease sample complexity. The SRM
assays developed in this study will be equally applicable to fractionated or enriched plasma
samples.

To further investigate the functional characteristics of the detectable CAPs in depleted
plasma compared to all targeted CAPs we conducted an enrichment analysis using the
functional annotation tool DAVID (http://david.abcc.ncifcrf.gov/) (47, 48). The CAPs
detectable in depleted plasma are enriched for extracellular region proteins (117 proteins
found; p-value 4.7e−11). They are mainly involved in acute inflammatory response (29;
3.1e−10), complement activation (16; 7.1e−8) and response to wounding (59; 7.5e−7). The
majority of the detected CAPs are either annotated in UniProt (www.uniprot.org) as plasma
proteins (69; 8.7e−34) or proteins highly expressed in the liver (86; 9.1e−13) and are thus
among high abundance proteins in plasma.

Urine Results—In urine we detected 661 peptides corresponding to 408 proteins with an
FDR of 3% and a sensitivity of 70% calculated by mProphet on the level of the SRM assay
(Fig. S2C, D and Table S6). Different FDR cutoffs were chosen to report detectable proteins
for depleted plasma and urine based on a consistent sensitivity for both sample types. We
also investigated the detected concentration range in urine by extracting estimated
concentrations from the Urine PA (Table S1). The narrower concentration range of proteins
in urine allowed us to detect a larger number of CAPs in the low ng/mL range (Fig. 3C). For
many of the CAPs detected in urine no estimated concentrations are available (Fig. S3).
Nevertheless, we expect that their concentration is in the sub-ng/mL range, which would
translate into a dynamic concentration range of detected proteins similar to that of plasma. It
is also expected that the distribution of detected proteins thins out towards lower pg/mL
concentrations, reflecting the trend observed in plasma. Compared to previously published,
large-scale proteomic datasets acquired for urine, derived from the human Urine PA and the
dataset of Adachi et al. (49), we detected 169 previously undetected proteins using our SRM
assays (Fig. 3D). Similar to depleted plasma the detectable CAPs in urine are enriched for
extracellular region proteins (189 proteins found; p-value 5.4e−5). However, in comparison
to depleted plasma a larger number of plasma membrane (137 versus 65 proteins) and
cytosolic proteins (67 versus 16) could be detected in urine. These proteins could be derived
from cells that are shed into urine. Additionally, it has been suggested that plasma
membrane proteins are excreted in urine through exosome formation (49). Furthermore, the
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narrower concentration range of proteins in urine allows the detection of proteins that are
usually masked in plasma by the highly abundant classical plasma proteins.

Characteristics of detected cancer-associated proteins in body fluids—The
final list of 473 CAPs detected in urine and depleted plasma demonstrates the power of
SRM in targeting proteins over a large dynamic range in minimally processed complex body
fluids. Next, for all detectable peptides we determined the theoretical specificity of the SRM
assays. This analysis was based on the uniqueness of the transition mass-to-charge ratios (m/
z) that define the assay in a background of all human peptides identified in the Human PA,
assuming that this represents the MS-detectable fraction of the human proteome. We used
SRMCollider (50), a tool based on the unique ion signature (UIS) approach described by
Sherman et al. (51). The analysis revealed high theoretical assay specificity for the detected
peptides in urine and plasma in the background of the Human PA. 94% of the peptides were
monitored by a unique combination of transitions (Supplementary Result 2 and Fig. S4).

Furthermore, we investigated how many of the detectable CAPs in urine and plasma are
functionally related to CDMs. Out of the 43 CDMs that are also reported as CAPs, 19 can be
directly monitored in at least one of the body fluids (Table 1). 232 detectable CAPs
represent functional interaction partners of the CDMs (Table 1). Assuming that the status of
the candidate cancer driver can be deduced either by the direct measurement of the protein
encoded in the CDM or by a functionally related protein, the detectable CAPs allow
monitoring the status of 143 CDMs in either urine or plasma (Table 1). For all the source
cancer types which we used to derive the CDMs we generated individual sub-networks
consisting of the CDMs identified in the respective cancer types and the functionally
interacting CAPs (Fig. S5-11), thereby demonstrating that they are highly interconnected.
Fig. 4 shows the sub-network for pancreatic cancer, highlighting the detectable CAPs in
urine and plasma. 30 of the 39 CDMs (77%) that were discovered for pancreatic cancer by
unbiased whole exome sequencing are connected to detectable CAPs. While well-studied
CDMs such as TP53, KRAS and SMAD4 have many connected CAPs which are also
detectable in one of the body fluids, other CDMs are poorly connected in the sub-network or
not even part of the sub-network. We propose that the sub-network of these CDMs should
be studied as new potential cancer protein biomarkers.

Monitoring biomarkers by SRM in a large patient cohort
Finally, we aimed to demonstrate the capacity of the SRM assays developed in this study to
monitor known biomarkers in a larger cohort of patient specimens. In our initial list of CAPs
we included proteins for which FDA approved assays exist, for example those in the OVA1
biomarker panel. This panel assesses the ovarian cancer (OC) risk in women diagnosed with
an ovarian tumor prior to planned surgery (52, 53). The OVA1 panel analyses five protein
biomarkers, cancer antigen 125 (CA125), beta-2-microglobulin (B2MG), apolipoprotein A1
(APOA1), transthyretin (TTHR) and transferrin (TRFE) using antibody-based assays, and
combines the results of each test to classify patients into high- or low-risk for ovarian
malignancy. In the detectability test we demonstrated that B2MG, APOA1, TTHR and
TRFE are accessible by SRM in an unfractionated tryptic digest of the plasma proteome. We
chose a cohort of plasma samples derived from OC patients (n=68) and patients with benign
ovarian tumors (BOT) (n=16) to confirm that the SRM assays quantify the proteins
reproducibly across the patient plasma samples and detect abundance differences between
the two patient groups. Plasma samples derived from healthy individuals were not included,
since the OVA1 panel specifically detects OC in women already diagnosed with a pelvic
mass. To fully explore the capacity of SRM to multiplex protein measurements, we added
30 target proteins to the OVA1 panel. These proteins were selected because they were either
proposed as biomarker candidates for OC before or because we predicted them to be
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functionally related to mutated or epigenetically silenced genes in OC (54) (Table 2). In total
we monitored 34 proteins (62 peptides) across plasma derived from 68 OC patients and 16
patients with BOT. mProphet (26) identified the peptides and proteins that were confidently
detected across the samples and SRMstats (27) was used for protein significance analysis.

Of the consistently quantified proteins, 19 showed a significant fold-change comparing
plasma samples from OC patients and patients with BOT (Fig. 5 and Table 2). The protein
significance analysis confirmed a significant abundance difference for the proteins of the
FDA-approved OVA1 panel, APOA1, TRFE, B2MG and TTHR for the two patient groups.
Furthermore, the direction of abundance change for these proteins was consistent with the
results described previously that were generated by immunoassays (55, 56). Of the other 15
proteins with significant abundance change, 3 have been previously suggested as biomarker
candidates for OC in literature, 9 proteins were derived from the network analysis of
mutated and epigenetically silenced genes in OC and 3 proteins were selected based on both
literature and network analysis (Table 2). These results demonstrate that SRM allows the
reproducible and accurate quantification of proteins across larger patient cohorts and
confirm the capacity of SRM to complement and extend antibody-based assays for
expedient verification of biomarker candidates. Furthermore, the significant abundance
difference of the proteins predicted by network analysis suggests that this approach could be
explored for the discovery of novel biomarkers.

Discussion
Over the last several years, long lists of proteins have been proposed as potential biomarkers
for various cancer types without further evaluation of their clinical utility. The lack of
follow-up is due, by large extent, to the lack of a technology for the expedient, reproducible
and accurate verification of the proteins as biomarkers. Recent developments in SRM-based
targeted proteomics show promise for accelerating the hypothesis testing of multiple
biomarker candidates in large cohorts of patient specimens. The aim of this study was the
generation of a resource of validated SRM assays for the detection and quantification of
cancer associated proteins to assist and accelerate the verification of cancer biomarker
candidates in clinical specimens.

We developed definitive SRM assays for 1157 proteins, which have been previously
reported to change abundance in various human cancers and which were found to be
functionally linked with genetic mutations driving cancer development. Out of the 1157
CAPs for which we generated assays, we detected 182 proteins in depleted plasma and 408
in urine using a label-free SRM strategy. The datasets have been submitted to the
PeptideAtlas SRM Experiment Library (PASSEL, http://www.peptideatlas.org/passel/) (57),
which allows researchers to extract the SRM assay coordinates, and importantly, to check
detectability information for proteins of interest (http://www.peptideatlas.org/PASS/
PASS00004 for depleted plasma, PASS00006 for crude plasma, PASS00007 for urine and
PASS00041 for the quantification of proteins in plasma of OC patients and patients with
BOT). We demonstrated the use of this library to accurately and reproducibly quantify 34
biomarker candidates across a larger cohort of patient plasma samples. The quantified
proteins included APOA1, TRFE, B2MG and TTHY which are all part of the FDA-
approved OVA1 biomarker panel and for which expected abundance changes were
confirmed comparing OC patients and patients with BOT. Furthermore, a subset of the
proteins tested that were not included in the OVA1 panel also achieved highly significant
separation of OC and BOT plasma samples, thus raising the possibility that the performance
of the OVA1 test could be further improved by the inclusion of additional proteins.
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[Note to reviewers: Datasets are not publicly viewable until acceptance of the manuscript;
reviewers may access all the data for review prior to release by going to http://
www.peptideatlas.org/passel/, entering the reviewer password EQ7277p in the entry box in
the middle of the web page and opening the “Browse SRM experiments” window. The four
datasets are listed as “Human CAP depleted plasma”, “Human CAP crude plasma”, “Human
CAP urine” and “Human CAP ovarian cancer plasma”.]

The SRM assays for the CAPs have been generated in a multistep process, in which the
SRM coordinates were first extracted from fragment spectra of synthetic peptides and
subsequently refined by measuring the synthetic peptides in SRM acquisition mode. While
sample-specific interferences may compromise some transitions, we demonstrated the
quality of the refined assay library by applying it to two of the most complex proteomes
commonly analyzed. Moreover, we calculated a high theoretical specificity for the detected
targets in plasma and urine by simulating the instances of interfering transitions assuming a
complex proteomic background. This shows that the SRM assays enable researchers to
directly target and consistently detect CAPs in any sample type and to thus test their
potential as biomarkers. However, the resource does not provide LODs and limits of
quantification (LOQs) for the SRM assays. These properties cannot be defined generally
because they are dependent on the sample preparation and the instrument platform. They
should be determined locally and preferentially using isotope-labeled internal standards
before the verification of the proteins in a large cohort of clinical samples.

The initial list of CAPs was assembled from studies of different sample types and various
technologies applied at the protein and nucleic acid level (28). Only a subset of the proteins
has been observed by MS and an even smaller subset has been detected previously in plasma
and urine, usually with low reproducibility in extensively fractionated samples. Therefore, it
was anticipated that many of the proteins would not be detectable in plasma or urine by
SRM. Nevertheless, in comparison to data extracted from the large-scale shotgun MS
datasets in Human Plasma PA, Urine PA and the urine study of Adachi et al. (49) we
obtained a high number of novel observations using our targeted proteomics approach, 83
and 169 CAPs for plasma and urine, respectively. However, 88 and 103 CAPs previously
detected by shotgun MS in plasma and urine, respectively, were not detected with our
method, likely due to the use of alternative sample preparation strategies, different types of
MS instruments, or because their abundance may be lower in the samples used in this study.
The proteome complexity of plasma and urine is the major limitation for the detectability of
target proteins. We demonstrate that the depletion of the 14 highest abundance plasma
proteins increases the number of detected CAPs in plasma from 73 to 182, especially
increasing the detectability of proteins in the ng/mL concentation range. The results obtained
are similar to previously reported studies combining depletion of high abundance plasma
proteins and shotgun proteomics (58, 59). While some high-abundance proteins have proven
to be clinically usefully, such as those in the OVA1 panel, cancer biomarker studies should
still reach the low ng/ml concentration range in plasma routinely (4, 11), since tissue-derived
proteins are expected and many current clinically used biomarkers are located in this
concentration range (2). The combination of SRM and depletion of the highest abundance
proteins in plasma achieves the required sensitivity only for a subset of the CAPs.

It has been previously shown that the sensitivity for detecting low abundance proteins in
body fluids can be further improved using other sample preparation regimens that reduce
complexity. These include the selective isolation of N-glycosylated peptides (22, 60),
fractionation by strong cation exchange chromatography (61), peptide enrichment using
Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA) (10, 62), and
the enrichment of low molecular weight and low abundance proteins using nanoparticles
(63, 64). The main disadvantage of fractionation is the reduction in throughput, since the
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number of samples is multiplied by the number of fractions made. The enrichment of low
molecular weight proteins has a high potential to detect peptidomic-sized fragments shed or
secreted from of tissue proteins, but it also neglects a large part of the proteome. Additional
costs for achieving higher sensitivity with enrichment strategies include increasing technical
variability with additional handling steps, a dependency on suitable affinity reagents,
focusing on a subset of proteins and limited multiplexing capabilities. Therefore, in this
study, we used the depletion of highly abundant plasma proteins, a simple sample
preparation for detectability testing that does not adversely affect throughput and is
commonly used for plasma proteomics. However, the disadvantage of the depletion strategy
is the removal of additional proteins that are non-covalently associated with the depleted
peptides or proteins (e.g. albumin) and thus potentially disturb the observed protein patterns
of the target proteins (65). Furthermore, plasma depletion reaches the required sensitivity for
biomarker studies only for a subset of proteins. However, the SRM assays of this resource
are not limited to one sample preparation strategy but can be combined with all above-
mentioned methods, except N-glycopeptide enrichment, to lower sample complexity and
gain sensitivity in detecting low-abundance proteins except for the enrichment of N-
glycopeptides. Additionally, the resource can be easily expanded to include detectability
information of CAPs for the other sample preparations.

We demonstrated that the CAPs, even though they were compiled from various sources, are
highly enriched in the sub-networks of CDMs discovered by unbiased whole exome
sequencing. This not only shows the potential clinical importance of the compiled CAPs, but
it also suggests a novel systematic approach for discovering new biomarker candidates.
Current efforts in unbiased whole exome or full genomic sequencing give more insights into
the molecular development of different cancer types. Additionally, a wealth of data is
publically available from transcriptomic and proteomic screens. Integrating the available
large-scale datasets with rapidly growing protein-protein or functional interaction networks
for humans can potentially lead to the identification of pathways and sub-networks that are
perturbed in specific cancers. Proteins that are part of the identified pathways or sub-
networks can then be tested as potential novel biomarkers. This network-based biomarker
candidate prediction is supported by the results that we obtained in the current study. We
predicted biomarker candidates combining genes mutated in ovarian cancer and a functional
interaction network and using our SRM assay library, could confirmed significant
abundance changes for 12 of the proteins comparing plasma samples derived from OC
patients and patients with BOT. Such computational network approaches reduce time and
resources spent on generating new potential biomarkers lists, so that more efforts can be
invested in the verification of their clinical utility.

The experimental procedures used in previous studies to generate lists of biomarker
candidates were time and resource consuming and most of the studies concluded after the
discovery of cancer-associated proteins without verifying their clinical utility. Recent
developments in SRM showed that it is a valuable alternative technology for protein
quantification compared to the “gold-standard” ELISA. High throughput, cost efficient and
fast SRM assay development as well as multiplexed analyte measurements allow for faster
verification of the CAPs in complex samples. In order to translate the research findings into
clinical practice, research efforts need to concentrate on hypothesis testing in large clinical
cohorts, since it is anticipated that only a few of the proposed markers will have an impact in
the current clinical practice. So far it has been shown that most biomedical research has
focused on only a few well-studied proteins precisely because the costly analytical tools for
their study are already available (66). In contrast, the resource described here has the
capacity to facilitate exploratory biomedical research and to drive it towards unstudied parts
of the human proteome. For example, on top of the assays for more than 1000 proteins
contained in this library, we estimate that the expansion of our SRM resource by an
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additional 100 proteins could be accomplished in less than one month. Therefore, we
envision this SRM resource as a tool well matched with computational candidate prediction.

The resource SRM reference map generated here provides high quality SRM assays
enabling direct measurement of the proteins associated with cancer and functionally related
to genes frequently mutated in cancer in any sample type. The detectability information
indicates where proteins are accessible and thus guides the selection of targets and
experimental procedures involved in biomarker verification. Using the outlined workflow,
the resource of assays can be rapidly expanded to include more proteins and sample types. A
strategy based on this assay library in combination with the software tools, mProphet and
SRMstats, for the analysis of large scale SRM datasets, provides the foundation for clinical
SRM-based cancer biomarker verification studies. Once candidate cancer biomarker
verification is accelerated, validation of clinical utility should follow.

Materials and Methods
Protein Selection

1172 protein targets were selected based on two previously published lists of proteins, one
enumerating those associated with cancer (28) and the other containing protein analytes
which have FDA approved clinical assays (8). Proteins were identified by their unique
UniProt accession number (Table S1). If a protein did not have a UniProt accession number
given in the source list, the protein's name was searched in the UniProt database (http://
www.uniprot.org/) or the protein's gene symbol was searched in the Gene/Protein Synonyms
finder (http://expasy.org/cgi-bin/gpsdb/form), in order to assign a UniProt identifier.

Network analysis
Functional relationships between the CAPs and CDMs were investigated using the RFIN
(16, 67). CDMs were obtained from whole-exome sequencing and re-sequencing studies of
cancer genomes for 7 human tissue types (30-35). CDMs were projected on the functional
interaction network and their interaction partners were explored for the presence of CAPs.
100 random protein networks of the same size and degree-distribution as RFIN were
generated using the “switching algorithm” (37) implemented in the Random Network Pulgin
for Cytoscape, which enabled assessing the statistical significance of enrichment of CAPs
among interaction partners of CDMs. The interactions were obtained using the Reactome
Functional Interaction Cytoscape plug-in (67) and the graphs were visualized in Cytoscape
(68).

Peptide Selection
For each protein a set of PTPs was selected based on the following criteria: only fully tryptic
peptides, with no missed cleavages, unique to a particular protein, and with a length between
6 and 20 amino acids were considered. For proteins listed in large-scale proteomic
repositories, like the Human PA (http://www.peptideatlas.org/), the Human Plasma PA (40,
41), and a human cell line MS deep sequencing dataset (42), the five PTPs most frequently
observed and fulfilling the selection criteria were chosen. For proteins that were observed in
the proteomic repositories by less than five PTPs or that were not previously observed,
additional PTPs with good MS properties were selected by bioinformatic prediction. The
main criterion for prediction was peptide hydrophobicity estimated using the SSRCalc
algorithm (69, 70). Only peptides with a SSRCalc value between 10 and 40 were considered.
If less than five uniquely mapping peptides could be selected for a protein, peptides mapping
to a maximum of three proteins in the Uniprot database were also considered.
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Crude Peptide Library Generation
Selected peptides were synthesized by the SPOT-synthesis technology (71, 72) (JPT Peptide
Technologies), recovered from the solid support and used in an unpurified form.
Synthesized peptides were lyophilized in 96-well plates with approximately 50 nmol of
unpurified peptide material per well. Aliquots of the peptides contained in each well were
combined to generate mixes of approximately 100 peptides. Prior to LC-MS/MS analysis the
peptide mixes were desalted and concentrated using Vydac C18 silica MicroSpin columns
(The Nest Group Inc.). A set of eight synthetic peptides (AAVYHHFISDGVR,
HIQNIDIQHLAGK, GGQEHFAHLLILR, TEVSSNHVLIYLDK, TEHPFTVEEFVLPK,
NQGNTWLTAFVLK, LVAYYTLIGASGQR, TTNIQGINLLFSSR) with elution times
spanning the solvent gradient were spiked into each mixture to enable the correlation of
relative retention times between LC-MS/MS runs.

SRM Assay Library Generation
The fragment ion spectral library was assembled using a hybrid triple quadrupole/ion trap
mass spectrometer (5500QTRAP, AB Sciex) by triggering the acquisition of a full fragment
ion spectrum upon threshold detection of an SRM trace corresponding to the first fragment
ion of the y-series with an m/z above the m/z precursor + 20 Thomson (Th), for the doubly
and triply charged peptide precursors. The instrument setup and parameters are described in
Supplementary Methods. The resulting MS/MS spectra were assigned to peptide sequences
using Mascot (Matrix Science, Version 2.3.0). The search results were validated using a
cutoff for the Mascot ion score corresponding to a FDR < 1%. All the peptide-spectrum
matches taken together constituted the spectral library for target peptides. For SRM assay
refinement, the crude peptide mixtures were analyzed on a TSQ Vantage triple-quadrupole
mass spectrometer (Thermo Fisher) in scheduled SRM acquisition mode. The QQQ spectral
library was used to extract the optimal coordinates for the SRM assays, e.g. the most intense
fragments, relative intensities of fragments and peptide elution times. Instrument specific
parameters and further method details can be found in Supplementary Methods.

Plasma Handling
Collection, handling and shipping of the plasma sample for the detectability test was carried
out by Sera Laboratories International Ltd. Blood was collected from two healthy
individuals, one male and one female, using EDTA as an anticoagulant. Plasma was
obtained from each sample of blood by centrifuging at 2000 × g for 10 minutes at room
temperature. After pooling of the two samples, the resulting plasma was filtered through a
0.2 μm filter, aliquoted and frozen at −80°C for shipping. Upon thawing, Complete Protease
Inhibitor Cocktail (Roche) was added.

For the collection of the patient plasma samples all patients signed an informed consent
document. Blood was drawn prior to surgery and collected into tubes processed with EDTA
to prevent coagulation. Within 30 min blood was centrifuged at the speed of 2000 × g for 10
min to separate the red blood cells, buffy coat and plasma. The plasma was removed,
aliquoted in 300 uL amounts and stored at −80°C. The blood sample handling, from drawing
to storage, was done within 2 hours.

Plasma Protein Depletion
Plasma was depleted of the 14 most abundant plasma proteins using the multiple affinity
removal system (MARS Hu-14 spin cartridge; Agilent Technologies) according to the
manufacturer's protocol. Depleted samples were exchanged using Vivaspin 500
concentrators with a 5000 MW cut-off (Sartorius Stedim Biotech) and denatured in 6 M
urea, 0.1 M ammonium bicarbonate prior to digestion with trypsin and LC-MS analysis.
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Urine Handling
Second morning urine samples were collected from four healthy individuals, two males and
two females, in 50 mL conical tubes (Greiner) and spiked with Complete Protease Inhibitor
Cocktail (Roche). Urine was centrifuged at 2000 × g for 10 min at room temperature. The
supernatants were transferred to a fresh tube and the urinary protein concentration was
estimated by pyrogallol assay (Sigma). A single pooled urine sample was prepared from the
four healthy individuals with a final concentration of 120 µg/mL. Protein precipitation was
achieved by adding TCA (Sigma-Aldrich) to 10 mL of urine to a final concentration of 6%.
The sample was mixed and incubated at 4°C for 2h followed by centrifugation at 14000 × g
for 15 min. The supernatant was removed and the pellet was washed twice with 100% ice-
cold acetone (Sigma-Aldrich) to remove all interfering compounds. The supernatant was
removed, the pellet was air-dried, and resuspended in 300 μl of denaturing buffer containing
8 M urea (Sigma-Aldrich) and 0.1 M ammonium bicarbonate (Sigma-Aldrich).

Plasma and Urine Protein Digestion
Following reduction and alkylation with DTT (Sigma-Aldrich) and iodoacetamide (Sigma-
Aldrich), the proteins were digested using sequencing grade porcine trypsin (Promega) at a
protease:protein ratio of 1:50 for plasma and 1:100 for urine. Digests were desalted and
concentrated using Vydac C18 silica MicroSpin columns (The Nest Group Inc.) and Sep-
Pak C18 cartridges (Waters), for plasma and urine respectively, prior to LC-MS analysis.
The crude plasma digest was prepared in the same way as depleted samples. An aliquot of
retention time calibration peptides from RT-kit-WR (Biognosys) was spiked into each
sample to allow for the correlation of relative retention times between LC-MS runs. The
extracted elution times of the RT peptides was used to calculate an iRT value relative to the
RT peptides for each SRM assay according to the vendors’ instructions (44).

Target detection in plasma and urine
For target detection in depleted plasma, crude plasma and urine, peptide preparations were
analyzed on a TSQ Vantage using the instrument setup and parameters as described in
Supplementary Methods. The refined SRM assays from the library, constituted by the
relative intensities of the five most intense fragments and the peptide elution time of each
target, were used to detect endogenous peptides. Additionally, five assays were selected as
positive controls for both plasma and urine, to be monitored in each MS run, and decoy-
transition groups were equally distributed over all runs for the subsequent estimation of the
FDR (26). Decoy transition groups were generated by subtracting or adding a random
integer to Q1 and Q3 m/z values as described by Reiter et al. (26). In each run, around 400
target transitions were monitored resulting in a total number of 60 MS runs per sample to
test the detectability of all refined SRM assays. SRM acquisition was performed with Q1
and Q3 operated at a resolution of 0.7 m/z half maximum peak width, with a retention time
window of 240 s and a cycle time of 2.0 s. To better cover the isotopic envelope the Q1
values for triply charged precursors were set to average molecular masses. Resulting SRM
data was analyzed using mProphet (26). The following subscores of each assay were
considered for the calculation of the discriminant score for the detected peak groups: shape
score, delta iRT, intensity-correlation-with-assay-score, transition-coelution-score and total-
intensity-score. The top-ranked peak group for each target and decoy transition group was
used for the FDR estimation as described by Reiter et al. (26).

Monitoring biomarkers in patient plasma
The plasma peptide preparations were analyzed on a 5500QTRAP (AB Sciex) using the
instrument setup and parameters as described in Supplementary Methods. For each target
peptide a heavy isotope labeled internal standard (JPT Peptide Technology and Thermo
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Fischer) was spiked in the plasma peptide mixture for accurate quantification. For each
peptide three transitions were monitored for the heavy and light version. Resulting SRM
data was analyzed using mProphet (26). The following subscores of each assay were
considered for the calculation of the discriminant score for the detected peak groups: shape
score, intensity-correlation-with-assay-score, transition-coelution-score, total-intensity-
score, light_heavy_correlation, var_light_heavy_shape_score and
light_heavy_coelution_score. The top-ranked peak group for each target and decoy
transition group was used for the FDR estimation as described by Reiter et al. (26). Protein
significance analysis was performed using SRMstats (27). In the first step, data
preprocessing was performed by transforming all transition intensities into log2-values.
Then a constant normalization was conducted based on reference transitions for all proteins,
which equalized the median peak intensities of reference transitions from all proteins across
all MS runs and adjusted the bias to both reference and endogenous signals. Protein-level
quantification and testing for differential abundance in the different patient groups were
performed using the linear mixed-effects model implemented in SRMstats. Each protein is
tested for abundance differences between ovarian cancer patients and patients with benign
ovarian tumors. The p-values were adjusted to control the FDR at a cutoff of 0.05 (27). All
proteins with a p-value below 0.01 and a fold-change larger than 1.1 were considered
significant.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Workflow outlining SRM assay generation, refinement and application to detect target
proteins in plasma and urine. In the first step, a crude synthetic peptide library was used to
generate QQQ full fragment ion spectra for the extraction of the preliminary coordinates for
SRM assays (A). In the second step, SRM assays were refined by measuring the crude
synthetic peptides in SRM mode using the coordinates established in full scan mode (B).
This step refined the relative transition intensities specific for the SRM acquisition mode and
the iRT in the chromatographic gradient to be used for endogenous peptide detection. The
final SRM assay library was then used to detect the CAPs in complex samples (depleted
plasma and urine) (C). Decoy transition groups and positive controls were included in the
SRM measurements to allow for objective data analysis using the mProphet software tool
(26).
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Fig. 2.
Number of peptides per protein in the SRM assay library for CAPs.
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Fig. 3.
Detectability results for depleted plasma and urine. Estimated protein concentrations for the
CAPs in plasma were extracted from Human Plasma PA (41). The plotted concentration
range shows detected CAPs (blue) and proteins that could not be detected (grey) in depleted
plasma (A). Proteins detected by SRM were compared to proteins previously observed by
large-scale proteomic experiments derived from Human Plasma PA (including
measurements in crude and depleted plasma without additional fractionation) (B). Estimated
protein concentrations for the CAPs in urine were extracted from Urine PA (41). The plotted
concentration range shows detected CAPs (blue) and proteins that could not be detected
(grey) in urine (C). Proteins detected by SRM were compared to proteins previously
observed by large-scale proteomic experiments derived from Urine PA combined with
protein observations from Adachi et al. (49) (D).

Hüttenhain et al. Page 21

Sci Transl Med. Author manuscript; available in PMC 2013 September 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Functional interaction network for pancreatic cancer. The diagram depicts functional
interactions of the identified candidate cancer driver mutations for pancreatic cancer and the
detectable cancer-associated proteins. Nodes represent CAPs (circles), CDMs (squares) and
CDMs that are also reported cancer-associated on protein level (triangles). Colors denote the
detectability of the proteins in plasma or urine: blue – detectable; pink – not detectable; grey
– not targeted in plasma or urine. Functional interactions between the proteins are marked as
edges. The figure was generated using Cytoscape (68).
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Fig. 5.
Quantification of selected proteins in plasma of ovarian cancer patients and patients with
benign ovarian tumors. All proteins with a p-value below 0.01 and a fold-change larger than
1.1 were considered significant.
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Table 1

Intersection of the candidate cancer driver mutations (CDMs) and their interaction partners in the Reactome
Functional Interaction Network with the cancer-associated proteins (CAPs). It is assumed that a CDM can be
monitored by measuring the protein encoded by the CDM or in the sub-network of CDMs.

Cancer associated proteins
(CAPs)

Overlap of
CDMs with

CAPs

# of CAPs in the sub-
network of CDMs

p-value (Enrichment of
CAPs in the sub-network of

CDMs)

# of CDMs that can be
monitored by CAPs (out of

379)

All 1172 43 608 4.3e−11 175

Detectable (plasma
and urine combined)

473 18 232 5.9e−5 143
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Table 2

Quantification of selected proteins measured by SRM in plasma of ovarian cancer (OC) patients and patients
with benign ovarian tumors (BOT). Statistical analysis was performed using a linear mixed effect model
implemented in SRMstats (27). The proteins were selected because they are either part of the OVA1
biomarker panel (OVA1), have been proposed as biomarker candidates for ovarian cancer (literature) or
because they functionally interact with epigenetically silenced or mutated genes in ovarian cancer (network).

Protein Gene symbol Fold-change P-value Significant Source (regulation) Publication

AACT SERPINA3 1.54 7.18E-10 yes literature (up), network (73-75)

APOA1 APOA1 0.86 0.0016 yes OVA1 (down) (53, 55, 56)

APOE APOE 0.83 1.39E-04 yes literature (up) (75)

B2MG B2M 1.19 2.51E-04 yes OVA1 (up) (53, 55, 56)

C1R C1R 1.16 1.19E-05 yes network

CFAB CFB 1.29 8.22E-06 yes network

CO5 C5 1.19 1.27E-05 yes network

CO6 C6 1.11 0.0026 yes network

CO7 C7 1.22 3.55E-04 yes network

GELS GSN 0.77 1.39E-04 yes network

HPT HP 1.67 0 yes literature (up), network (56, 75)

IC1 SERPING1 1.18 0.0050 yes literature (up), network (73)

ITIH4 ITIH4 1.18 1.77E-05 yes literature (up) (55, 73, 74)

RET4 RBP4 0.76 4.11E-07 yes network

SHBG SHBG 1.47 6.96E-11 yes network

TETN CLEC3B 0.78 3.02E-08 yes literature (down) (76)

THBG SERPINA7 1.20 1.24E-04 yes network

TRFE TF 0.84 2.79E-08 yes OVA1 (down) (53, 55, 56)

TTHY TTR 0.70 2.73E-08 yes OVA1 (down) (53, 55, 56)

A2MG A2M 0.89 0.0605 no network

APOA LPA 1.33 0.0605 no literature (up) (73)

APOB APOB 1.04 0.4771 no literature (down) (77)

C1QA C1QA 0.98 0.6961 no network

C1QB C1QB 1.08 0.0362 no literature (up), network (73)

C1QC C1QC 0.97 0.6555 no network

CADH5 CDH5 1.01 0.8670 no network

CLUS CLU 0.95 0.0626 no literature (up) (74, 78, 79)

CO3 C3 1.09 0.0163 no network

CO4A C4A 1.05 0.4255 no network

FN1 FN1 0.82 0.0181 no network

IGF2 IGF2 0.97 0.5384 no network

PLMN PLG 1.00 0.9690 no network

THRB F2 1.00 0.9598 no network

VTNC VTN 1.03 0.4771 no literature (up), network (80)
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