
Bioconductor Project
Bioconductor Project Working Papers

Year Paper

Reproducible Research: A Bioinformatics

Case Study

Robert Gentleman∗

∗Department of Biostatistics, Harvard University, rgentlem@hsph.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-

cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/bioconductor/paper3

Copyright c©2004 by the author.

Reproducible Research: A Bioinformatics

Case Study

Robert Gentleman

Abstract

While scientific research and the methodologies involved have gone through sub-

stantial technological evolution the technology involved in the publication of the

results of these endeavors has remained relatively stagnant. Publication is largely

done in the same manner today as it was fifty years ago. Many journals have

adopted electronic formats, however, their orientation and style is little different

from a printed document. The documents tend to be static and take little advantage

of computational resources that might be available. Recent work, Gentleman and

Temple Lang (2004), suggests a methodology and basic infrastructure that can be

used to publish documents in a substantially different way. Their approach is suit-

able for the publication of papers whose message relies on computation. Stated

quite simply, Gentleman and Temple Lang propose a paradigm where documents

are mixtures of code and text. Such documents may be self-contained or they may

be a component of a compendium which provides the infrastructure needed to pro-

vide access to data and supporting software. These documents, or compendiums,

can be processed in a number of different ways. One transformation will be to re-

place the code with its output – thereby providing the familiar, but limited, static

document.

In this paper we apply these concepts to a seminal paper in bioinformatics, namely

The Molecular Classification of Cancer, Golub et al. (1999). The authors of

that paper have generously provided data and other information that have allowed

us to largely reproduce their results. Rather than reproduce this paper exactly

we demonstrate that such a reproduction is possible and instead concentrate on

demonstrating the usefulness of the compendium concept itself.

Reproducible Research: A Bioinformatics Case Study

R. Gentleman

May 29, 2004

Abstract

While scientific research and the methodologies involved have gone through substantial
technological evolution the technology involved in the publication of the results of these
endeavors has remained relatively stagnant. Publication is largely done in the same manner
today as it was fifty years ago. Many journals have adopted electronic formats, however,
their orientation and style is little different from a printed document. The documents tend
to be static and take little advantage of computational resources that might be available.
Recent work, (Gentleman and Temple Lang, 2003), suggests a methodology and basic in-
frastructure that can be used to publish documents in a substantially different way. Their
approach is suitable for the publication of papers whose message relies on computation.
Stated quite simply, Gentleman and Temple Lang (2003) propose a paradigm where docu-
ments are mixtures of code and text. Such documents may be self-contained or they may be
a component of a compendium which provides the infrastructure needed to provide access
to data and supporting software. These documents, or compendiums, can be processed in
a number of different ways. One transformation will be to replace the code with its output
– thereby providing the familiar, but limited, static document.

In this paper we apply these concepts to a seminal paper in bioinformatics, namely
The Molecular Classification of Cancer, Golub et al. (1999). The authors of that paper
have generously provided data and other information that have allowed us to largely re-
produce their results. Rather than reproduce this paper exactly we demonstrate that such
a reproduction is possible and instead concentrate on demonstrating the usefulness of the
compendium concept itself.

Introduction

The publication of scientific results is carried out today in much the same way as it was
fifty years ago. Computers rather than typewriters bear the brunt of the composition and
the internet has largely replaced the mail as the transport mechanism but, by and large the
processes are unchanged. On the other hand, the basic tools of scientific research have changed
dramatically and technology has had a deep and lasting impact. In this paper we examine the
implications of a new method for publishing results that rely on computation that was proposed
by Gentleman and Temple Lang (2003).

We have termed this method of publication reproducible research because one of the goals
is to provide readers (and potentially users) with versions of the research which can be explored
and where the contributions and results can be reproduced on the reader’s own computer. The
general approach is reported in Gentleman and Temple Lang (2003) and is based on ideas of
literate programming proposed by Knuth (1992) with adaptations to statistical research as

1 Hosted by The Berkeley Electronic Press

2

proposed by Buckheit and Donoho (1995). This report uses an implementation based on R
(Ihaka and Gentleman, 1996) and Sweave (Leisch, 2002).

Gentleman and Temple Lang (2003) refer to the distributable object as a compendium.
In its most simplistic form a compendium is a collection of software, data and one or more
navigable documents. A navigable document is a document that contains markup for both
text chunks and code chunks. It is called a navigable document because a reader, equipped
with the appropriate software tools, can navigate its contents and explore and reproduce the
computationally derived content.

Navigable documents are transformed in a variety of different ways to produce outputs
and it is the different outputs that are of interest to the readers. One transformation of a
navigable document is to evaluate the code chunks (with appropriate software) and to replace
them with the output from the evaluation. For example, rather than including a graphic or
plot directly into a document the author includes the set of commands that produce the plot.
During the transformation of the document the plot is created and included in the output
document. Using this method the reader can read the finished document but she can also refer
to the untransformed navigable document to determine the exact details of how the plot was
constructed and which data were used. In many cases the transformations that are made will
rely on specific data or computer code and these resources are stored in, and made available
through, the compendium.

Our primary motivation for this research came from attempts to understand the large
number of interesting papers related to computational biology. While the authors are, by
and large, generous with their data and their time the situation is not satisfactory for them
or their audience. The research reported here represents one approach that has potential to
allow authors to better express themselves while simultaneously allowing readers to better
comprehend the points being made. Adoption of these mechanisms will have substantial side
benefits, such as allowing a user to explore and perturb the original work thereby increasing
their comprehension. And for those involved in collaborative research the compendium concept
can greatly simplify some aspects. For example, computations carried out by one investigator
(possibly at one site) can be easily reproduced, examined and extended by an investigator
at another site. There is also substantial benefit to be gained in a single laboratory. In
that setting, as post-docs, students and collaborators come and go, compendiums can provide
guidance. New researchers are able to quickly and relatively easily determine what the previous
investigator had done. Extension, improvement, or simply use will be easier than if no protocol
has been used.

In this document we will use the term publication in a very general sense and often the
phrase make available may be more apt. Examples of publication include the usual form of
publication in a scientific journal, it may mean sending a compendium to a specific set of
colleagues or the compendium may be internal to the lab group, where the compendium is
a method of transferring knowledge from one generation to the next. In this last case, we
envisage the situation where a post-doc, scientist or student has finished their employment but
their project will form the basis for other initiatives; in this setting publication is really the
process of constructing one or more compendiums and leaving them for the next investigator.

We put the ideas proposed in Gentleman and Temple Lang (2003) into practice. The
application of these ideas is demonstrated on a particular well known example: the Molecular
Classification of Cancer, Golub et al. (1999). This is one of the important papers in the field

http://biostats.bepress.com/bioconductor/paper3

3

of bioinformatics and the authors have generously provided data and other information that
have allowed the reproduction of their results. We have also relied on Slonim et al. (2000) and
Dudoit et al. (2002) for some guidance.

There are two basic points that we would like to make in this article. First that a practical,
easy to use set of tools exists for creating compendiums and second that both the author and
the reader benefit from the approach. To achieve the first of these goals a portion of the
analysis reported in Golub et al. (1999) is implemented using available tools. It would violate
copyright laws and would be rather boring for those familiar with that work to replicate it
in its entirety. Rather, we demonstrate that such a replication is possible, by reproducing a
portion of their analysis.

Achieving the second goal is harder. The author benefits by being able to better describe
the analysis since the code segments supplement the written document and make it much easier
to reconstruct the analysis and to improve the exposition. I can return to this analysis at any
time in the future and still understand it – a feat that would require considerably more effort
with some of my other works. To demonstrate a benefit to the reader your help is needed. The
reader must examine both the transformed version of this document and the untransformed
one. In the untransformed document you will have to do a little work to locate and comprehend
the code. But the benefits can be substantial and we hope that you will choose to explore both
the typeset version and the compendium.

Motivation

These ideas have been guided by a number of pioneering works. Buckheit and Donoho (1995),
referring to the work and philosophy of Claerbout state the following principle:

An article about computational science in a scientific publication is not the scholar-
ship itself, it is merely advertising of the scholarship. The actual scholarship is the
complete software development environment and that complete set of instructions
that generated the figures.

It is hard to argue with that sentiment. There are substantial benefits that will come from
enabling authors to publish not just an advertisement of their work but rather the work itself.
The technology needed to support the publication of the computational science exists. A
paradigm that fundamentally shifts publication of computational science from an advertisement
of scholarship to the scholarship itself is needed and the research reported here is a step in that
direction.

More recently, Green (2003), has drawn direct attention to the inadequacies of the current
situation.

Now that methodology is often so complicated and computationally intensive that
the standard dissemination vehicle of the 16-page refereed learned journal paper is
no longer adequate.

He goes on to note that,

Most statistics papers, as published, no longer satisfy the conventional scientific
criterion of reproducibility: could a reasonably competent and adequately equipped
reader obtain equivalent results if the experiment or analysis were repeated?

Hosted by The Berkeley Electronic Press

4

We will demonstrate how, a compendium provides the explicit computational details which
can be easily comprehended, modified and extended. A competent and adequately equipped
reader will easily be able to reproduce the results.

There were many reasons for choosing Golub et al. (1999) to exemplify the principles being
proposed here. Golub et al. (1999) is a well written paper, it is highly regarded and the
major points made rely heavily on computation. Further, the data are publicly available many
of the details of their analysis are reported in Golub et al. (1999), Slonim et al. (2000) and
Dudoit et al. (2002). It is a testament to their scholarship that few inquiries were needed to
establish the explicit details of the computations. On the other hand, the reader of this paper
can explore the untransformed document and should, in principle, need no explicit guidance
from the author. The exact nature of the computations, the order in which they were applied
and the data used to produce any graphic, table or statistic can readily be obtained from the
compendium.

This paper itself is written in the format being proposed and is provided as a compendium
with all data, software, and documents (transformed and untransformed) available for explo-
ration. The reader has a very simple task if they want to recover any of the specific details;
they need simply find the appropriate section of the navigable document. Moreover, readers
will be able to easily interact with the details of the computations, they will be able to make
different choices at different steps in the process (although this may require some programming
skill). In the implementation being presented this can be done by altering the code in the nav-
igable document and then transforming to obtain a new output. In the future we envisage an
interactive viewer with controls that can be manipulated by the user.

A compendium constitutes reproducible research in the sense that the outputs presented by
the author can be reproduced by the reader. It does not, however, constitute an independent
implementation. However, the compendium can provide sufficient information that verification
of the details of the analytic process is possible. Such a mechanism can help improve the
substance of scientific publications by exposing more of the details to scrutiny both by the
reviewers and by the audience.

Background and Alternative Approaches

As was noted above the ideas presented here have historical antecedents. We will consider some
of them and demonstrate why each of them is incomplete with regard to the specific task that
we are addressing. The basic role of a compendium is to provide support, substantiation and
reproducibility to the author’s work. The reader of any paper is being asked to believe that
given the original data and the set of transformations described by the author that the figures
and tables of the resultant paper can be obtained. The role of the compendium is to remove
all doubt from the reader’s mind as to whether the tables and figures can be produced and
to provide a complete and algorithmic description of how they were obtained. When provided
in this format, the reader is able to verify these claims by reproducing them on their own
computer.

http://biostats.bepress.com/bioconductor/paper3

5

Auditing Facilities

For the S language, one of the early papers that touches on some of the issues being raised here
is Becker and Chambers (1988). The authors describe their system for auditing data analyses.
Their task itself is slightly different although not unrelated and the authors make the point
that one of the purposes of the audit is to validate published results. However, unless the
audit and the data are made publicly available then no real validation is possible. And if both
the audit and the data are made available then there are strong similarities to what is being
proposed here. Except, of course, that our proposal calls for a much tighter integration that
provides direct connections between the data, the computations, and the reported tables and
graphics.

It is also important at this point to indicate one of modes of failure for any auditing system
is for certain calculations or transformations to be carried out in a system other than the
one for which auditing is carried out. Examples of such manipulations abound. There is no
simple mechanism, for example, to track changes made to data in an Excel spread sheet. Such
manipulations break the audit trail and if the output (the published document) is not tightly
linked to the supposed set of computations it is difficult to detect such defects in the analysis.

Since we have considered Becker and Chambers (1988) it is worth pointing out that this
article itself exemplifies precisely the problem we are trying to solve. The authors are care-
ful competent scientists, but their first code chunk appears to be in error. The S language
statement body<-m[,2] is missing and without it the third statement in their first code chunk
will fail. This error would have been detected immediately in our system yet was apparently
missed by theirs. This demonstrates how difficult the task of publishing verifiable computation
is and the need for software tools that reduce the complexity for authors. It also suggests that
a much tighter integration between the software, data processing, and the finished paper is
needed.

An auditing system performs a slightly different, but no less valuable, role than that of the
compendiums we are proposing. And, the ability to capture code used to perform an analysis
into a specified code chunk, in a navigable document, could be a valuable tool. However, the
lack of tight integration with auxiliary software and the data means that auditing facilities can
at best perform only part of the role of a compendium.

Data and Script Repositories

Some of the current practices that attempt to address the situation are for journals (and
authors) to make their data publicly available and in many cases to provide the scripts that
they used to perform their analyses. Now the scripts could in fact be produced by the auditing
facilities described above, but they do not need to be.

Such solutions fall short of the required levels of reproducibility. One of their short comings
is that each author selects a different set of conventions and strategies and the user is faced
with the complexity of unraveling the sequence of steps that led to the different pages and
figures. The adoption of a set of widely used conventions would make the situation better, but
in a sense that is the equivalent of our proposal here. At least on one level, the compendium
is merely a set of conventions. But, we need tight integration of the data, the transformations
and the outputs and this is not achieved by providing data on a web site together with the
scripts which are purported to carry out the reported analysis. An example of some of the

Hosted by The Berkeley Electronic Press

6

difficulties that can be encountered is reported in Baggerly et al. (2004).

Authoring Tools

The importance of easy to use authoring tools cannot be overemphasized. In our prototype we
propose using the Sweave system. In large part because it is integrated with R and there are
many tools in R to help with some of the basic manipulations (it is worth noting that these
tools were largely developed with this particular application in mind).

Sweave itself has a historical precedent – the REVWEB system (Lang and Wolf, 1997–
2001). The system is apparently quite advanced and there exists software for use with the
WinEdt (www.winedt.com) editor for creating what they term revivable documents. Much of
the documentation and discussion is in German, thereby limiting access to the important ideas.
The substance is very similar to that of the Sweave system.

REVWEB has a mechanism that allows users to step through the code chunks that were
recorded. In our system this functionality is provided by the vExplorer function in the tk-

Widgets package from the Bioconductor Project.
The two systems, REVWEB and Sweave, are suitable for producing navigable documents

from which versions of the research can be produced. But neither has a model for controlling
the data, for ensuring that all auxiliary software is available, for versioning or for distribution.
Now granted, all such issues can be dealt with in different ways and we anticipate adopting
any such innovations. But currently neither of these systems would be a good replacement for
the compendium concept - although both could play a substantial role within that paradigm.

Authors using the Sweave system tend to rely on the Emacs Speaks Statistics system
Rossini et al. (2004). Rossini (2001) discusses the related concept of literate statistical analysis
using many of the same tools, however the emphasis is different.

Other related work of Weck (1997) considers a document-centric view of publishing math-
ematical works. The author raises a number of points that would need to be addressed in a
complete solution to the problem. However, the problems of tight integration with the data
and the outputs exists here as well and no functioning system appears to be available.

The work of Sawitzki (Sawitzki, 2002) is also in a similar vein. The notion of a document
with dynamic content is explored. However, the emphasis there is on real time interaction.
The document is live in the sense that the user can adjust certain parameters and see the
figures change in real-time. While clearly an interesting perspective such documents could
quite naturally fit within the compendium concept. The compendium would provide them
with a natural location for data, auxiliary code, documentation as well as tools for versioning
and distribution.

Methods

For the purposes of this paper a compendium is an R package together with an Sweave docu-
ment. The package provides specific locations for functions, data and documentation. These
are described in the R Extensions Manual (R Development Core Team) which is available
with every distribution of R. The R package satisfies our requirements for associating data
and software with the navigable documents. This document and the research it embodies is
provided as a compendium and therefore, as an R package. The package is titled GolubRR,

http://biostats.bepress.com/bioconductor/paper3

www.winedt.com

7

named after the first author of Golub et al. (1999), with the RR suffix conveying both the
notion of reproducible research and the reliance on the R language. GolubRR contains code
that implements the functions needed, manual pages for all supplied functions, data and a
navigable document which can be processed in a number of ways. This document that you are
reading is one of the transformations of that navigable document.

While our proposed prototype comes in the form of an R package it is important that we
distinguish the compendium concept from that of a software package or module. We have
adopted R’s packaging mechanism because it gave us the structure that we needed (for con-
taining code, data and navigable documents) together with tools to manipulate that document,
to provide version information, distribution and testing. But the purpose of a compendium is
different from that of a software package. It is not intended to be reusable on a variety of inputs
nor does it provide a coherent set of software tools to carry out a specific and well-defined set
of operations. A compendium provides support for the claims that its author has made about
their processing of the data and about the reproducibility of that processing. Compendiums
are designed to address a single specific question and that distinguishes them substantially
from software packages – it is only the medium used for management that is the same.

We further note, emphatically, that the compendium concept does not rely on R but is
completely general and language neutral. It does require the implementation of a certain
amount of software infrastructure and currently only the R language supports the production
and use of compendiums. However, the compendium concept could easily be extended to in-
clude other languages such as Perl and Python. The concepts are general, the implementations
must be specific. A prototype of a navigation system for Sweave documents is available from
the Bioconductor project in the tkWidgets package as vExplorer.

You, as a reader have several choices in how you would like to interact with the compendium.
You can simply read this document, which is largely complete. You can obtain the compendium
(in this case from http://www.bioconductor.org/Docs/Papers/2003/Compendium) and save
it on your computer. There you can explore the different folders and files that it contains. You
can obtain R, install the compendium as a package in R, start R and use it to explore the
compendium using the tools mentioned above. To examine the code chunks you will need to
either open the navigable document in an editor or use some of the functionality available in
R.

The text you are reading is contained in an Sweave document named Golub.Rnw within
the compendium. This document contains an alternating sequence of text (called text chunks)
and computer code (called code chunks). The text describes what procedures and methods
are to be performed on the data and the code is sequence of commands needed to carry
out those procedures. When the document is processed, woven, the code is evaluated, in
the appropriate language, and the outputs are placed into the text of the finished document.
However, it is important to note that the compendium is a unit. One cannot expect to extract
components (even if they look like familiar LATEX documents) and have them function without
the supporting infrastructure. The outputs and transformations (such as PDF documents) are
distributable.

Code chunks do not need to be explicitly printed in the finished document. They are often
hidden since the reader will not want to see the explicit details but rather some transformation
of them. For example, when filtering genes, the author might explain in the text how that was
done and may or may not want to explicitly show the code. But in either case, the code exists

Hosted by The Berkeley Electronic Press

http://www.bioconductor.org/Docs/Papers/2003/Compendium

8

and is contained in the untransformed document. It can therefore be examined by the reader.
Some of the outputs, such as the number of interesting genes, may be placed directly in the
text of the output document.

The text below is a code chunk that demonstrates how the data were Windsorized (the low
values were moved up to 100 and the high values down to 16,000) during the data cleaning
process described in Golub et al. (1999). Below is the code chunk that is needed to carry this
out.

<<windsorize, results=hide>>=

X <- exprs(golubTrain)

Wlow <- 100

Whigh <- 16000

X[X<Wlow] <- Wlow

X[X>Whigh] <- Whigh

@

The first line, <<windsorize, results=hide>>= indicates the start of a code chunk. The
first argument, windsorize is a label for that code chunk and is useful when debugging or
performing other operations on the document. The second argument for the code chunk is
results=hide. This command indicates that when the document is processed the output
should not be visible in the transformed document. The code chunk consists of five statements,
in the R language, followed by a line with an at symbol, @, located in the first position. All
subsequent lines will be treated as text chunks until another code chunk is encountered. Many
more details of the syntax and semantics of the Sweave system are available in the appropriate
documentation provided with R and in Leisch (2002).

Authors may also want to include the results of some computations within the text chunks.
For example the author might want to report the values that were used for windsorizing the
data. The following construct may be used, at any point following the definitions of the
variables Wlow and Whigh.

The data were Windsorized with lower values \Sexpr{Wlow} and upper

value \Sexpr{Whigh}.

When the document is processed the markup \Sexpr{Wlow} will be replaced by the value of
the R expression contained in the call to \Sexpr; which in this case would be the value of
Wlow. In this case no code chunk is required.

Producing figures in the Sweave model is also quite straightforward. The following code
snippet is used to reproduce part of Figure 3 in Golub et al. (1999).

\begin{figure}[htbp]

\begin{center}

<<imageplot, fig=TRUE, echo=FALSE>>=

image(1:38, 1:50, t(exprs(gTrPS)), col=dChip.colors(10),

main="")

@

\caption{Recreation of Figure 3B from \citet{Golub99}.}

\end{center}

\end{figure}

http://biostats.bepress.com/bioconductor/paper3

9

In this example we intermingle the usual LATEX commands used to produce figures with
Sweave markup. At the time that this segment appears all necessary variables and functions
(e.g. gTrPS and dChip.colors) must be defined.

The evaluation model for these documents is linear. Any variable or function created in a
code chunk is available for use after the point of its creation. As research in this area progresses
it will become important to consider different models for controlling the scoping of variables
within the document. Both Weck (1997) and Sawitzki (2002) raise this issue and it is of some
importance. In the current implementation variable and function scope is global. However, one
can easily imagine cases where restricting scope to specific code chunks would be beneficial.

The author of the navigable document has a number of options for controlling the output
produced by any code chunk. We reiterate the fact that all details exist in the untransformed
document, whether or not they are presented in the finished document, and the reader has
access to them. The reader can determine what values were used and exactly when in the data
analytic process a step was carried out. The existence of the code and the sequential nature
of an Sweave document provide the necessary details and typically further explanation is not
required.

Another way in which an Sweave document can be processed is by tangling. When an
Sweave document is tangled the code chunks are extracted. This can be done either to a file or
into R itself. This process separates the processing from the narrative and can be quite helpful
to those who want to examine the sequential data processing steps.

We have exposed more code and raw results in this document than would normally be the
case. The reason for this is to convince you, the reader, that there is no artifice involved. All
computations are being carried out during document processing. If you have downloaded the
compendium you can, of course, check that for yourself. In normal use the code would be
suppressed and the outputs would be confined to tables, figures and in-line values.

The Details

In this section we provide specific examples and code based on the analysis reported in (Golub
et al., 1999). To avoid the rather constant citation of this work we use Golub to refer to the
paper in this section. Our analysis was also aided by the details reported in (Dudoit et al.,
2002) and Slonim et al. (2000) regarding their understanding of the analysis. The analysis is
intentionally incomplete; the goal here is not to reproduce Golub but rather to convince the
reader that that paper could have been authored using the tools being described here. Any
author contemplating a new paper would simply use this system, as we do, to produce their
work in the form of a compendium.

The data, as provided at http://www.genome.wi.mit.edu/MPR in January 2002, were
collected and assembled into an R package. This was done to make it easier for readers to
access the data. The package is named golubEsets. This package and other software will need
to be assembled by the reader of this document if they want to interact with it. Much of
this process should be automated and the user should only need to obtain this compendium
and load it into an appropriate version of R. They will subsequently be queried regarding the
downloading and installation of the other required software libraries.

The first code chunk loads the necessary software packages into R. The code chunk is labeled
setup and its output is suppressed. The reader does not need to be distracted by these details

Hosted by The Berkeley Electronic Press

http://www.genome.wi.mit.edu/MPR

10

in the processed document. Including these steps in the untransformed document is essential
for reproducibility.

Preprocessing

The analyses reported by Golub involved some preprocessing of the data. In all microarray
experiments it is important to filter, or remove, probes that are not informative. A probe is
non-informative when it shows little variation in expression across the samples being considered.
This can happen if the gene is not expressed or if it is expressed but the levels are constant in
all samples.

While the exact processing steps are not reported in Golub the data were Windsorized
to a lower value of 100 and an upper value of 16, 000. Next the minimum and maximum
expression values for that probe, across samples, was determined. A gene was deemed non-
informative (and hence excluded) if the ratio of the minimum to the maximum is less than 5
or the difference between the minimum and the maximum is less than 500 (Tamayo, 2003).
We have incorporated this processing in the function mmfilt which makes use of functionality
incorporated in the Bioconductor package genefilter .

At this point we begin processing the data. The code chunk presented previously is evalu-
ated here and the filtering and gene selection process is carried out. The output below comes
from evaluating the expressions in R. A reader could easily edit the untransformed document
to change these criteria and examine what happens if a different set of conditions were used
for gene selection.

> X <- exprs(golubTrain)

> Wlow <- 100

> Whigh <- 16000

> X[X < Wlow] <- Wlow

> X[X > Whigh] <- Whigh

The details of the filtering process are suppressed but the filtering process has selected
3051 genes that seem worthy (according to the criteria imposed) of further investigation. The
value printed in the previous sentence (it should be 3051) was computed and inserted into the
text using the Sexpr command. Changing the processing instructions would change the value
reported in that sentence.

The interested reader will find the software instructions for carrying out these computations
in the untransformed document. They are in the code chunks labeled windsorize and filter.

The next step is to produce a subset of the data that will be used in our subsequent
computations. This code chunk is displayed below. As you can see the commands are printed
out as are the results (if any). We first subset the expression data and then check to see if we
have obtained the correct number of probes. The command dim(X) asks R to print out the
dimensions of the matrix X; hopefully we see that this is 3051.

> X <- X[sub,]

> dim(X)

[1] 3051 38

http://biostats.bepress.com/bioconductor/paper3

11

> golubTrainSub <- golubTrain[sub,]

> golubTrainSub@exprs <- X

The data have been stored in an exprSet object. An exprSet is a data structure designed
to hold microarray data. More details can be found through the on-line help system in R and
in the Biobase package. Next the test set is reduced to the same set of genes as selected for
the training set. The code to do this is contained in the code chunk labeled testset, but is
not displayed here.

In this analysis the genes were selected according to their behavior in the training set.
If the same selection criteria were applied to the test set a different set of genes would be
selected. This is a point where an interested reader could benefit from the compendium and
simply determine which genes would be selected from the test set if the same criterion were
applied. This could lead to a different decision about which genes to use in the remainder of
the analysis. Readers can explore various scenarios using the compendium for guidance.

Neighborhood Analysis

The first quantitative analysis reported was called neighborhood analysis. The basic idea is
to determine if a set of genes had a correspondence or association with a particular grouping
variable, such as the ALL–AML classification. The test statistic used was reported in Note 16
as:

P (g, c) =
µ1(g) − µ2(g)

σ1(g) + σ2(g)
, (1)

where µi denotes the mean level of log expression in sample i and σi denotes the standard
deviations of the expression levels in sample i. The two groups (labeled 1 and 2) are determined
by the supplied variable c. Statisticians will notice a similarity to the two-sample t-test (except
for the denominator). Here, a reader might want to replace this measure of correlation with
another choice. We will use the terminology correlation here since that is what was used in
Golub but emphasize that this usage does not reflect the usual statistical interpretation.

The code for this is quite simple to write in R. It is included in the GolubRR package as
the function P and is an example of the need to include auxiliary software in the compendium.
An idealized expression pattern can be created using the training data. In their paper Golub

used a variable that is one when the sample is from the ALL group and zero otherwise. We
set the R variable c to have these values in the next code chunk.

> c <- ifelse(golubTrain$ALL == "ALL", 1, 0)

pattern. The function P is then applied to the data data in golubTrainSub to obtain the
correlations.

The fact that roughly 1100 genes were more highly correlated with the ALL-AML classifi-
cation than would be expected by chance is reported at the top of page 532. Further details
are given in their Figure 2 and in their supplemental Notes 16 and 17. Golub report using
random permutations of the idealized expression pattern to determine whether the number of
genes correlated with the idealized expression pattern was larger than one might expect by
chance. They reported using 400 permutations to assess the significance of the results.

At this point the author of the compendium has some choices to make. By including all of
the computed permutations the size of the compendium, which is already fairly large, would

Hosted by The Berkeley Electronic Press

12

be about 400 times larger. An alternative would be to provide sufficient documentation for the
reader to reconstruct the simulations. That might simply involve a description of the random
number generator and the seed used to start it or perhaps a complete implementation of the
random number generator would be supplied in the compendium. The reader would then
have to create the permutation data sets and using them carry out the calculations reported.
A third alternative for the author of the compendium would be to make the permuted data
sets available for download. In the first and third situations the amount of data that the
reader needs to obtain is increased substantially while in the second the processing time may
substantially increase. The nature of the trade-offs would probably need to be evaluated in
each specific situation by the author of the compendium.

For the purposes of this report we supply a function, permCor that can be used to perform
the computations and have made no further investigations into these aspects. If you have R
available for exploring the compendium you can find out more about this function by either
typing its name at the R prompt (in which case you will see the code) or by typing ?permCor

at the R prompt to get the manual page for permCor.

Class Prediction

Starting on page 532, Golub begin a discussion of the procedures they used for class prediction.
Details are given in the caption for their Figure 1, and in their Notes 19 and 20, part of which
is repeated next:

The prediction of a new sample is based on “weighted votes” of a set of informative
genes. Each such gene gi votes for either AML or ALL, depending on whether its
expression level xi in the sample is closer to µAML or µALL...

The magnitude of a vote is wivi where wi is a weighting factor that depends on how well
correlated gene gi is with the idealized expression. In Note 19 wi is denoted ai (or ag) and is
stated to be simply P (g, c). Whereas, vi is given by,

vi = |xi −
µAML + µALL

2
|.

The total votes for each of the two classes are tallied to yield VAML and VALL. Then the
prediction strength (PS) is computed as,

PS =
|VAML − VALL|

VAML + VALL

.

Each sample is labeled with the class that corresponds to the larger of VAML and VALL,
provided that the prediction strength, PS, is larger than some prespecified limit; Golub chose
to use 0.3 as their prespecified limit.

The algorithm is quite explicit and requires only a determination of how to select the
informative genes. Golub chose to use 50 informative genes. These were the 25 genes most
highly correlated with the idealized expression value (the 25 nearest to one and the 25 nearest
to minus one). The code needed to find these best 25 genes is contained in the code chunk
labeled getBest25.

The 50 genes selected using this criterion did not precisely coincide with those reported
in Golub. There were three genes that were selected by the methods described here that

http://biostats.bepress.com/bioconductor/paper3

13

were not in the lists presented by Golub. The disagreements were minor and likely due to
rounding or similar minor differences or a misunderstanding on our part. Since those reported
by Golub were used for all their subsequent analyses and since the goal here is to reproduce
their published results we provide those probes reported by Golub as data sets named amlgenes

and allgenes. In most of the subsequent analyses reported here we use these data to be
comparable. But before leaving this, we consider briefly how a user might choose to study the
genes found using our interpretation of the method used by Golub.

In the code chunk below we first read in the data sets for genes as determined by Golub

and count how many are in common with the lists we selected (ours are in variables named
AML25 and ALL25). We then determined where those selected by Golub fall in our ordered list
of genes. The values can be found by exploring the variables wh.aml and wh.all. The genes
selected in Golub were very close (their ranks were just outside the set selected here, suggesting
that the difference is likely to be just in how ties or near ties were handled). There were 23
in common for AML and 24 for ALL. Finally the symbols for the three genes we selected that
they did not, are printed by the following code chunk.

> data(hu6800SYMBOL)

> unlist(mget(wh.leftout, hu6800SYMBOL))

J05243_at M11147_at M21551_rna1_at

"SPTAN1" "FTL" "NMB"

Returning to the main analysis, Dudoit et al. (2002) report that some further processing of
the data occurred at this point. The data were log transformed and then standardization was
performed. For each gene Golub subtracted the mean and divided by the standard deviation
(mean and standard deviation were taken across samples). These details were not contained in
the original paper, but reproducibility depends on using the same transformation at the same
point as was done in the original analysis. We note that such details would easily be available
from any compendium-like version of the analysis. The means and standard deviations are
saved since those from the training set were also used to standardize the test set. The code is
contained in a code chunk labeled standardize.

To compute the prediction strength we use two functions. These are supplied in the com-
pendium and are documented more fully there. The first is called votes. It computes the
matrix (samples by genes) of votes as well as the average of the two means, and which of the
two means is closer to the observed expression value for that gene and sample.

The function to compute prediction strength is called PS. This function takes the the class
vector and computes both the group assignment and the vote.

> gTr.votes <- votes(gTrPS, c)

> names(gTr.votes)

[1] "closer" "mns" "wts" "vote"

> C <- ifelse(c == 1, "ALL", "AML")

> vsTr <- vstruct(gTrPS, C)

> PSsamp1 <- dovote(exprs(gTrPS)[, 1], vsTr)

Hosted by The Berkeley Electronic Press

14

> allPS.train <- vector("list", length = 38)

> for (i in 1:38) allPS.train[[i]] <- dovote(exprs(gTrPS[, i]),

+ vsTr)

The cross-validation component is implemented using PScv and the testing component is
implemented using PStest. These can be applied to the data to obtain the values used in
Figure 3 (A) of Golub. We can then use the training set to provide predictions for the test set.

The code to produce the table comparing the predicted classes to the observed classes is
given below. We indicate to the document processor that we do not want the commands to be
echoed and that the output from the command will be valid LATEX. This ensures that there
will be no markup around the output that would interfere with the usual LATEX processing of
the document. In producing the table we rely on the R package xtable. The set of commands
are presented next, to demonstrate the relative simplicity with which we can produce tables
in the output of our document that are based on computations made during the evaluation of
code chunks found earlier in the document.

<<PStable, echo=FALSE, results=tex>>=

y<-unclass(table(tsPred, gTePS$ALL))

dny <- dimnames(y)

dimnames(y) <- list(paste(dny[[1]], "Obs"),

paste(dny[[2]], "Pred"))

xtable.matrix(y, caption="Predicted versus Observed",

label="Ta:PreObs")

@

The output of these commands produces Table 1. As noted, the values in the table are
recomputed each time the document is processed. They are not obtained by cutting and pasting
and hence are not subject to the sorts of errors that that style of document construction is
prone to. They are of course subject to other sorts of errors.

ALL Pred AML Pred

ALL Obs 19.00 1.00
AML Obs 1.00 13.00

Table 1: Predicted versus Observed

Next we look at a table of the results. The number of samples where the prediction strength
exceeded 0.3 was 29. And the table of predicted class versus observed class is given in Table 2).

We can produce the false-color image, replicating Figure 3 B of Golub using the image

function in R. We could in fact reproduce the plot almost identically, but that would require
some additional amount of effort that would only be warranted in a production run. We have,
however, provided both the false-color image as shown in Golub and beside it a heatmap of the
sort that has become quite popular. The reader may want to further examine the groupings
suggested by the dendrograms (both columns and rows).

http://biostats.bepress.com/bioconductor/paper3

15

Samples

G
e
n
e
s

M55150_at
X95735_at
U50136_rna1_at
M16038_at
U82759_at
M23197_at
M84526_at
Y12670_at
M27891_at
X17042_at
Y00787_s_at
M96326_rna1_at
U46751_at
M80254_at
L08246_at
M62762_at
M28130_rna1_s_at
M63138_at
M57710_at
M69043_at
M81695_s_at
X85116_rna1_s_at
M19045_f_at
M83652_s_at
X04085_rna1_at
U22376_cds2_s_at
X59417_at
U05259_rna1_at
M92287_at
M31211_s_at
X74262_at
D26156_s_at
S50223_at
M31523_at
L47738_at
U32944_at
Z15115_at
X15949_at
X63469_at
M91432_at
U29175_at
Z69881_at
U20998_at
D38073_at
U26266_s_at
M31303_rna1_at
Y08612_at
U35451_at
M29696_at
M13792_at

B T B B T T B B B B B T B B M M M M M

Figure 1: Recreation of Figure 3B from Golub.

Hosted by The Berkeley Electronic Press

16

1
2

2
5

2
2

2
9

3
4

3
2

3
8

3
1

3
3

3
7

3
6

2
8

3
5

3
0

2
7

1
8

2
1

1
9

2
6

1
6 8 7 1 4

2
4

2
3 6

1
1

1
0

1
4 2 3 9

2
0

1
7 5

1
3

1
5

U26266_s_at
M91432_at
X74262_at
D38073_at
M31211_s_at
X59417_at
D26156_s_at
M92287_at
M31303_rna1_at
M13792_at
Z69881_at
M29696_at
S50223_at
U20998_at
L47738_at
U35451_at
Y08612_at
M31523_at
Z15115_at
U22376_cds2_s_at
U29175_at
X15949_at
X63469_at
U32944_at
U05259_rna1_at
U50136_rna1_at
M63138_at
M27891_at
M81695_s_at
M55150_at
U82759_at
M84526_at
M96326_rna1_at
M83652_s_at
M19045_f_at
X85116_rna1_s_at
X04085_rna1_at
Y12670_at
U46751_at
M57710_at
M80254_at
X17042_at
M16038_at
X95735_at
M23197_at
M28130_rna1_s_at
Y00787_s_at
M69043_at
L08246_at
M62762_at

Figure 2: The data from Figure 3B as a heatmap.

http://biostats.bepress.com/bioconductor/paper3

17

ALL AML

ALL 19.00 0.00
AML 0.00 10.00

Table 2: Predicted versus Observed (with high prediction strength)

Discussion

A compendium constitutes reproducible research in the sense that the outputs presented by
the author can be reproduced by the reader. It does not, however, constitute an independent
implementation. That would require a second, independent experiment and analysis which
would result in a second independent compendium. However, it provides sufficient information
to enable verification of the details of the scientific results being reported.

A compendium enables new and different levels of collaboration on scientific work based
on computation. Each of the authors has available to them complete details and complete
data, during the authoring process. It is easier to see, understand and possibly extend the
work of your collaborators. A compendium helps to ensure continuity and transparency of
computational work within a laboratory or group. When a post-doc, student or scientist
leaves the group, their work is still accessible to others and generally the time required for
someone new to grasp and extend that work will be shorter if a compendium is available.

Finally, there is of course the notion of general publication, or publication in a scientific
journal. Again, we argue that compendiums merely increase the options available for both
publication and refereeing. In neither case is the compendium essential but, if it is available
it can make it much easier for the reader to comprehend the computations involved. We
have heard arguments made about the problems of finding referees for these compendiums
and can only answer them by saying that if the results being published are computationally
based then it is essential that they be refereed by individuals that are computationally literate.
Having access to, and knowledge of the specific details of the computations provides invaluable
information to a referee or critical reader.

In most areas of research the scientific process is one of iterative refinements. A hypothesis
is formed and experiments or theorems devised that help to refine that hypothesis. Works
based on scientific computation have not generally benefited from this approach. Since the
works themselves (i.e. the explicit computations) are seldom explicitly published it is difficult
for others to refine or improve them. The compendium has the potential to change this. A
compendium provides the work in a format that is conducive to extension and refinement.

In situations where the research being reported relies mainly on simulations or other in

silico experiments then the compendium can be largely independent of the original data. If
the random number generators are included and other constraints met then the user will
have access to the entire experimental process. In other situations, such as bioinformatics or
computational biology there must be some point at which the data are captured electronically.
There is no way that the compendium concept can provide validity prior to that point. But
rather compendiums provide a mechanism for comprehending and exploring the reported data
and the reported analyses of it.

While the examples and discussion presented are based on a set of prototypes that have

Hosted by The Berkeley Electronic Press

18

been written for the R language we must once again stress the fact that the concepts and
paradigm are completely general and language neutral. All aspects that we have considered
could be made available and implemented in any one of the many computer languages now
popular, e.g. Java, Perl or Python. Of course a great deal of software infrastructure will
be needed, but the results speak for themselves. We must make computational science more
accessible to the forces of openness, reproducibility and iterative refinement.

Acknowledgments

I would like to thank D. Temple Lang, S. Dudoit, P. Tamayo, V. Carey and T. Rossini for
many helpful discussions. I would also like to thank two referees for their insight and helpful
comments.

Appendix A: R Packages Used

The following provides a description and some details of the R packages used to produce this
document.

annotate R. Gentleman, Using R environments for annotation.

Biobase R. Gentleman and V. Carey, Bioconductor Fundamentals.

genefilter R. Gentleman and V Carey, Some basic functions for filtering genes.

geneplotter R. Gentleman, Some basic functions for plotting genomic data.

golubEsets T. Golub, A representation of the publicly available Golub data.

GolubRR R. Gentleman, A package demonstrating the benefits of reproducible research. With

a reanalysis of Golub et al 1999.

hu6800 J. Zhang, Annotation data file for hu6800 assembled using data from public data

repositories..

tkWidgets J. Zhang, R based tk Widgets.

xtable D. Dahl, Coerce data to LaTeX and HTML tables.

Appendix B: Creating a compendium

The creation of one of the proposed compendiums is quite straight forward. The first step is
the creation of an R package. Once that is done, the author creates a folder in that package
named inst and within the inst folder a second folder named doc. Within the doc folder
they can create all of the documents that they would like following the directions given in the
Sweave manual.

http://biostats.bepress.com/bioconductor/paper3

19

The Anatomy of an R Package

An R package is a set of files and folders, some of which have specific names. Many more
details are given in the R Extension Manual (R Development Core Team) which is the definitive
reference for packages and many aspects of R. We list the most important set of these below:

• DESCRIPTION: a file in the main folder that provides various declarative statements about
the package. These include its name, the version number, the maintainer and any de-
pendencies on other packages (as well as several other things).

• R: a folder that contains all of the R code for the package.

• man: a folder that contains the manual pages for the functions in the package.

• src: a folder that contains the source code for any foreign languages (such as C or
FORTRAN) that will be used.

• inst: a folder that contains components that will be made available at install time.

• inst/doc: a folder, within the inst folder that contains all navigable documents.

The authoring cycle begins by creating the structure of a package, often using the R function
package.skeleton. They then create the inst and doc folders and begin filling in the different
components. If they have special R functions that they will use then these should be put in the
R folder and documented. The data that the compendium is using should be put into the data
folder and it to should be documented appropriately. Manual pages are stored in a special R
language markup that is also described in the R Extension Manual and their creation is often
facilitated by the use of the function prompt.

Once the author is comfortable that their document is ready they should engage in unit
testing and checking. The R system has a sophisticated, although sometimes cryptic, software
verification system. Issues such as consistency between the code (in the R folder) and the
documentation (in the man folder) is evaluated. At the same time all examples that have been
provided are run as are all navigable documents in the inst\doc folder and any problems are
reported. The author should fix the defects and run the checking system until no errors are
reported.

References

Keith A. Baggerly, Jeffrey S. Morris, and Kevin R. Coombes. Reproducibility of seldi-tof
protein patterns in serum: comparing datasets from different experiments. Bioinformatics,
20:777–85, 2004.

R. A. Becker and J. M. Chambers. Auditing of data analyses. SIAM Journal on Scientific and

Statistical Computing, 9:747–760, 1988.

J. Buckheit and D. L. Donoho. Wavelab and reproducible research. In A. Antoniadis, editor,
Wavelets and Statistics. Springer-Verlag, 1995.

Hosted by The Berkeley Electronic Press

20

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the
classification of tumors using gene expression data. Journal of the American Statistical

Association, 97(457):77–87, 2002.

R. Gentleman and D. Temple Lang. Statistical analyses and reproducible research. 2003.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M.L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: Class discovery and class prediction by gene expression monitoring.
Science, 286:531–537, 1999.

Peter J. Green. Diversities of gifts, but the same spirit. The Statistician, pages 423–438, 2003.

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Com-

putational and Graphical Statistics, 5:299–314, 1996.

D. Knuth. Literate Programming. Center for the Study of Language and Information, Stanford,
California, 1992.

Lorenz Lang and Hans Peter Wolf. The REVWEB manual for S-Plus in windows, 1997–2001.

Friedrich Leisch. Sweave: Dynamic generation of statistical reports using literate data analy-
sis. In Wolfgang Härdle and Bernd Rönz, editors, Compstat 2002 — Proceedings in Com-

putational Statistics, pages 575–580. Physika Verlag, Heidelberg, Germany, 2002. URL
http://www.ci.tuwien.ac.at/~leisch/Sweave. ISBN 3-7908-1517-9.

R Development Core Team. Writing R Extensions. R Foundation, Vienna, Austria, 1999.

A. Rossini. Literate statistical analysis. In K. Hornik and F. Leisch, editors, Proceedings of

the 2nd International Workshop on Distributed Statistical Computing, March 15-17, 2002.

http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings, 2001.

A. J. Rossini, Richard M. Heiberger, Rodney A. Sparapani, Martin Maechler, and Kurt Horniki.
Emacs speaks statistics: A multiplatform, multipackage development environment for sta-
tistical analysis. Journal of Computational and Graphical Statistics, 13:247–261, 2004.

Gunther Sawitzki. Keeping statistics alive in documents. Computational Statistics, 17:65–88,
2002.

Donna K. Slonim, Pablo Tamayo, Jill P. Mesirov, Todd R. Golub, and Eric S. Langer. Class
prediction and discovery using gene expression data. In RECOMB, Tokyo, Japan, pages 575–
580. ACM 2000 1-58113-186-0/00/04, 2000. URL http://www.ci.tuwien.ac.at/~leisch/

Sweave.

P. Tamayo. Personal communication. 2003.

Wolfgang Weck. Document-centered computing: Compound document editors as user inter-
faces, 1997. URL citeseer.ist.psu.edu/weck97documentcentered.html.

http://biostats.bepress.com/bioconductor/paper3

http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.ci.tuwien.ac.at/~leisch/Sweave
citeseer.ist.psu.edu/weck97documentcentered.html

