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Reproducing Interaction Contingency Toward

Open-ended Development of Social Actions:
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Abstract—How can human infants gradually socialize through
interaction with their caregivers? This paper presents a learning
mechanism that incrementally acquires social actions by finding
and reproducing the contingency in interaction with a caregiver.
A contingency measure based on transfer entropy is used to select
the appropriate pairs of variables to be associated to acquire
social actions from the set of all possible pairs. Joint attention
behavior is tested to examine the development of social actions
caused by responding to changes in caregiver behavior due to
reproducing the found contingency. The results of computer
simulations of human-robot interaction indicate that a robot
acquires a series of actions related to joint attention such as
gaze following and alternation in an order that almost matches
the infant development of joint attention found in developmental
psychology. The difference in the order between them is discussed
based on the analysis of robot behavior, and then future issues
are given.

Index Terms—joint attention, transfer entropy, contingency
chain, sequential acquisition of social behavior

I. INTRODUCTION

Human infants acquire a variety of social actions and

gradually develop the ability to communicate with others.

In particular, the ability to achieve joint visual attention is

the basis for sharing attention with others since what one is

looking at often indicates what one is interested in. Therefore,

understanding how infants acquire actions related to joint

attention such as gaze following, pointing, gaze alternation,

and social referencing is a central topic in developmental

psychology [1]. Infants incrementally acquire various kinds of

actions related to joint attention; after learning gaze following,

they begin to show gaze alternation, i.e., successive looking

between a caregiver and an object, social referencing, and

pointing [2]. However, it remains a mystery why most infants

acquire several actions related to joint attention in such an

order.

Recent imaging technology developments have been applied

to investigate the early sensitivities for actions related to joint

attention in infant brains [3], [4], [5]. Mundy et al. reported

EEG data that show that the parietal and frontal areas are

related to the development of responding to others’ attentions

and attracting them to an interesting object, respectively [4].

An ERP study by Striano et al. reported that enhanced
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negativity is observed in the middle frontal area of nine-

month-old infants engaged in a joint attention interaction with

a caregiver [5]. However, it remains difficult to investigate

the links among these sensitivities and caregiver interactions

through developmental courses due to the limitations of current

imaging technology.

In robotics, joint attention studies have recently been re-

ceiving increased attention [6], not only from the viewpoint of

building communicative robots [7] but also from synthetic ap-

proaches to modeling and understanding human developmental

processes [8]. Previous synthetic studies addressed how infants

acquire gaze following with/without external evaluation [9],

[10], [11]. The latter utilized contingency among a preceding

stimulus, one’s own action, and its consequence. An infant

can frequently find an object by looking where a caregiver is

looking as long as the object at which the caregiver is looking

is salient for the infant. Previous studies have shown that a

robot can acquire gaze following by learning sensorimotor

mapping from a human face pattern to its own motor command

to gaze at an object due to the contingency [10], [11]. How-

ever, in these studies, the robot was given a priori knowledge

about what kinds of sensory and motor variables should be

associated. Communicative robots [12] usually have many

candidates for sensory and motor variables to be associated to

acquire such social actions because they are supposed to have

multimodal sensorimotor experiences that reflect contingency

in interaction with humans. This indicates that it is not trivial

for a robot to select such a pair of sensory and motor variables

by itself to model contingencies involved in interaction.

We focus on finding contingencies in pairs of sensory and

motor variables as well as learning sensorimotor mapping

to acquire behavior. Information theoretic measures to find

causal relationships between sensory and motor data appear

promising [13]. From this viewpoint, we previously showed

that a measure of contingency is useful for robots when

searching for an appropriate combination of variables that

enables gaze following [14]. However, the robots lacked a

learning mechanism for behavior acquisition.

Infants seem to easily find contingency in their environment

and act to experience the found contingency [15]. It has

also been reported that a few interactions with a contin-

gently responsive robot lead infants to follow the gaze of

the robot [16]. We call the activity to experience such found

contingency “reproducing contingency” and hypothesize that

it leads to further novel contingencies that emerge from inter-

actions with a caregiver by introducing contingent responses
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from the caregiver to the robot. We expect that this loop

of finding and reproducing contingencies enables open-ended

development of social actions such as those related to joint

attention. Therefore, we model the developmental process of

joint attention by finding a contingency and its reproduction;

the joint attention behavior acquired by a robot may change

the caregiver’s response and induce a novel contingency in the

interaction to acquire another action related to joint attention.

This paper presents a learning mechanism based on the

above hypothesis. A contingency measure based on transfer

entropy is used to select appropriate pairs of variables to be

associated to acquire social actions from possible pairs. A

mechanism constructs a sensorimotor mapping to reproduce

behavior based on the found contingency. In the iterative

process, two new variables that express whether each sen-

sorimotor mapping was used or is being used are added

to find not only a single new contingency but also chains

of contingencies that depend on other contingencies. Joint

attention behavior is tested to examine the development of

social actions caused by changes in the caregiver’s behavior

due to reproducing the found contingency. As a first step, we

simplify caregiver-robot interaction by focusing on their gazes

and gestural modalities and suppose a quantized sensorimotor

space where sensory and motor variables have discrete values.

The results of computer simulations of the interaction indicate

that a robot acquires a series of actions related to joint attention

such as gaze following and alternation in an order that almost

matches the infant development of joint attention found in

developmental psychology. The difference between them is

discussed based on the analysis of robot behavior, and finally

future issues are given.

II. CONTINGENCY INHERENT IN INTERACTION

The contingency infants find in interaction with caregivers

depends on what capabilities they have and how they and their

caregivers interact with each other. To clarify these elements

involved in contingency, we first identify the phase of infant

development to be simulated. The behavior of the infants and

the contingency are then modeled using discrete stochastic

processes. Finally, the expected changes of the contingency in

the interaction are described.

A. Initial phase of joint attention development

Before infants begin to follow the gaze of another person

around six months [17], their behavior changes drastically

around five months. Five-month-old infants can control their

heads [18] and begin to pay attention to their environments as

well as their caregivers [19]. Their caregivers follow the at-

tention of five-month-old infants or attract it to an object [19].

Since these are expected to help infants develop their joint

attention capabilities, we simulated the developmental process

for several months starting from a five-month-old infant.

Infants are already sensitive to contingency in their environ-

ment before five months [20], [15], [21], but their contingency

detection ability is limited because they can only detect

contingency for a few seconds [22]. Therefore, we assume

that an infant model can only detect the contingency for a

short time.

B. Interaction procedure

We assume a simplified face-to-face interaction between a

caregiver and an infant (hereafter a robot), both of whom take

turns observing their environments and the other agent at the

t-th time step as follows:

1) Robot observes part of its environment including

the caregiver and obtains sensory information st =
(st

1, s
t
2, · · · , st

Ns)T , where st
i is a value in St

i called

a sensory variable (i = 1, 2, · · · , Ns; Ns denotes the

number of types of sensory data).

2) Robot takes plural actions mt = (mt
1,m

t
2, · · · , mt

Nm)T

in parallel, where mt
j is a value in M t

j called a motor

variable (j = 1, 2, · · · , Nm; Nm denotes the number of

different kinds of actions).

3) Caregiver observes part of her environment including the

robot and then acts.

4) Robot observes sensory information rt+1 =
(rt+1

1 , rt+1
2 , · · · , rt+1

Nr )T after its last action mt,

where rt+1
k is a value in Rt+1

k called a resultant sensory

variable (k = 1, 2, · · · , Nr; Nr denotes the number of

types of resultant sensory data).

We discriminate resultant sensory variables from sensory

variables to distinguish between cause and effect, although

they should represent the same information. We call a time

sequence of variables a process, namely, sensory process

Si = {St
i}, motor process Mj = {M t

j}, and resultant sensory

process Rk = {Rt+1
k }. A triplet of processes (Si, Mj , Rk) is

called an event. Here, the contingency of event (Si,Mj , Rk)

is evaluated as the dependency of Rk on Si and Mj . We call

an event that involves strong dependency a contingent event.

Some observations of human infants suggest that they change

their behavior after finding contingency [15]. Therefore, we

separate the robot task into two parts: finding a contingent

event and acquiring a sensorimotor map with which it can

obtain the contingent consequence.

C. Changes of contingency in social interaction

In caregiver-infant interaction, the social response of a

caregiver (which is contingent) to infant behavior leads the

infant to acquire a social action [23], [21], [15]. Some findings

show that the caregiver gradually changes how she responds

to infant behavior as her infant’s communicative abilities

emerge [24], [25]. This change may produce not only a single

contingency but also a chain of contingencies that enable the

infant to acquire social behavior that consists of a sequence

of acquired actions.

Actually, several social actions consist of a sequence of

contingent sub-actions. For example, social referencing might

be performed by two social actions: following the other’s gaze

to find an object and then looking back at the other’s face to

determine why the other is looking at it.

Therefore, we assume that a robot can observe the use of

an acquired action to promote finding the chain.

III. PROPOSED MECHANISM TO SUCCESSIVELY DEVELOP

SOCIAL BEHAVIOR

The mechanism shown in Fig. 1 consists of four modules:

(1) a contingency detector, (2) contingency reproduction mod-
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ules (CMs), (3) reactive behavior modules (RMs), and (4)

a module selector. The number of RMs is constant, but at

the beginning of learning there are no CMs because they

are generated by the contingency detector once it finds a

contingent event through interactions between the caregiver

and robot.

Fig. 1. Proposed mechanism to successively develop social actions

RMs and CMs output motor commands to be executed and

reliability values for the current state. The reliability, which

indicates the appropriateness of motor commands selected

by each RM and CM, is calculated based on information

theory. The module selector decides robot actions based on the

reliabilities. The history of the current state and the selected

motor command are stored with the resultant state in the

contingency detector to find contingent events and to generate

subsequent CMs based on them.

A. Contingency detector

A contingency detector has two roles: finding a contingent

event and generating a new CM based on it. We proposed an

information theoretic measure of contingency based on transfer

entropy [26] to quantify the contingency of events experienced

through interactions with a caregiver [14]. Transfer entropy

is a kind of information measure that can quantify the de-

pendency of one stochastic process on another process based

on conditional transition probabilities 1 [26]. The contingency

detector evaluates the contingency in interaction by calculating

the measures for all events. This measure is slightly extended

and applied to all events that are possible combinations of

sensory, motor, and resultant sensory variables.

Let X = {Xt+1} and Y = {Y t} be two discrete random

processes that may be approximated by a stationary Markov

process of order k and l. When Xt takes value xt at time t,

the evolution of process X is denoted by transition probability

p(xt+1|xt(k)), where xt(k) = (xt, · · · , xt−k+1). Transfer

entropy indicating the dependency of process X on process

1This measure is equivalent to the conditional mutual information [27],
[28] but unlike mutual information, it is designed to detect the dependency
between two processes based on the idea of finite-order Markov processes.

Y is given by:

TY →X =
∑

xt+1,xt(k),yt(l)

p(xt+1, xt(k), yt(l))×

log
p(xt+1|xt(k), yt(l))

p(xt+1|xt(k))
. (1)

Here, we set k = l = 1 because of the limitation of causality

detection mentioned in Section II-A.

To construct a sensorimotor map from sensory signals

to motor commands that provide a robot with contingent

consequences, the robot needs to evaluate the dependency of a

resultant sensory process on the sensory and motor processes.

Therefore, we introduce saliency of contingency (C-saliency)

C
j
i,k, which is extended from the original transfer entropy as

follows to quantify the joint effect of sensory process Si and

motor process Mi on the resultant sensory process Rk:

C
j
i,k = T(Si,Mj)→Rk

− (TSi→Rk
+ TMj→Rk

)

=
∑

st
i
,rt

k

p(rt
k, st

i)
∑

r
t+1

k
,mt

j

e(rt+1
k ,mt

j |r
t
k, st

i), (2)

where e(rt+1
k ,mt

j |r
t
k, st

i) is called an element of C-saliency

under a pair of observed values (rt
k, st

i) and is given by:

e(rt+1
k ,mt

j |r
t
k, st

i) =

p(rt+1
k ,mt

j |r
t
k, st

i) log
p(rt+1

k
|rt

k,st
i,m

t
j)

p(rt+1

k
|rt

k
,st

i
)

−p(rt+1
k ,mt

j |r
t
k) log

p(rt+1

k
|rt

k,mt
j)

p(rt+1

k
|rt

k
)

. (3)

The element of C-saliency represents the strength of the depen-

dency of the state transition from rt
k to rt+1

k on pair (st
i, m

t
j ,).

The first term represents the difference between p(rt+1|rt, st)
and p(rt+1|rt, st,mt) and indicates how the transition from

rt to rt+1 depends not only on st but also on mt. The

second term represents the difference between p(rt+1|rt) and

p(rt+1|rt,mt) and indicates how the transition from rt to rt+1

only depends on mt. The second term is subtracted from the

first to capture the combinatorial dependency of st and mt on

the transition from rt to rt+1. If they share strong dependency,

the element of C-saliency increases.

Note that C-saliency becomes smaller when the state tran-

sition from rt
k to rt+1

k is not only independent of st
i and mt

j

but is also fully predicted by the sensorimotor map. Using the

sensorimotor map reduces the uncertainty of a motor signal

given a sensory signal. As a result, the difference between the

denominator and the numerator in the first term of Eq. (3)

becomes smaller. Therefore, C-saliency is used to find the

salient contingency that a robot cannot reproduce by the

acquired sensorimotor map before finding it.

After calculating C-saliencies for all events, the detector

determines whether to generate a new CM for a contingent

event. We regard an event with the highest C-saliency value

as a contingent event because it is unclear how a high C-

saliency generates a useful CM. A new CM is generated if its

C-saliency retains the highest value during TC time steps and

the absolute difference of the values for the last consecutive

time steps during this period is smaller than constant value
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θ. To avoid generating too many similar CMs, the contin-

gency detector generates only one CM per contingent event.

Hereafter, a CM that is constituted for event (Si,Mj , Rk) is

denoted as Π(Rk|Si, Mj).
To find a chain of contingencies depending on a found

contingency, a robot identifies whether it reproduced the found

contingency as CM activities. When the contingency detector

generates the i-th new CM, it begins to observe the CM

activities, which we express as two different kinds of binary

random processes, MΠi and SΠi , to investigate the simplest

chain of contingencies related to the CM. MΠi,t takes value

”1” at time step t when an output from Πi is selected

as a current motor command by the module selector and

”0” otherwise. SΠi,t takes value ”1” at time step t when

an output from Πi is selected as a last motor command

and ”0” otherwise. Therefore, if the number of generated

CMs is NΠ, the contingency detector calculates C-saliencies

C
j
i,k, where Si ∈ {S1, · · · , SNs , SΠ1

Ns+1, · · · , S
Π

NΠ

Ns+NΠ} and

Mj ∈ {M1, · · · ,MNm ,MΠ1

Nm+1, · · · ,M
Π

NΠ

Nm+NΠ}. We expect

this extension to enable the contingency detector to find not

only a contingency for one time step but also one for several

steps related to the generated CM.

B. Contingency reproduction module

A CM Π(Rk|Si,Mj) for contingent event (Si,Mj , Rk)

is composed of a sensorimotor map from St
i to M t

j that

reproduces a contingent change of Rt
k based on elements of

C-saliency (see Eq. (3)). Given observed values of St
i and Rt

k,

a value of M t
j called a contingent motor command is selected

to reproduce the contingent change represented in the CM.

A contingent motor command is defined as the value of M t
j

whose C-saliency element is the highest among all possible

C-saliency elements.

Therefore, contingent motor command m∗ is given by:

(r̂∗,m∗) = arg max
r̂′

k,m′

j

e(r̂′k,m′
j |rk, si), (4)

where rk and si are the current observations and r̂∗ is the

expected resultant sensory information that predicts the change

by the contingent motor command. Hereafter, we call a pair

of r̂∗ and m∗ a contingent estimation.

CM also calculates the reliability of the contingent esti-

mation for the current observation that is used by a module

selector, as described in Section III-D. We denote such a

reliability of the contingent estimation of the l-th CM as

Zl(r̂
∗, m∗|rk, si). It is designed based on the z-score of the C-

saliency elements so that the module selector uses a contingent

estimation whose C-saliency element is not only high com-

pared with any other pairs in the event but also more salient

than other possible pairs under the current observation 2.

After they are calculated, the sensorimotor map and the

reliabilities in a CM are not updated, but the C-saliency for

the event used to generate the CM continues to be calculated.

2In the current implementation, Zl(r̂
∗, m∗|rk, si) was calculated by

Zl(r̂
∗, m∗|rk, si) =

el(r̂
∗, m∗|rk, si) − µ

rk,si

l

σ
rk,si

l

, (5)

C. Reactive behavior module

An RM outputs a motor command to perform a simple

action such as shifting gaze based on a fixed policy given by

the designer. RMs play more important roles in the early stage

of development since the robot behavior is only determined

by them before acquiring any CMs. To separate as much as

possible the proposed mechanism’s contribution from that of

super-tuned RMs for the development, we adopted the two

simplest RMs in the experiment: one is for gaze behavior by

which the target position of looking at is randomly selected

and the other is for hand gestures by which the hand’s target

posture is randomly selected. We might be also able to use

more biased selection because infants have innate preferences

for such things as human faces [29] or objects with complex

textures [30].

Fixed constant α is used for the reliabilities of the RMs. A

constant α influences the probability of selecting outputs from

the CMs as actual motor commands. A higher value of this

parameter prevents the module selector from selecting outputs

from CMs. As a result, a robot spends too much time before

finding the contingency related to an acquired CM or even

sometimes fails. In the experiment, we set α to almost half of

the reliabilities of the contingent estimations; that is, α = 1.0.

D. Module selector

Given the reliabilities of all CMs and RMs, a module

selector decides which of these outputs should be selected

as the robot’s motor command. In the current implementation,

we assume that the robot can simultaneously select multiple

motor commands if they belong to different categories. For

example, it can simultaneously perform both gaze and hand

movements.

For each motor command category, the module selector

chooses one of the outputs of all RMs and CMs belonging

to the same category by softmax selection based on the

reliabilities. Note that to avoid deadlocks in specific states, the

RMs and CMs reliabilities are discounted by an exponential

factor of periods when the state transition of the sensory and

resultant sensory variables involved in the modules do not

change.

E. Sequential acquisition of behavior based on reproducing

the acquired behavior

The proposed mechanism is expected to continue to acquire

different sensorimotor mappings as follows. At the beginning

of learning, the module selector selects the outputs of RMs (at

where µ
rk,si

l
and σ

rk,si

l
denote the average and standard deviation of all C-

saliency elements under values (rk, si). Eq. (5) is applied for the reliability
of the contingent estimation that meets the following requirements:

e(r̂∗, m∗|rk, si) − { max
r̂′′

k
,m′′

j

e(r̂′′k , m′′

j |rk, si)} > Zθ (6)

(r̂′′k 6= r̂∗ ∩ m′′

j 6= m∗)

e(r̂∗, m∗|rk, si) > 0.2{ max
r̂′

k,m′

j ,

r′

k,s′i

e(r̂′k, m′

j |r
′

k, s′i)}. (7)

Zl(r̂
∗, m∗|rk, si) = 0 if the contingent estimation does not satisfy them.
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Fig. 2. Experimental setting for acquisition of actions related to joint attention

random selection) as motor commands since there are no CMs.

As interaction between caregiver and robot is iterated, the

contingency detector generates a new CM with a sensorimotor

map to reproduce the found contingency. Once a CM has

started to be used, the robot’s behavior might affect the

dynamics of its environment; for example, its caregiver might

regard it as more communicative and change her response to

it. Such a change causes the invention of subsequent CMs,

which hopefully create further inventions in a catenative way.

Whenever a new CM is generated, the contingency detector

starts to observe whether the new CM was used and is going

to be used, respectively. It also starts to evaluate new events

including these activities of the CM expressed as new sensory

process SΠ and motor process MΠ. Such events may be

selected as the next contingent event if the found contingency

leads to novel contingency. Therefore, the robot is expected

to find a chain of contingent events.

IV. COMPUTER SIMULATION OF BEHAVIORAL

DEVELOPMENT RELATED TO JOINT ATTENTION

The proposed model’s performance was tested in computer

simulations of a robot and a caregiver model, both of which

manipulated a sensorimotor space in face-to-face situations

where they used gazes and hand movements.

A. Experimental setting

1) Environment and infant model: Figure 2 shows an

overview of the setting in the computer simulation. The robot

sits across from the caregiver at a fixed distance. There are

three spots on a table, and two objects are randomly placed

every ten time steps (no more than one object at one spot).

Here, the objects are not identified for simulation simplicity

since the differences between them do not affect the robot and

caregiver behavior.

The initial set of variables is listed in Table I 3. The sensory

variable for the caregiver’s face is denoted by St
1, which takes

a state at which the robot is looking at her frontal face (fr),

3Instead of allowing the complicated diversities of the results by assigning
all sensory variables both for S

t and R
t, we selected different sets of

variables for each S
t and R

t. Note that such a reduced problem still involves
finding appropriate variables as causes and results as well as that we can
observe a similar tendency in the order of the acquired modules as those
obtained in the current reduced setting.

TABLE I
INITIAL VARIABLES IN ROBOT

Type Name Symbol Variables

S
t caregiver’s face C St

1
= {f1, f2, f3, fr, fφ}

object O St
2

= {o, oφ}

M
t gaze shift G Mt

1
= {g1, g2, g3, gc}

hand gesture H Mt
2

= {h1, h2, h3, h4}

R
t

frontal face of caregiver F Rt
1

= {0, 1}
profile of caregiver P Rt

2
= {0, 1}

object O Rt
3

= {0, 1}

or her face looking at spot i on the table, fi (i = 1, 2, 3), or

does not look at the caregiver (fφ). The sensory variable for

an object is denoted by St
2, which takes a state at which the

robot is looking at an object (o) or at something else (oφ). The

robot cannot simultaneously look at both the caregiver’s face

and spots on the table. For example, when it is looking at the

caregiver’s frontal face, (st
1, s

t
2) = (fr, oφ).

We select resultant sensory variables Rt = {Rt
1, R

t
2, R

t
3}

that reflect the infant’s innate preferences. Human infants

appear to like both the caregiver’s face [29] and salient

objects [30]. In particular, they prefer frontal faces to pro-

files [29]. Thus, we prepared three types of variables: care-

giver’s frontal face Rt
1, caregiver’s profile Rt

2, and object Rt
3.

These binary variables indicate whether the robot is looking

at its preferred face or an object (”1”) or neither (”0”). Since

the robot can look at either the caregiver’s face or spots on

the table, only one or none of the components of Rt can be

”1” at the same time.

The robot can simultaneously shift its gaze and gestures.

Its gaze shift is denoted by M t
1, which indicates the target of

its gaze, i.e., a particular location on table gi (i = 1, 2, 3) or

the caregiver’s face (gc). The gesture is denoted by M t
2, which

takes one of four different hand gestures: hitting the table with

its right hand, its left one, both of its hands, or not hitting it.

The robot first uses two RMs to determine gaze move-

ments and hand gestures by randomly selecting a member

of M t
1 and M t

2. After CMs are found, the motor commands

for these actions are determined by the module selector

that integrates the outputs of these RMs and the generated

CMs. The parameters in the proposed mechanism are set as

(TC , θ, Zθ, α) = (30, 5.0 × 10−5, 0.5, 1.0). The joint and

conditional probabilities in Eq. (3) were calculated based on

the histograms of the values of events.

2) Behavior rules for caregivers: The caregiver strategies

are designed to resemble actual caregiver behavior because, to

the best of our knowledge, there are no quantitative investiga-

tions on how a caregiver’s gaze-shift behavior is affected by

the development of her infant 4

The caregiver only shifts her gaze at each time step while

the robot moves its hands and shifts its gaze. The caregiver,

who always looks at either the robot’s face or an object on

the table, has four optional strategies to shift her gaze (see

Fig. 3(a)): 1) following the robot’s gaze, in other words,

4There is a theoretical study on the influence of caregiver behavior on
the learning process in a simple reinforcement learning model of gaze
following [31].
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(a) Entire information flow

(b) Details of each process

Fig. 3. Flow chart of caregiver’s gaze shift

responding to joint attention process (RJA); 2) shifting her

gaze to draw the robot’s attention, in other words, initiating

joint attention process (IJA); 3) looking at the robot after

achieving joint attention to acknowledge joint attention, in

other words, acknowledging joint attention process (AJA); and

4) randomly looking at a target selected (NT). After one of

these strategies is selected, a target is chosen based on the

strategy. Note that in the NT strategy, targets that could be

selected in other strategies are excluded from the candidates.

For example, the caregiver is controlled so that she does not

follow the robot’s gaze in the NT strategy. The robot, who

does not know which strategy the caregiver is engaged in, just

acts based on outputs from RMs or from CMs at each time

step regardless of the caregiver’s current strategy. Therefore,

the caregiver does not necessarily succeed in attracting the

robot’s attention when she selects the IJA process.

At each time step, the caregiver selects one of the strategies

depending on what she is looking at. She usually selects NT.

The other strategies, RJA, IJA, or AJA, can be selected in

the following cases (Fig. 3(a)): if the caregiver is looking

at the robot’s face, she selects either RJA with probability

pc
rja or NT with probability 1 − pc

rja. Otherwise, (looking

at an object on the table), the caregiver selects either IJA

with probability pc
ija or NT with probability 1 − pc

ija, except

when the caregiver and the robot are looking at the same

object. In such cases, the caregiver selects either AJA with

probability pc
aja, IJA with probability pc

ija(1 − pc
aja), or NT

with probability (1 − pc
ija)(1 − pc

aja).
In RJA, the caregiver shifts her gaze to follow the direction

of the robot’s face. If the robot is not looking at an object, the

caregiver selects an object at random and shifts her gaze to it

(left in Fig. 3(b)). In IJA, the caregiver shifts her gaze from an

object to the robot and then shifts her gaze to the object at the

next time step again (center in Fig. 3(b)). In AJA, the caregiver

shifts her gaze to the robot’s face as if to confirm that joint

attention was achieved with the robot (right in Fig. 3(b)).

B. Sequential acquisition of joint attention behavior

We ran 100,000 time step simulations ten times where

(pc
rja, pc

ija, pc
aja) = (0.5, 0.5, 1.0). At the beginning of learn-

ing, robot motion was controlled by RMs, but it sometimes

accidentally achieved gaze following or gaze alternation. It

gradually, however, acquired CMs related to joint attention

through interaction with the caregiver. The average number

of CMs found by the contingency detector was 4.1. In all

the simulations, a particular set of CMs was generated in the

following fixed order: Π(R3|S1,M1), Π(R1|S
Π1

3 ,M1), and

Π(R2|S
Π1

3 ,M1). Hereafter, we express these CMs using the

symbols in Table I to avoid confusion:

Π(R3|S1,M1) = Π(O|C,G) (8)

Π(R1|S
Π1

3 ,M1) = Π(F |sΠ(O|C, G), G) (9)

Π(R2|S
Π1

3 ,M1) = Π(P |sΠ(O|C,G), G), (10)

where sΠ(O|C,G) indicates a symbol expressing whether the

robot used the last output of Π(O|C, G).
These CMs were often generated earlier than other CMs

for different events. Table II shows examples of the found

contingent estimations (i.e., outputs) for specific inputs in these

CMs with their reliabilities. Each of these CMs allowed the

robot to achieve social behavior: following the caregiver’s gaze

(Π(O|C, G), hereafter the following-gaze module), shifting its

gaze to the caregiver after using the output of the following-

gaze module (Π(F |sΠ(O|C,G), G), hereafter the returning

(following-gaze) module), and shifting its gaze to the caregiver

regardless whether the robot used outputs of the following-

gaze module at last time step (Π(P |sΠ(O|C,G), G), hereafter

the returning (no-condition) module).

Fig. 4 shows examples of the time courses of C-saliencies

for several events whose C-saliency was the highest or the

second highest during at least one time step in the simulation.

The vertical axis indicates the logarithmic value of the C-

saliencies. We also show the timing of generating new CMs

as arrows at the top of the graph. Since at the beginning of

the simulation the statistics are based on few samples, C-

saliencies tended to be overestimated. After sufficient inter-

action data were collected, C1
1,3 became the highest among

all C-saliencies (red curve in Fig. 4). As a result, a new CM

(Π(R3|S1,M1)) corresponding to the following-gaze module
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TABLE II
SENSORIMOTOR MAP AND RELIABILITIES IN TYPICALLY GENERATED

CMS

Type of CM name
input output

reliability
(rt, st) (r̂, mt)

Π(O|C, G) following-gaze

(0, f1) (1, g1) 1.86
(0, f2) (1, g2) 1.81
(0, f3) (1.g3) 1.79

Π(F |sΠ(O|C, G), G)
returning

(0, 1) (1, gc) 1.73
(following-gaze)

Π(P |sΠ(O|C, G), G)
returning (0, 1) (0, gc) 1.73

(no-condition) (0, 0) (1, gc) 1.82

was generated at the 4504th time step, and SΠ1

3 and MΠ1

3

were added as sensory and motor processes, respectively.

The robot then began to follow the caregiver’s gaze using

output from the following-gaze module when it looked at the

caregiver who was looking at an object. This increase of gaze

following increased the opportunities for the caregiver to look

at the robot in responses to the achievement of joint attention.

By iterating the interaction, C1
1,3 gradually decreased because

using particular output based on the acquired sensorimotor

map reduces the difference between p(rt+1
3 |rt

3, s
t
1,m

t
1) and

p(rt+1
3 |rt

3, s
t
1) (the first term of Eq. (3)). This decrease made

C1
3,1 the next highest value. The found contingency implied

that the robot observed the caregiver’s frontal face when it

looked at the caregiver after using output from following-gaze.

Based on the contingency, the next CM (Π(R1|S
Π1

3 , M1))
corresponding to the returning (following-gaze) module was

generated at the 37838th time step. This enabled the robot to

direct its gaze to the caregiver after following the caregiver’s

gaze.

Using output from the returning (following-gaze) changed

the contingency in the interaction again and promoted not

only a decrease of C1
3,1 but also an increase of C1

3,2 (blue

curve in Fig. 4). This caused the generation of the third

CM (Π(R2|S
Π1

3 , M1)) corresponding to the returning (no-

condition) module at the 43078th time step. This enabled the

robot to shift its gaze to the caregiver without depending on

the gaze-following output. As a result, the robot alternately

shifted its gaze between the caregiver and an object: it acquired

gaze alternation. The robot acquired not only gaze following

but also gaze alternation through the repetition of finding and

reproducing a chain of contingencies in an interaction that

changed using output from existing CMs.

C. Influence of caregiver behavior

In natural interaction between caregiver and infant, the

caregiver might behave in different ways from those simulated

in the previous section. We examined to what extent the

sequence of acquired actions depends on caregiver behavior.

In the simulations, probabilities pc
rja, pc

ija, and pc
aja that the

caregiver selects RJA, IJA, and AJA processes, respectively,

were set to 0.0, 0.5, or 1.0. If we set pc
aja = 1.0, the robot is

expected to look at the caregiver’s frontal face when it shifts

its gaze to her after gaze following for the caregiver, but not if
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Fig. 4. Time courses of saliency of contingency of events in simulation
face-to-face interactions between caregiver and robot

pc
aja = 0.0. For each parameter setting, we ran a 100,000-step

simulation ten times.

Each block in Fig. 5 shows the average timing when new

CMs were generated. Note that in this analysis, we only picked

CMs that were generated in more than five simulations under

each parameter set. The horizontal axis in a block indicates

the time steps. The median in the colored rectangles denotes

the average, and its width represents the standard deviation.

A colored rectangle for a CM is stacked based on the average

timing. To investigate whether the following-gaze, returning

(following-gaze), and returning (no-condition) modules are

generated in the same order shown in the previous section,

we showed the rate at which they were generated in the order

until the third or fourth CM was generated at the top left/right

corner of each block in Fig. 5.

Following-gaze was generated first under most of the param-

eter sets at almost the same time step regardless of the value

of pc
aja. A main difference between the values of pc

aja was the

types of CMs generated after following-gaze. For pc
aja = 1.0,

the robot acquired returning (following-gaze) and returning

(no-condition) in the same order shown in the previous section

under most of the parameter sets. However the robot could

not acquire returning (no-condition) if pc
rja was high and

pc
ija was low (Fig. 5 (a)). Instead, Π(P |O, G) was generated

after returning (following-gaze), which enabled its gaze to be

shifted to the caregiver despite achieving looking at an object.

As a result, the robot acquired gaze alternation.

The robot could acquire returning (following-gaze) and

returning (no-condition) when pc
ija was high for pc

aja = 0.5
because the IJA process sometimes makes the caregiver per-

form the same behavior as one performed under the AJA

process; the caregiver can look at the robot not under the AJA

process but the IJA one after achieving joint attention with

the robot. Therefore, the robot could find the contingency to

acquire those two modules even when pc
aja is low. The robot

did not acquire those modules as pc
ija gets lower.

For pc
aja = 0.0, the other CMs were generated after
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(a) case of pc
aja = 1.0.

(b) case of pc
aja = 0.5.

(c) case of pc
aja = 0.0.

Fig. 5. Timing of CM generation under different parameter sets
(pc

rja, pc
ija, pc

aja) in face-to-face interactions between caregiver and robot

following-gaze was generated under some parameter sets

(Fig. 5 (c)). Π(P |O, G), found in the case of high pc
ija, seems

to be another version of shifting the gaze to the caregiver by

returning (following-gaze), which enabled the robot to shift

its gaze to the caregiver when it was looking at a spot on

the table or the caregiver’s frontal face. We call Π(P |O, G)
the returning (non-object) module. Π(P |C,G), which was

called keeping and generated before the returning (non-object)

module, constituted a sensorimotor map with which the robot

kept looking at the caregiver after it established eye contact.

These CMs had contingent connections with following-gaze,

but not with each other because using the output from the

keeping module did not positively influence the generation of

the returning (non-object), such as promoting an increase of

C1
2,2, although using output from the returning(following-gaze)

module promoted the increase of C1
3,2 returning (no-condition)

for pc
aja = 1.0, as shown in the previous section.

These results indicate that a caregiver should often shift

her gaze to a robot after achieving joint attention with it to

acquire gaze alternation. We also confirmed that a high value

of pc
aja promotes the generation of returning (following-gaze)

and returning (no-condition) in the experiments for different

parameter settings of pc
aja.

V. DISCUSSION

A. Correspondence to developmental psychology

1) Developmental process of joint attention: Previous stud-

ies in developmental psychology have suggested that a hu-

man infant begins to follow the gaze of a caregiver and

then acquires gaze shifting to her [2]. However, in previous

synthetic studies regarding gaze following acquisition, gaze

alternation was pre-programmed [10] or acquired before gaze

following [11]. In the experiment, the robot acquired gaze

following ability and alternation in an order that resembles

infant development. The iteration of finding and reproducing

the contingency inherent in the interaction with a caregiver

might provide the order of infant development.

However, our simple model cannot explain about mastery

of each behavior. For example, infants begin to follow the

gaze of the others in their field of view and then acquire gaze

following to targets outside their visual field. Some synthetic

studies have addressed this development process [10], [32]. We

will extend our model to address this issue as future work.

2) Behavioral analysis: We examined what kinds of behav-

ioral changes of the robot occurred through simulated develop-

ment with CM generations. Fig. 6 shows the transitions of the

frequency of typical infant actions in an example of simulated

development where (pc
rja, pc

ija, pc
aja) = (0.5, 0.5, 1.0). Here,

we focus on three types of actions: gaze follow, gaze keep,

and gaze return. Gaze follow and keep indicate the behavior

of following the caregiver’s gaze and continuing to look at her,

respectively, while gaze return indicates looking back at the

caregiver. We calculated the moving average of the occurrence

rate of these behaviors among the last 1,000 time steps.

Interestingly, generating CMs of following-gaze and re-

turning (following-gaze) promoted little change in the robot’s

behavior (P2 and P3 in Fig. 6), while generating the returning

(no-condition) drastically changed the robot’s behavior (P4 in

Fig. 6). Generating the CM of the returning (no-condition)

promotes the behavior of gaze follow (red curve in P4 in

Fig. 6) as well as gaze keep and return (blue and green curves

in P4 in Fig. 6) because performing gaze follow and keep

with these CMs required the robot to have already looked at

the caregiver, which could be promoted after the CM of the

returning (no-condition) had begun to be used.

This transition might explain a conflict in the previous

studies of observing infant development. While six-month-old
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Fig. 6. Change of robot’s behavior in face-to-face interactions with caregiver.

infants can successfully follow the gaze of their caregivers

after establishing eye contact [17], [33], [34], they have

difficulty returning their gaze to their caregivers after looking

at an object. This indicates that they cannot fully exploit their

gaze following ability in interaction with caregivers. At 12

months, they frequently coordinate their attention between

caregivers and an object in daily interaction [35]. Interestingly,

infants begin to follow the gaze of others more accurately

around almost the same time [17].

The simulation reproduced such a delay of looking back at

the caregiver and showed that looking back at the caregiver

promotes following the caregiver’s gaze. This suggests that the

delay in the development of gaze following can be explained

by the delay in the development of another skill: looking back

at the caregiver, instead of the delay of gaze following skill

itself.

B. Contingency as intrinsic motivation

Some researchers in developmental psychology have sug-

gested that the preference for social contingency leads human

infants to learn social skills [21], [15]. Such activity moti-

vated by internal satisfaction is called intrinsic motivation in

psychology [36].

Intrinsic motivation has recently been gaining increased

attention in developmental robotics since it might enable a

robot to develop in an open-ended manner [37]. Oudeyer

et al. showed that the maximization of learning progress,

i.e., a decrease of prediction errors, enables a real 4-leg

robot to incrementally acquire more complex behavior [38].

Mugan and Kuipers proposed a learning mechanism to find

sets of contingencies between a robot’s body and an object

and to acquire single behavior such as hitting an object by

reproducing the found contingencies [39]. Its basic strategy

for open-ended development seems to shared with ours, that

is finding and reproducing contingency. A stronger point of

both of these mechanisms is the treatment of continuous time

data. However, they lack the mechanism to add variables

representing the use of acquired skills, which seems to be

necessary to find skills for some types of social interaction

depending on history of own and other’s actions. For example

gaze alternation requires to perform gaze following in advance

and is successfully acquired by the proposed method.

C. Future implementation

We evaluated the effectiveness of the proposed mechanism

using computer simulations because acquiring actions is too

time-consuming. As a next step, we must examine to what ex-

tent the proposed mechanism can reproduce the development

of joint attention in real-world interactions. Here, we mention

some issues to be addressed to apply the mechanism to a real

robot.

1) Adaptive partitioning: In the experiment, we assumed

that the variables were partitioned in advance and fixed from

the beginning. However, it is not trivial for the designers

to effectively partition them to communicate with a social

partner. If there are more spots on the table, such rough

partitions as St
1 and M t

1 in the current simulation would not be

effective to predict where the caregiver is looking. Moreover,

partitioning helps contingency detection for high-dimensional

continuous sensory data. Although the proposed method can

find contingency in such data, it is required to reduce the

dimensionality of the sensory and motor data with maintaining

its informational content due to high computational cost. To

solve these problems, we extended the proposed method by ap-

plying a clustering technique to contrast the contingency [40].

2) Temporal contingency detection: We assumed that both

the robot and the caregiver take turns at fixed time steps

since we focused on detecting which pair of sensory signal

and motor command leads to contingent consequence, namely,

sensorimotor contingency detection. However, this assumption

is not feasible in a real world because we cannot exactly

specify the fixed time steps. The robot has to detect when

a contingent stimulus is observed since the robot’s last action,

namely, temporal contingency detection. Movellan proposed

an infomax controller to detect temporal contingency in vocal

interaction [41]. However, the robot was given sensorimotor

space to detect temporal contingency. The contingency detec-

tor in our mechanism should be extended to detect temporal

contingencies in interaction with a human caregiver as future

work.

3) Contingencies originated from other modalities: In the

simulation, the contingency structures inherent in interaction

between caregiver and robot were limited since we assumed

simple interaction by mainly focusing on mutual gaze shifting.

An infant and a caregiver, however, build a variety of con-

tingency structures by observing multimodal information and

performing multimodal actions. A number of contingencies

seem to help the development of joint attention [42], [43], [44].

Therefore, we plan to study what sort of contingency structure

can promote the development of joint attention by extending

the current simulation settings to involve such multimodal

sensorimotor experiences.
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4) Scheduling of caregiver’s behavior: The robot was able

to experience changes in interaction with the caregiver; once

it had begun to follow the caregiver’s gaze, the caregiver had

more chances to select an AJA strategy. As a result, it could

find the behavior of shifting its gaze to the caregiver after

achieving gaze following. In the experiment, however, such

changes in caregiver responses were very limited since the

caregiver’s strategies were fixed. In more natural interaction

between caregiver and infant, the caregiver shows a variety

of changes in her responses to the infant as it grows up [25].

Analyzing the responses of human caregivers to a real robot

will help us design more plausible caregiver models. Mod-

ifying the caregiver model more faithfully remains a future

issue for understanding the effect of longitudinal changes in

mother-infant interaction on the development of specific social

skills.

VI. CONCLUSION

We proposed a mechanism to enable a robot to developmen-

tally acquire social actions based on finding and reproducing

contingency inherent in face-to-face interaction by a measure

proposed in a previous work [14]. We reproduced behavioral

aspects in the infant development of social skills such as their

order, that is, first gaze following and then gaze alternation,

and the delay of the occurrences of the behavior of gaze

following after acquiring gaze alternation. We will investigate

the development of other actions related to joint attention

by modeling more realistic interaction between robots and

caregivers in the future.
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