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To the Editor:

RNA sequencing (RNA-seq) is used to measure gene expression levels across the 

transcriptome for a huge variety of samples. For example, RNA-seq has been applied to 

study gene expression in individuals with rare diseases1, in hard-to-obtain tissues2 or for rare 

forms of cancer3. Recently, enormous RNA-seq datasets have been produced in the GTEx 

(Genotype-Tissue Expression) study4, which comprises 9,662 samples from 551 individuals 

and 54 body sites, and in the Cancer Genome Atlas (TCGA) study, which comprises 11,350 

samples from 10,340 individuals and 33 cancer types. Public data repositories, such as the 
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Sequence Read Archive (SRA), host >50,000 human RNA-seq samples. It is estimated that 

these repositories are likely to double in size every 18 months5. Deposited data are provided 

as raw sequencing reads, which are costly for standard academic labs researchers to analyze. 

Efforts have been made to standardize and publish ready-to-analyze summaries of both DNA 

sequencing6 and exome-sequencing7 data. Adopting a similar approach for archived RNA-

seq data, we have developed recount2, which comprises >4.4 trillion uniformly processed 

and quantified RNA-seq reads.

Many researchers rely on processed forms of publicly available data, such as gene counts, 

for statistical methods development and re-analysis of candidate genes. Although these 

quantified data are sometimes available through the Gene Expression Omnibus8, there are no 

requirements to deposit these data, nor are data always processed with standard or complete 

pipelines9–13. Five years ago, we began to address this problem by summarizing RNA-seq 

data into concise gene count tables and making these processed data and metadata available 

as Bioconductor14 ExpressionSet objects with one documented processing pipeline. 

Together this formed an RNA-seq resource named ReCount15 that contained 8 billion reads 

from 18 studies. ReCount was used in the development of the DESeq2 (ref. 16), voom17 and 

metagenomeSeq18 methods for differential expression and normalization, compilation of co-

expression networks19 and to study the effect of ribosomal DNA dosage on gene 

expression20. The amount of archived RNA-seq data has massively increased over the past 

five years. To meet the needs of researchers, we have produced recount2, which contains 

>4.4 trillion uniformly processed and quantified RNA-seq reads that are derived from in 

excess of 70,603 human RNA-seq samples deposited in the SRA, GTEx and TCGA projects 

aligned with Rail-RNA21,22.

The recount2 resource summarizes expression data for genes, exons, exon–exon splice 

junctions and base-level coverage (Supplementary Methods), which enables multiple 

downstream analyses, including testing for differential expression of potentially unannotated 

transcribed sequence23. A searchable interface is available at this site (https://

jhubiostatistics.shinyapps.io/recount/) and via the accompanying Bioconductor package 

(http://bioconductor.org/packages/recount).

We first compared recount2-processed data with the publicly available data from the GTEx 

project, which comprises 9,662 samples from >250 individuals24 to demonstrate that our 

processing pipeline produced gene counts similar to the published counts (Supplementary 

Methods). We downloaded the official release of the gene counts from the GTEx portal and 

compared them with the recount2 gene counts (Supplementary Note 1, Section 4). For 

protein coding genes, the gene expression levels that we estimated using the recount2 
pipeline had a median (IQR) correlation of 0.987 (0.971, 0.993) with the v6 release from 

GTEx (Fig. 1a and Supplementary Note 1, Section 4). A differential expression analysis 

comparing colon and whole blood samples using the gene expression measurements from 

recount2 matched the results obtained using the v6 release from the GTEx portal (r2 = 0.92 

between fold changes for recount2 and GTEx v6 counts for protein coding genes; Fig. 1b 

and Supplementary Note 1, Section 5). These results suggest that recount2 produces directly 

comparable gene counts to one of the largest published studies.
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The advantage of using the recount2 version of GTEx data is that all data are identically 

processed, therefore enabling integrated analyses of multiple datasets. To illustrate how 

recount2 can be used to investigate or validate cross-tissue differences using publicly 

available data, we computed expression differences comparing samples from healthy colon 

tissue and whole blood from healthy individuals (Supplementary Methods, Supplementary 

Note 2, Section 1.8 and Supplementary Code 1). Control samples were used to limit 

differences observed to those due to tissue type and not disease status. Colon control 

samples were used from studies SRP029880 (a study of colorectal cancer25, n = 19) and 

SRP042228 (a study of Crohn’s disease26, n = 41). Whole blood control samples were used 

from SRP059039 (virus-induced diarrhea, unpublished, n = 24), SRP059172 (a study of 

blood biomarkers for brucellosis, unpublished, n = 47) and SRP062966 (a study of lupus, 

unpublished, n = 18). After filtering genes to include only those with an average normalized 

count of at least 5 across samples (to restrict to genes that were expressed well above the 

limit of detection), we carried out gene-level differential expression analysis using limma27 

and voom17 (Supplementary Note 2, Section 1.8).

To validate the meta-analysis results, we evaluated whether we had found similar patterns of 

differential expression between the same tissues collected as part of a single project. We 

selected all of the colon and whole blood samples from the GTEx project (n = 376 and 456, 

respectively) and performed the same analysis, adjusting for batch effects by including the 

reported batch from GTEx as a covariate in the linear model. We then computed rank-based 

concordance, examining the fraction of the top differentially expressed genes that were 

included in both analyses. Approximately 20% of the top 100 genes from the two analyses 

were concordant (Fig. 1c and Supplementary Note 2, Section 1.9).

As a comparison and to provide context for this result, we performed two additional 

comparisons. First, we used GTEx lung data (n = 374) in place of the colon data and 

computed differentially expressed genes compared with whole blood. In this case, only ~5% 

of the top 100 differentially expressed genes were shared in the top 100 genes from our 

multi-study analysis (Supplementary Note 2, Section 1.9). Second, to represent concordance 

results expected for a comparison of unrelated things, we used ranked coefficients for batch 

instead of for tissue and saw very little concordance. These comparisons show that we can 

use the resources found in recount2 to perform a valid tissue-specific meta-analysis without 

generating the necessary data in-house, which would add considerable time and expense, 

provided that samples were even available to analyze.

The recount2 pipeline enables an in-depth characterization of transcriptional differences 

across biological conditions. To illustrate this using data from breast cancer subtypes, we 

first chose HER2-positive and triple-negative breast cancer (TNBC) samples from study 

SRP032789 (TNBC, n = 6; HER2-positive, n = 5)28, and extracted feature-level expression 

across genes, exons, junctions and expressed regions, finding widespread expression 

differences by subtype (Table 1, Supplementary Note 3 and Supplementary Methods). Of 

these significant differentially expressed regions (DERs) found with derfinder23, 1,350 did 

not overlap any annotated exons (Fig. 2a and Supplementary Note 4, Section 4), 

demonstrating that 5% of DERs detected would not be reported using annotation-dependent 

methods of expression estimation. These DERs would only be identified when a 
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quantification method not reliant on annotation was used. Such quantifications are made 

readily available within recount2 (Fig. 2b).

We further summarized junctions and exons at the gene level using the resulting differential 

expression P-values, and 73% of the top 100 genes were shared at the gene- and exon-level 

analyses. In comparison, expressed regions and exon–exon junction analyses shared only 

58% and 4% of the top 100 features, respectively (Fig. 2c and Supplementary Note 3, 

Section 5). Furthermore, to validate the differential expression findings, we compared the 

gene-level results from study SRP032789 with an independent study (SRP019936 (ref. 29); 

TNBC, n = 8; HER2-positive, n = 7; Supplementary Note 5). Expression analysis was 

carried out as described above, identifying 3,434 genes as differentially expressed (q < 0.05, 

Supplementary Note 5, Section 4). Given the low concordance (8% among the top 1,000 

genes, Supplementary Note 5, Section 5.1) between these results and those from study 

SRP032789, we then applied independent hypothesis weighting (IHW)30 across the two 

studies, which slightly improved replication rates, although sample size is limited in these 

two studies and thus likely thwarts our ability to see a huge increase in power using IHW 

(Supplementary Note 5, Section 5.2). As the data within recount2 have all been processed 

with the same analytical pipeline (Supplementary Code 2 and 3), the analytical burden on 

the user is minimized when comparing across datasets.

The recount2 pipeline can be used for querying, downloading and analyzing large-scale 

human RNA-seq datasets across more than 70,000 samples, including all of GTEx, TCGA 

and the SRA. We also allow users to process and upload their own experimental data to 

recount2 (Supplementary Methods and Supplementary Code 4). Although all recount2 
samples have been processed and summarized with a single pipeline, so-called ‘batch’ 

effects could occur and should be considered in downstream analyses, particularly when 

comparing among studies. As an example, the type of library preparation is not accounted 

for in our processing, but we will continue to annotate these variables so they can be 

included in downstream analyses. By removing a large number of data processing and 

quantification choices potentially made by researchers, recount2 reduces the number of 

‘researcher degrees of freedom’31, which can improve replication and reduce the potential 

for false positives created by processing pipeline differences.

Other tools have been developed to summarize publically deposited gene expression data. 

For example, the Expression Atlas32 provides final results that can be queried only at the 

gene level, Toil focuses only on curated datasets33 and other efforts focus primarily on 

cancer34,35. Unlike these resources, recount2 uses analysis pipelines that are annotation 

agnostic to process and summarize samples. For example, in junction and expressed region 

analyses, gene annotations are only used to label summarized data post-analysis and not to 

align reads or discover splice junctions—downstream analyses are therefore fully aware of 

unannotated splicing events36.

By providing an updateable resource of uniformly processed RNA-seq samples, together 

with R-based software for analysis, recount2 will enable studies that individual laboratories 

would otherwise not have the resources to undertake.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Meta-analysis and study comparison facilitated by recount2. (a) The distribution of 

correlations between gene expression estimates for GTEx v6 from the GTEx portal and the 

counts calculated in recount2 for protein coding genes. The gene expression counts are 

highly correlated between both quantifications for almost all genes. (b) A comparison of the 

fold changes for differential expression between colon and whole blood using the 

quantifications from GTEx and from recount2 for protein coding genes. The majority of 

genes have a similar fold-change between the two analyses. (c) A concordance versus rank 

(i.e., ‘concordance at the top’, CAT) plot showing comparisons between a meta-analysis 

tissue comparison of whole blood and colorectal tissue in data from the sequence read 

archive and the GTEx project. When comparing the same tissues, there is a strong 

concordance between differential expression results on public data and GTEx (orange), less 
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concordance when different tissues are compared (blue) and almost none when comparing 

different analyses (pink).
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Figure 2. 
Multi-feature-level differential expression analysis is facilitated by recount2. (a) Venn 

diagram showing the number of expressed regions detected that overlap exons, intergenic 

regions and intronic regions, including expressed regions that overlap multiple annotation 

types. Differential expression occurs outside of previously annotated protein-coding regions. 

(b) An example of a region on chromosome 15 showing differential expression between 

breast cancer subtypes in an annotated intron. The lines show the average coverage in each 

group across samples. (c) CAT plot of concordance between gene-level analysis and then 

exon-, junction- and region-level (DER) analyses shows high concordance across the 

different feature levels.
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