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ABSTRACT

Analytical models for magnetic turbulence are an important ingredient in the theory of field

line wandering and cosmic ray diffusion. In previous investigations, a so-called slab/2D

model has been used. In the present article, we develop a more general analytical model

for magnetic turbulence. This model is then compared with solar wind observations. We

investigate numerically the possibility to explain the maltese cross structure of the correlation

function of solar wind turbulence with this model.
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1 IN T RO D U C T I O N

The solar wind provides a possibility to study magnetohydrody-

namic (MHD) turbulence in nature. Since the turbulent magnetic

fields δB are superposed with a mean magnetic field B0 = B0ez,

one expects spectral anisotropy. Here, we have chosen a Carte-

sian system of coordinates so that the z-axis is aligned along the

mean field. A similar configuration can be found in the interstellar

medium and in other astrophysical scenarios. The turbulent fields

can be described by using the magnetic correlation tensor which is

also an important input in the analytical and numerical description

of field line wandering and charged particle transport (for a review

see e.g. Schlickeiser 2002 and Shalchi 2009).

Some properties of the magnetic correlations can be obtained by

solar wind observations. Matthaeus, Goldstein & Aaron (1990) dis-

cussed measurements by the ISEE 3 space probe of the correlation

function which shows a maltese cross structure when plotted in a

two-dimensional (2D) plane where one of the axes is parallel to the

mean magnetic field. A simple approximation for this structure is

provided by the so-called two-component model in which a super-

position of pure slab modes [with δB(x) = δB(z)] and pure 2D

modes [with δB(x) = δB(x, y)] is considered. At least for inter-

planetary studies, a common assumption is that the magnetic field

fluctuations admit a strong component of nearly 2D character com-

prising perhaps 80–90 per cent of the turbulent inertial-range energy

budget (see Bieber, Wanner & Matthaeus 1996). Further measure-

ments were done in the following years (see e.g. Dasso et al. 2005;

Osman & Horbury 2007; Horbury, Forman & Oughton 2008;

Osman & Horbury 2009a,b) which have confirmed this structure

of interplanetary turbulence. More details about the different solar

wind observations and the measured maltese cross can be found

⋆E-mail: andreasm4@yahoo.com

in the two review articles Bruno & Carbone (2005) and Horbury,

Forman & Oughton (2005).

Although solar wind observations are the most powerful tool for

improving our understanding of turbulence, there was also some

remarkable process in the theory of MHD turbulence. Numerical

simulations, for instance, suggest that 2D dynamics is the leading

order description of turbulence in the presence of a mean magnetic

field (see e.g. Oughton, Priest & Matthaeus 1994; Matthaeus et al.

1996). Simulations of incompressible MHD were also performed

more recently (e.g. Shaikh & Zank 2007; Dmitruk & Matthaeus

2009). In addition to such numerical studies, there were also some

analytical attempts to describe turbulence in the solar wind. The the-

ory of nearly incompressible MHD, for instance, predicts a collapse

in dimensionality making turbulence in the solar wind a superposi-

tion of a dominant 2D and a slab component (see Zank & Matthaeus

1993). In the latter work, it has been shown that there exist three dis-

tinct nearly incompressible descriptions corresponding to different

values of the plasma beta β (β is the ratio of thermal to magnetic

pressure). In the β ≫ 1 regime, the compressible MHD descrip-

tion converges in the low-Mach-number limit to the equations of

classical incompressible three-dimensional (3D) MHD. However,

for the remaining plasma beta regimes, the imposition of a large

magnetic field forces the equations of fully compressible 3D MHD

to converge to the equations of 2D incompressible MHD in the low-

Mach-number limit. The collapse in dimensionality corresponding

to the different plasma beta regimes clarifies the distinction between

the 3D and 2D incompressible MHD descriptions. The collapse in

dimensionality that occurs as a result of a decreased plasma beta

can carry over to the weakly compressible corrections. For β ≈ 1

plasma, Alfvén waves propagate parallel to the applied magnetic

field, while for a β ≪ 1 magnetofluid quasi-1D long-wavelength

acoustic modes propagate parallel to the applied magnetic field.

Hunana, Zank & Shaikh (2006) extend the theory of nearly in-

compressible hydrodynamics to flows, which include large-scale

inhomogeneities.
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288 B. Weinhorst and A. Shalchi

Because of these observational, numerical and analytical hints,

we conclude that the turbulent field can be well approximated by the

two-component model in which we have δB(x) = δB(z) + δB(x,

y). In the literature, this model is also known as slab/2D composite

model.

A further important ingredient in the correlation tensor is the form

of the turbulence spectrum. Here one has to distinguish between the

large turbulence scales (the so-called energy range of the spectrum),

the intermediate scales (inertial range) and the small scales (dissipa-

tion range). Whereas the most numerical and observational studies

concentrated on the inertial range of the spectrum, the energy range

as well as the dissipation range are important for understanding the

propagation of cosmic rays (for a review, see e.g. Shalchi 2009).

Previously, we have already improved the analytical model for the

turbulence spectrum and have studied the influence of large tur-

bulence scales on field line wandering (see Shalchi & Weinhorst

2009), perpendicular diffusion of cosmic rays (see Shalchi, Li &

Zank 2009) and the mechanism of particle acceleration at interplan-

etary shock waves (see Shalchi et al. 2009; Dosch & Shalchi 2009).

All these investigations were done by assuming two-component

turbulence. In order to improve the description of field lines and

theories of cosmic ray transport, it is necessary to introduce a more

detailed model of the correlation function of the turbulent magnetic

fields.

It is the purpose of the present article to replace the standard

two-component model by a more general model. This model is

formulated analytically and is then compared with previous models

and solar wind observations. By performing a parameter study, we

show how the observed maltese cross structure in the solar wind

can be reproduced. The analytical model presented in this paper

together with the parameter study will allow the improvement of

our understanding and the description of transport of field lines and

charged particles such as cosmic rays.

The paper is structured as follows. In Section 2, we present the

turbulence model used throughout the present article. Section 3 in-

cludes a short discussion of the measurements as well as a parameter

study of the model. In Section 4, we summarize and conclude in

Section 5.

2 TH E A N I S OT RO P I C T U R BU L E N C E M O D E L

Magnetic correlation functions, field line mean square displace-

ments and cosmic ray diffusion coefficients are controlled by the

turbulence correlation tensor Plm(k) = 〈δBl(k)δB∗
m(k)〉. According

to Matthaeus & Smith (1981), the general form of this tensor for

axisymmetric turbulence is

Plm(k) = A(k‖, k⊥)

[

δlm −
klkm

k2

]

, (1)

where magnetic helicity has been neglected. In the current article,

we employ spherical coordinates with

kx = k⊥ cos(�) =
√

1 − η2k cos(�)

ky = k⊥ sin(�) =
√

1 − η2k sin(�)

kz = k‖ = ηk. (2)

For the function A(k‖, k⊥), we use in spherical coordinates

A(k‖, k⊥) =
G(k, η)

8πk2
(3)

and for the function G(k, η) we employ the Ansatz

G(k, η) = lδB2g(k, l)a(η,�). (4)

Table 1. Asymptotic limits of the param-

eter a0(�).

� a0(�) Turbulence geometry

� ≪ 1 2√
π�

2D

� = 1 e Isotropic

� ≫ 1 2 � Slab

Here, l denotes a characteristic length-scale of the turbulence (ben-

dover or turnover scale), δB2 is the total magnetic energy density,

g(k, l) is the turbulence wave spectrum and a(η, �) is the anisotropy

function. The latter two functions are determined in the following

paragraphs. The anisotropy function is chosen so that

1

2

∫ +1

−1

dη a(η, �) = 1. (5)

The total spectrum has to fulfil the normalization constraint

δB2 ≡
∫

d3k
∑

n=x,y,z

Pnn(k). (6)

With equations (1), (3) and (4), this becomes

δB2 = 2

∫

d3k A(k‖, k⊥) =
1

4π

∫

d3k k−2G(k, η)

=
lδB2

2

∫ +1

−1

dη a(η, �)

∫ ∞

0

dk g(k, l)

= lδB2

∫ ∞

0

dk g(k, l). (7)

In the following two paragraphs, models for the functions a(η, �)

and g(k, l) are discussed.

2.1 The anisotropy function a(η, �)

For the anisotropy function, we choose the Gaussian model

a(η, �) = a0(�)e−�−1η2−�(1−η2). (8)

From the normalization condition of equation (5), it follows

a0(�) =
2

√
π

√
�−1 − �

Erf
(√

�−1 − �
) e�, (9)

where we have used the error function Erf (z). In Table 1, we provide

some simplifications of the function a0(�) for extreme values of

the anisotropy parameter �.

To derive these limits, we have used (see e.g. Gradshteyn &

Ryzhik 2000)

Erf (|z| → 0) ≈
2

√
π

[

z −
z3

3
+ · · ·

]

Erf (|z| → ∞) ≈ 1 −
1

√
πz

e−z2 + · · · (10)

In the following, we consider three limits to understand the

anisotropy function a(η, �) defined in equation (8).

2.1.1 The limit � → 0: pure 2D turbulence

In the case � → 0 we have

a(η, � → 0) ≈
2

√
π�

e− η2

� , (11)
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Magnetic correlations in the solar wind 289

where we have used Table 1. The remaining Gaussian function

becomes a delta function δ(x) for the limit considered here

lim
σ→0

1
√

2πσ
e− x2

2σ = δ(x), (12)

and thus

a(η,� → 0) = 2δ(η) ∼ δ(k‖). (13)

For very small values of �, all the magnetic energy is located in

the plane perpendicular to the mean field (x–y plane). This model

is usually called the 2D model. From the anisotropic model used in

the present paper, we can recover the pure 2D model by choosing

the limit � → 0.

2.1.2 The case � = 1: isotropic turbulence

For � = 1, we derive

a(η,� = 1) = a0(� = 1)e−1 (14)

and with Table 1 we find

a(η,� = 1) = 1. (15)

Obviously this case corresponds to isotropic turbulence since a(η,

� = 1) does no longer depend on the parameter η.

2.1.3 The case � → ∞: slab fluctuations

For � → ∞, equation (8) becomes

a(η,� → ∞) = a0(�)e−�(1−η2). (16)

With Table 1, we find

a(η,� → ∞) = 2�e−�(1−η2). (17)

The remaining Gaussian function becomes again a delta function

δ(x) for the limit considered here

lim
σ→0

1

2σ
e− |x|

σ = δ(x), (18)

and thus

a(η,� → ∞) = 4δ
(

√

1 − η2

)

∼ δ(k⊥). (19)

Here, all the magnetic energy is located along the parallel axis. This

model is usually called the slab model. It can be obtained from the

anisotropic model by setting � → ∞. In Figs 1 and 2, the properties

of the anisotropy function a(η, �) are shown for different values

of �.

In principle, one could consider a superposition of two anisotropic

models with different �’s. For instance, we can superpose an

anisotropic model with � = 0.1 (2D like) and a model with � =
10 (slab like). In this case, the contour plot has the form of a maltese

cross. Such a form can indeed be observed in the solar wind (see

Matthaeus et al. 1990). In Section 2.3, we discuss such a superpo-

sition of two anisotropic models and in Section 3 we compare the

correlations with solar wind observations.

2.2 The turbulence wave spectrum g(k, l)

For a complete description of the turbulence, we also have to specify

the k-dependence of the correlation tensor and therefore the spectral

function g(k, l). Several models have been proposed in the past. A

prominent example is the model g(k, l) = 4C(s)[1 + (lk)2]−s/2

(see e.g. Bieber et al. 1994). This spectrum is constant at large
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Figure 1. The anisotropy function a(η, �) for different values of the

anisotropy parameter �. Shown is a(η, �) for � = 0.1 (dashed line), � = 1

(dotted line) and � = 10 (solid line). The first case corresponds to 2D-like

fluctuations and the second case to isotropic turbulence, and the third case

is equal to slab-like fluctuations.
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Figure 2. Contour plot of the anisotropy function with a(η, �) = 1. Shown

is a(η, �) for � = 0.1 (dashed line), � = 1 (dotted line) and � = 10 (solid

line). The first case corresponds to 2D-like fluctuations and the second case

to isotropic turbulence, and the third case is equal to slab-like fluctuations.

turbulence scales (energy range) where k ≤ l−1. For small scales

(inertial range) where k ≥ l−1, we find a decreasing spectrum with

the inertial-range spectral index s. In the literature, several values

for s have been proposed such as the value s = 5/3 proposed by

Kolmogorov (1941) or s = 3/2 proposed by Kraichnan (1965).

In the present article, we use the more general form of the spec-

trum introduced by Shalchi & Weinhorst (2009)

g(k, l) = C(s, q)
|kl|q

[1 + (kl)2](s+q)/2
. (20)

For the normalization constant C(s, q), we have

C(s, q) =
2Ŵ

(

s+q

2

)

Ŵ
(

s−1

2

)

Ŵ
(

q+1

2

) . (21)

The spectrum is correctly normalized for s > 1 and q > −1. The

spectrum is decreasing in the inertial range (k ≥ l−1) where the

spectrum has the form ∼k−s. We can reproduce an increasing (pos-

itive q) and decreasing (negative q) spectrum in the energy range

(k < l−1).

2.3 The superpositioned anisotropy model

In the previous paragraphs, we have described the magnetic corre-

lation tensor Plm(k) which describes the magnetic correlations in

the wave-vector space. The magnetic correlation tensor in the real

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 403, 287–294
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290 B. Weinhorst and A. Shalchi

space Rlm(x) is linked to this tensor via a Fourier transformation

Rlm(x) =
∫

d3k Plm(k)eik·x . (22)

Solar wind turbulence may be described by a superposition of two

anisotropic models with different �’s. We define the superposi-

tioned anisotropy model by

R(z, r) ≡ aR2D(z, r) + (1 − a)Rslab(z, r)

=
∫

d3k

[

a
∑

n=x,y,z

P 2D
nn (k)

+ (1 − a)
∑

n=x,y,z

P slab
nn (k)

]

eikx . (23)

Here a defines the percentage of 2D corresponding turbulence from

the original fluctuation. In the original two-component model, the

tensor P slab
nm (k) describes the slab fluctuations and P 2D

nm(k) the 2D

modes. In the present paper, we replace these two tensor components

by the model described in the previous sections.

With equation (2) and

x = r cos(φ), y = r sin(φ), z = z, (24)

we find

kx = kr
√

1 − η2 cos (� − φ) + ηkz. (25)

Therefore, equation (23) can be written as

R(z, r) =
∫ ∞

0

dk

∫ +1

−1

dη

[

a
∑

n=x,y,z

P 2D
nn (k)

+ (1 − a)
∑

n=x,y,z

P slab
nn (k)

]

×
∫ 2π

0

d� eikr
√

1−η2 cos (�−φ)+iηkz.
(26)

After Pxx, Pyy and Pzz do not depend on �, we can solve the �-

integration in equation (23) by using Gradshteyn & Ryzhik (2000).

We find

R(z, r) =
∫ ∞

0

dk

∫ +1

−1

dη

[

a
∑

n=x,y,z

P 2D
nn (k)

+ (1 − a)
∑

n=x,y,z

P slab
nn (k)

]

× 2πJ0

(

kr
√

1 − η2

)

cos (ηkz),
(27)

where we used the independence of the phase shift φ and calculated

the real part of R(z, r). With equations (1), (3) and (4) and using

the anisotropy function a(η, �) defined in equation (8) as well

as the turbulence wave spectrum g(k, l) (see equation 20), we find

R(z, r) =
1

2
δB2

∫ ∞

0

dk

∫ 1

−1

dη J0

(

kr
√

1 − η2

)

cos (ηkz)

×

{

a

[

a0(�2D)e−�−1
2D

η2−�2D(1−η2)l2DC(s2D, q2D)

×
|kl2D|q2D

(

1 + l2
2Dk2

)

s2D+q2D
2

]

+ (1 − a)

[

a0(�slab)e−�−1
slab

η2−�slab(1−η2)lslabC(sslab, qslab)

×
|klslab|qslab

(1 + l2
slabk

2)
sslab+qslab

2

]}

. (28)

This model depends on nine parameters, these are a, �slab, lslab,

sslab, qslab, �2D, l2D, s2D and q2D. In the next section, we will show

how each of these parameters influences R(z, r).

3 PA R A M E T E R S T U DY A N D C O M PA R I S O N

WI TH OBSERVATI ONS

3.1 Solar wind measurements

Matthaeus et al. (1990) published data on the fluctuations of the

solar magnetic field. Fig. 6 (left-hand panel) shows a contour plot of

the 2D correlation function of solar wind fluctuations as a function

of distance parallel and perpendicular to the mean magnetic field.

The four-quadrant plot is produced by reflecting the data across

the axes from the first quadrant. Matthaeus et al. interpreted the

contours elongated parallel to r = r⊥ as Alfvén waves with k‖B0

and the contours elongated parallel to z = r‖ as fluctuations in

the 2D turbulence. At small separations, z, r ≤ 5 × 1010 cm slab

symmetry appears dominant, whereas contributions from a quasi-

2D component become very noticeable for z, r ≥ 15 × 1010 cm.

From their paper, one can deduce that the correlation function de-

creases to about 40 per cent along the axis, with the 2D component

a little smaller than the slab component, and to about 30 per cent

along the bisectrix. With the 2D symmetry dominating the contours,

thus on large scales, the contours become more aligned to the bisec-

trix. Along the axis, the correlation function decreases faster than

along a line separated from the former by an angle of approximately

10◦. Furthermore, the correlation does seem to decline slower then

exponentially, nearly linear. By reflecting the data from the first

quadrant across the axes a four-quadrant plot is obtained, which

resembles a maltese cross contour.

3.2 The standard slab/2D model

Here, we explore the magnetic correlations by using the standard

slab/2D model. To calculate the correlation function plotted in Fig. 3

(left-hand panel), we used the limits of equations (13) and (19) and

choose q = q2D = qslab = 0 to get the turbulence spectrum used,

e.g., by Bieber et al. (1994). For this plot, an 80 per cent 2D to

20 per cent slab-energy distribution with s = 5/3 for the spectral

index and l2D = 0.003 au ≈4.488 × 1010 km and lslab = 0.03 au

≈44.88 × 1010 km as the bendover scales has been assumed. These

values of the parameters are most often used throughout the liter-

ature. The 2D component dominates for small scales and the slab

component becomes noticeable for large scales. Therefore, in order

to reproduce the measurement, it will be necessary to choose l2D >

lslab and more than 50 per cent slab in the energy distribution. Addi-

tionally, the correlation declines along the axis only to the starting

value of the turbulence, thus along the z-axes to 0.8 (2D turbulence)

and along the r-axes to 0.2 (slab turbulence). Furthermore, there is

no alignment with the bisectrix. These flaws cannot be corrected

within this model by changing the parameters.

The next step is to implement the more general form of the power

spectra, thus choosing q �= 0. In the literature, one finds qslab = 0 and

q2D �= 0, thus we choose q2D = 2 in order to get a finite correlation

length (see Matthaeus et al. 2007). The result is illustrated in Fig. 3

(right-hand panel). Of course, again, the 2D component dominates

for small scales and the slab component becomes noticeable for

large scales. A difference with respect to the first plot is the faster

decline of the correlation, mainly for the contours corresponding to

2D-like turbulence. On the other hand, one can see an alignment

with the bisectrix of the contours elongated along the z-axes. This

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 403, 287–294
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Magnetic correlations in the solar wind 291

Figure 3. Left-hand panel: correlation function of the standard slab/2D model with the standard wave spectrum used, e.g., by Bieber et al. (1994). Right-hand

panel: correlation function of the slab/2D model now with the more general form of the wave spectrum introduced by Shalchi & Weinhorst (2009). For the full

parameter sets see Table 2.

Table 2. Parameter study for R(z, r). The values in bold are the standard

values used for our calculations.

Figure a l2D (au) lslab (au) �2D �slab q2D qslab

3 (l) 0.8 0.003 0.03 N/A n/a 0 0

3 (r) 0.8 0.003 0.03 N/A n/a 2 0

4 (1) 0.4 0.01 0.006 0.1 10 0.5 2

4 (2) 0.6 0.01 0.006 0.1 10 0.5 2

4 (3) 0.4 0.03 0.006 0.1 10 0.5 2

4 (4) 0.4 0.01 0.01 0.1 10 0.5 2

4 (5) 0.4 0.01 0.006 0.01 10 0.5 2

4 (6) 0.4 0.01 0.006 0.1 50 0.5 2

4 (7) 0.4 0.01 0.006 0.1 10 2 2

4 (8) 0.4 0.01 0.006 0.1 10 0.5 0.5

5 (l) 0.8 0.003 0.03 0.1 10 0 0

5 (r) 0.8 0.003 0.03 0.1 10 2 0

6 (r) 0.4 0.03 0.01 0.1 30 0.5 2

alignment may be increased by changing the parameters, but still

the correlation declines along the axis only to the starting values for

the corresponding turbulence.

3.3 Parameter study

In the following, we perform a parameter study for our superposi-

tioned anisotropy model to describe how changing one parameter

changes the correlation function R(z, r). Table 2 gives the chosen

parameter for each plot in Fig. 4. Plot (1) of Fig. 4 (number in

the upper-left corner of each plot) is the reference plot with the

following set of parameters:

a = 0.4, l2D = 0.01 au, lslab = 0.006 au, �2D = 0.1,

�slab = 10, q2D = 0.5, qslab = 2, s2D = sslab = 5/3.

Plots (2) to (8) show the change of R(z, r) with respect to plot (1)

due to varying one parameter. For better comparison, we stick to

the following contours for each plot R(z, r) = −0.03, −0.01, 0.01,

0.05, 0.1, 0.2, 0.3, 0.5, 0.8. On the horizontal and vertical axis r and

z are given, respectively, in units of 1010 cm. In order to illustrate

the involved scales, we show in each plot a rectangle that displays

the slab and 2D bendover scale used for the calculations. Here l is

also given in units of 1010 cm.

Before we start to compare the plots (2)–(8) with plot (1), we want

to discuss the latter a little further. The plot results from the sum

of the two correlation functions R2D and Rslab, which differ in the

anisotropy function a(�) plotted in Fig. 2. As expected, the cross-

like structure reappears in the plots of R(z, r) (Fig. 4). The contours

do not exactly resemble ellipses but an hourglass, thus becoming

more narrow in the middle (due to q > 0). Due to this, the contours

seem to align with the bisectrix. In contrast to the standard slab/2D

model, we find the correlation function to decline along the axis to

very small values. We choose the parameter set for the reference

plot as given above in order to best illustrate the influence of each

parameter and to show an intermediate step between the commonly

used parameter set (see Fig. 5) and the set that best reproduces the

measurement (see Fig. 6).

For a = 0.4, the fluctuations are 60 per cent slab and 40 per cent

2D like; this results in the domination of slab symmetry for small

scales. After l2D > lslab, one finds 2D symmetry to be very noticeable

for larger scales. The outcome of changing parameter a from 0.4 to

0.6 [compare plots (1) and (2)] is that the 2D component is dominant

for large scales and of the same order as the slab component at small

scales.

We continue the parameter study by changing l2D from 0.01 au

≈14.96 × 1010 cm to 0.03 au ≈44.88 × 1010 cm [compare plots

(1) and (3)]. Clearly, a change in the amplitude of the correla-

tion function R(z, r) can be seen. However, the increase is not

restricted to the 2D fluctuations but can also be seen in the contours

elongated parallel to the horizontal axis corresponding to slab-like

fluctuations. Comparing this to the effect introduced by changing

lslab from 0.006 au ≈8.98 × 1010 cm to 0.01 au ≈14.96 × 1010 cm

[compare plots (1) and (4)], one can see that only the horizontal

contours (slab) become bigger, the 2D-like vertical contours even

shrink some amount.

Manipulating the anisotropy more towards pure slab-like or pure

2D-like fluctuations by increasing �slab or decreasing �2D (� =
1 corresponds to isotropic fluctuations) results in the plots (5) and

(6) of Fig. 4. One can see that by increasing the anisotropy, one

gets thinner but longer elliptical contours parallel to the z- and r-

axis corresponding to 2D- and slab-like fluctuations, respectively.

Interestingly the contours of the 2D fluctuations become more di-

agonal if one increases the slab anisotropy parameter �slab. This is

not the case if one decreases �2D, neither for the 2D nor the slab

contours.

In the following, we study the influence of the energy-range

spectral index q. For this compare plot (1) with plot (7) for q2D

and (8) for qslab. In the first case, q2D is changed from its initial

value 0.5 to 2. This effects the correlation function such that both
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292 B. Weinhorst and A. Shalchi

Figure 4. Parameter study for the superpositioned anisotropy model. Shown is the correlation function R in the z, r-plane, units in 1010 cm. Grey shading and

contours remain the same throughout all plots. The box displays the 2D and slab bendover scale, also in 1010 cm. Plot (1) is the reference plot, whereas one

parameter has been changed for the plots (2)–(8) with respect to plot (1). The following parameters have been changed for the given plot – (2): a, (3): l2D, (4):

lslab, (5): �2D, (6): �slab, (7): q2D and (8): qslab (see Table 2 for details).

elliptical contours become smaller, thus decreasing the overall am-

plitude of R(z, r). However, the effect is stronger for the 2D correla-

tion. Furthermore, the gradient in the diagonal direction gets steeper

which introduces contours in a more maltese-like cross. Changing

qslab from 2 to 0.5 amplifies the correlation of the slab-like fluctua-

tions but also makes the contours more cross like, thus less maltese

cross like. We also played with the inertial-range spectral index but

found that the measurement is consistent with s = s2D = sslab =
5/3.

As discussed above, other sets of parameters have been used in

previous studies, the left- and right-hand plots of Fig. 5 show the

results for lslab = 0.03 au, l2D = 0.003 au with qslab = q2D = 0 and

qslab = 0, q2D = 2, respectively. Comparing these plots with the

plots from Fig. 3, one can see the difference between the standard

slab/2D model and the superpositioned anisotropy model for the

given parameter set. The most important difference to the slab/2D

model discussed in Section 3.2 is the decline of the correlation

function along the axis below the starting value of the respective

turbulence. The introduction of a positive energy spectral index q

again results in an alignment with the bisectrix (Fig. 5, right-hand

panel).

3.4 Reproducing the solar wind measurements

We now have some insights into how to change the set of parameters

in order to produce a specific kind of plot. The correlation function
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Magnetic correlations in the solar wind 293

Figure 5. Left-hand panel: correlation function of the superpositioned anisotropy model with the standard wave spectrum with q = 0. Right-hand panel: same

model but with the more general spectrum introduced by Shalchi & Weinhorst (2009). Compare these plots with Fig. 3 to see the difference between this model

and the standard slab/2D model. For the full parameter sets see Table 2.

Figure 6. Left-hand panel: Plot taken from Matthaeus et al. (1990). The correlation function for the magnetic fluctuation measurement is plotted. In the

notation of this paper r⊥ = r and r‖ = z. Units in 1010 cm. Right-hand panel: this figure shows the plot with the best parameter set estimated from the parameter

study shown in Fig. 4. The grey shading displays the same amplitude as in Fig. 4 but we added additional contours. We find quite a good agreement between

this plot and the measurements shown on the left.

in the reference plot of Fig. 4 drops along the axis to approximately

10 per cent and along the bisectrix below 1 per cent. Thus, in

order to reproduce the measurement the amplitude of the correlation

function has to be increased. The effect, that the contours align with

the bisectrix for larger z and r , is already sufficient in the reference

plot but has to be re-established after increasing the amplitude.

A pure slab/2D model has non-vanishing spectra only along the

k⊥ and k‖ axes, and the purpose of our model was to introduce

non-vanishing off-axis spectra by substituting the δ function by the

anisotropy function a(�), thus giving elliptical contours (see Fig. 2).

Using this anisotropy function, we find the correlation function

decline to zero also along the axis, in contrast to the standard slab/2D

model. With our model, we are now able to reproduce the alignment

with the bisectrix as well as the decline of correlation along the axis.

However, we have not been able to reproduce the faster decrease

along the axis yet.

In order to reproduce the measurement, we chose larger ben-

dover scales l2D and lslab to increase the correlation of the magnetic

field fluctuations. Additionally, we enlarge the anisotropy parame-

ter �slab in order to maintain the alignment with the bisectrix. The

whole set of parameters is also listed in Table 2 and the result is

given in Fig. 6. For the plot, we chose the same grey scaling as for

the plots of Fig. 4 but additional contours, namely 0.1, 0.15, 0.2,

0.25, 0.3, 0.4, 0.5, 0.65 and 0.8.

Along the axis the correlation drops to 40 per cent at r = 40 ×
1010 cm and to 20 per cent at z = 40 × 1010 cm. Along the bisectrix,

the correlation decreases to approximately 10 per cent at z = r =
40 × 1010 cm. Although the alignment with the bisectrix is less

pronounced than in the reference plot [Fig. 4 (1)], it is still clearly

visible.

We think that one may use this model to better estimate the param-

eters for the correlation of magnetic field fluctuations. Nevertheless,

we want to stress that this set of parameters should not be assumed

to be a best-fitting parameter set. Primarily, neither do we have the

exact values of the correlation function plotted in Fig. 6 (left-hand

panel) nor any estimates concerning its error. The purpose of this

estimate is only such that we want to demonstrate that it is possible

to reproduce this measurement in more details with our model than

with the standard slab/2D model.

Nevertheless, we like to point out that currently in the literature

assumed values of the parameters do not match the measurement of

the solar wind magnetic turbulence correlation function discussed

here [compare Fig. 6 (left-hand panel) to Figs 3 and 5]. Neither the

distribution of 80 per cent 2D and 20 per cent slab-like turbulence
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294 B. Weinhorst and A. Shalchi

nor lslab > l2D can be confirmed by the measurement. The needed

cross results from l2D > lslab and a distribution of more slab than 2D

turbulence. In order to reproduce the maltese-cross-like structure,

an alignment with the bisectrix as well as decreasing correlation

functions along the axis are necessary, thus implying the need for

a non-vanishing positive q and preferring the anisotropy model

introduced in this article.

4 SU M M A RY A N D C O N C L U S I O N

Since the knowledge of the magnetic correlation tensor is essential

for computing field line diffusion coefficients and the cosmic ray

diffusion tensor, we have improved the analytical model for this

tensor. We have replaced the standard two-component model by a

more general form. To do this, we included a parameter � which

describes the anisotropy. By superposing two anisotropic models

we developed a quasi-two-component model. In comparison with

the original model, our model takes into account the spread of wave

vectors around the strict parallel and perpendicular directions.

By combining this model with the general turbulence spectrum

proposed by Shalchi & Weinhorst (2009), we were able to reproduce

the measurements of the correlation of magnetic turbulence in the

solar wind which has the form of a maltese cross. Our results match

the data much better than any previous work. Up to now our model

includes nine parameters, which needs to be fitted by measurements.

Although these are a lot of parameters, this study has been able to

show the need for spectral anisotropy as well as the more general

spectrum in order to explain the structure found for solar wind

turbulence.

Additionally, we showed that the standard slab/2D model for

values of the parameters often used throughout the literature does

not agree with the measured magnetic turbulence correlation func-

tion. Thus, an additional study of further measurements is required

to fully understand the solar wind magnetic properties. The model

developed here could be the basis for future investigations of field

line and cosmic ray transport.
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