
Received 10 October 2002
Accepted 4 December 2002

Published online 1 April 2003

Review Paper

Reproductive strategies in snakes
Richard Shine
School of Biological Sciences A08, University of Sydney, Sydney, NSW 2006, Australia (rics@bio.usyd.edu.au)

Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features
of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple
mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of
their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their
offspring (through allocation ‘decisions’, behavioural and physiological thermoregulation, and nest-site
selection). Reliance on stored energy (‘capital’) to fuel breeding results in low frequencies of female repro-
duction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male
snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated
mate choice by males. Male–male rivalry takes diverse forms, including female mimicry and mate guard-
ing; combat bouts impose strong selection for large body size in males of some species. Intraspecific
(geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and
number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and
combat; mate choice criteria) provide exceptional opportunities for future studies.
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1. INTRODUCTION

Neglected in ecological and behavioural research for many
years, snakes have recently begun to attract intense inter-
est from many researchers (Shine & Bonnet 2000). This
renaissance in snake research has encompassed many con-
ceptual approaches, with reproductive tactics among the
most popular topics. Evolutionary interpretations of snake
reproductive strategies have proliferated, reflecting three
major features of reproductive biology in snakes: diversity,
plasticity and covariation with other traits. First, these ani-
mals encompass massive diversity in reproductive traits.
Second, many of these traits vary, either through local
adaptation or direct responses to proximate cues. Third,
reproductive tactics are clearly linked to features of the
environment or of the species’ morphology and ecology.
For example, viviparity (live-bearing) has evolved from
oviparity (egg laying) in at least 30 independent lineages
of snakes, usually in association with the invasion of cold
climates (Blackburn 1985; Shine 1985). Similarly, male–
male interactions range from mutual tolerance to overt
physical battles, and are closely linked to patterns of sexual
dimorphism in body size (Shine 1994). Such correlations
between reproductive tactics and other environmental and
biological traits encourage researchers seeking adaptive
explanations for reproductive diversity. Many of these
traits vary intraspecifically as well as interspecifically (table
1), facilitating tightly controlled comparisons between
taxa that differ in the characteristic of interest. This close
phylogenetic focus enables powerful tests of adap-
tationist hypotheses.

This review will briefly summarize some of the recent
work on snake reproductive strategies, focusing on devel-
opments since earlier reviews (Devine 1984; Seigel & Ford
1987; Olsson & Madsen 1998). I will, of necessity, be
highly selective. I have, for example, ignored general issues
of life-history evolution such as ages and body sizes at
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maturation (Parker & Plummer 1987; Ford & Seigel 1994;
Bronikowski & Arnold 1999; Bronikowski 2000), or the
interplay between natural selection and sexual selection in
generating diversity in ‘reproductive’ traits (Pearson et al.
2002). I have emphasized empirical findings, and the ideas
generated by them, rather than broad conceptual schemes
(e.g. Duvall et al. 1992, 1993; Arnold & Duvall 1994). I
have ignored the physiological mechanisms that provide
functional linkages between genotypes and phenotypes by
controlling reproductive activities (Gans & Crews 1992).
Finally, I have emphasized questions within my own fields
of research, and thus, have tended to focus on my own
studies and those of my collaborators.

2. FEMALES

Reproduction involves both costs and benefits to an
organism’s fitness. The benefits are obvious (production
of offspring) but costs also drive the evolution of repro-
ductive tactics (Bonnet et al. 1999b, 2002). Reproduction
may increase a female snake’s risk of death (through star-
vation or predation; Plummer 1997; Gregory et al. 1999)
or disease (via sexual transmission or physiological stress).
Similarly, reproduction may severely impact upon her
energy balance through increased metabolic expenditure
(due to energy allocation to the clutch, and to mainte-
nance of high body temperatures during pregnancy) or
foregone feeding opportunities (Madsen & Shine 1993c;
Gregory et al. 1999; Lourdais et al. 2002a). Such energy
costs may reduce her future growth rate and thus, prob-
able fecundity (Bell 1980; Shine 1980). Mortality costs
are so high for females in some snake species that many
produce only a single litter in their lifetimes (Madsen &
Shine 1992a, 1994; Luiselli et al. 1996, 1997; Brown &
Weatherhead 1997; Bonnet et al. 2002). Such costs
impose strong selection to adjust reproductive tactics to
local conditions of food supply and predator densities,
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Table 1. Intraspecific geographical variation in major reproductive traits within snake species.
(These cases are examples only; for many traits, additional cases are known.)

intraspecifically variable trait species authority

sexual differences
in mean adult body size Natrix natrix Madsen & Shine (1993b)
in relative head size Thamnophis sirtalis Shine & Crews (1988)
in home range size Pseudechis porphyriacus Shine (1987)

reproductive output
clutch size Nerodia rhombifera Aldridge et al. (1995)
reproductive frequency Drysdalia coronoides Shine (1981)
offspring size Storeria occipitomaculata Semlitsch & Moran (1984)
relative clutch mass Thamnophis sirtalis Seigel et al. (1986)

mode of reproduction Psammophylax variabilis Broadley (1977)
seasonality of reproduction

females Thamnophis marcianus Seigel et al. (2000)
males Boiga irregularis Bull et al. (1997)

female parental care
nest attendance Liasis fuscus Madsen & Shine (1999b)
shivering thermogenesis Python sebae Shine (1988b)

male mating tactics
criteria for mate choice Thamnophis sirtalis LeMaster & Mason (2002)
mate guarding Vipera berus Luiselli (1995)
male–male combat Morelia spilota Shine & Fitzgerald (1995)
multiple mating Thamnophis sirtalis Garner et al. (2002)
seasonality of mating Python reticulatus Shine et al. (1999a)
mate-searching tactics Nerodia sipedon Brown & Weatherhead (1999)
male courtship behaviour Thamnophis radix Ford (1996)

thus generating interspecific and intraspecific divergence
in reproductive tactics.

The obvious fitness benefit of reproduction is the pro-
duction of viable offspring. Female snakes can control
(and thus, potentially, selection can optimize) the follow-
ing components.

(a) Seasonal timing of reproduction
Even in the tropics, most snakes reproduce seasonally

(Fitch 1982; Vitt & Vangilder 1983; Shine et al. 1999a),
perhaps reflecting underlying seasonal variation in
resource levels, hatchling survival rates and/or the costs of
reproduction. In cold climates, thermal requirements for
embryogenesis limit reproduction to the warmer months,
imposing a strong seasonality (Vitt & Vangilder 1983). Sub-
stantial variation in reproductive timing can occur even
within a single population, and may generate important fit-
ness variation (Farrell et al. 1995; Madsen & Shine 1999b).

(b) Total energy allocation to reproduction
Total litter mass (and thus, energy content) is highly

linked to maternal body size in many snake species
(Seigel & Ford 1987), presumably reflecting physical con-
straints on clutch volume (Vitt & Congdon 1978; Shine
1992). However, female body size will determine litter
mass only if females delay reproduction until they have
enough energy to fill their body cavity with eggs or
embryos. A long-term field study on vipers (Vipera aspis)
reported this situation in only 1 of 9 years, with repro-
ductive allocation below the level at which it was con-
strained by (and thus, correlated with) maternal body size
in the other 8 years (Lourdais et al. 2002b). Within the
constraints set by maternal body volume, selection fine-
tunes reproductive investment to match costs. For
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example, relative clutch masses may be atypically high for
snake populations with few predators and abundant food
(e.g. Gloydius shedaoensis; Sun et al. 2002) and unusually
low if pregnancy severely impairs maternal locomotion
(e.g. aquatic species; Shine 1988a). Laboratory experi-
ments demonstrate that local resource levels can substan-
tially modify reproductive output in female snakes
(Ford & Seigel 1989; Seigel & Ford 1991).

(c) Frequency of reproduction
If reproduction requires ‘risky’ behaviour (e.g. frequent

basking) regardless of clutch size, selection should favour
females to delay reproduction until they can produce
a large clutch (Bull & Shine 1979). Such fecundity-
independent costs are widespread, especially in viviparous
species that must carry the litter for a long period
(Naulleau & Bonnet 1996). Thus, many female snakes do
not initiate reproduction until their body reserves exceed
a threshold value (Bonnet et al. 2002). This threshold
value is relatively invariant within some species (e.g.
Vipera aspis; Bonnet et al. 2001, 2002) but fluctuates
through time in populations exploiting highly stochastic
resources (e.g. Acrochordus arafurae, Liasis fuscus; Shine &
Madsen 1997; Madsen & Shine 1999a, 2000b). Some
snakes rely on ‘capital’ (stored energy) for reproduction,
thus temporally dissociating energy acquisition from
expenditure. Others rely on ‘income’ (energy obtained
through current feeding), and modify reproductive expen-
diture according to current resource levels (Shine &
Madsen 1997; Brown & Shine 2002). The balance of
reliance upon capital versus income also shifts among
years within a single population (Bonnet et al. 2001).
Paradoxically, one of the most important aspects of female
reproduction in snakes may be that in many populations,
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most females do not breed in most years. Inevitably, frus-
trated researchers have tended to study the atypical sys-
tems with high reproductive frequencies; we do not know
how this bias has affected our overall view of snake repro-
duction. Long-term studies are critical for this as well as
other reasons (Fitch 1999).

(d) Offspring size
Offspring sizes vary enormously, and (unsurprisingly)

are linked to mean adult body size. Neonates of larger
species are larger in absolute terms, but smaller relative
to adult body size, than in smaller species (Shine 1978).
Offspring size is also affected by selection (for example,
larger prey sizes favour increased neonatal size; Sun et al.
2002) and by allocation trade-offs (larger clutches are
composed of smaller offspring; King 1993). Maternal
body size has less effect on offspring size than on litter size,
but some taxa show either positive or negative correlations
between maternal and offspring sizes (Shine 1981; Stewart
1989). In one viviparous natricine snake, facultative pla-
cental nutrient transfer generates such a correlation
(Stewart 1989).

(e) Offspring quality
Although offspring size and number obviously influence

maternal fitness, and have been the primary foci of analy-
sis, viability of offspring may vary considerably, and hence
be a critical source of among-female variation in fitness.
The survival rates of neonatal pythons, for example, were
influenced more by inter-clutch variation than by body
sizes (Madsen & Shine 1998). Females of some snake
species show consistency in offspring phenotypes among
successive clutches (Madsen & Shine 1992a), whereas
others do not after the influence of maternal body size is
removed (Luiselli et al. 1996). Maternal (clutch) effects
are very widespread in snakes as in other animals and are
generated by genetics, maternal allocation and direct
environmental effects both on the female and on her
developing offspring; statistical analyses of offspring traits
should not ignore this source of variation (King 1997).
Female snakes can exert some control over at least three
aspects.

(i) Maternal investment. Offspring viability is affected
not simply by the absolute amount of nutrients allo-
cated to each ovum (Sinervo et al. 1992), but also by
subtle variations in egg composition. For example,
hormone levels in the yolk can modify developmen-
tal trajectories (Bowden et al. 2000).

(ii) Genetic quality of the offspring. The mother’s own
genotype obviously influences her offspring. More
interesting is the paternal contribution, in all taxa
except the parthenogenetic Ramphotyphlops braminus
(Kamosawa & Ota 1996). Females could influence
the genetic constitution of their offspring by mate
choice, but there is little evidence of female snakes
exerting an active choice for one male over another
(Olsson & Madsen 1998). Female copperheads
(Agkistrodon contortrix) may evaluate the vigour of
prospective mates by mimicking male challenge pos-
tures for combat (Schuett & Duvall 1996). More
generally, a male’s vigour influences his ability to
obtain copulations (Shine et al. 2000a) and, a female
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that resisted ineffective courtship might thus mate
with more-than-usually vigorous males. If this
dimension in male behaviour has a genetic under-
pinning, females that resist ineffective courters might
thereby enhance the genetic quality of their off-
spring. Cryptic post-copulatory mate choice via
sperm competition may be more important. In a
small inbred population of adders (Vipera berus),
females that mated with multiple males enhanced
the viability of their offspring (Madsen et al. 1992),
probably via rejection of sperm from males with
genotypes too similar to their own (Olsson et al.
1996). However, multiple mating did not affect off-
spring viability in another (outbred) adder popu-
lation (Luiselli 1993).

(iii) Incubation environment. In egg-laying squamates,
thermal and hydric conditions during incubation can
substantially modify developmental rates (and thus,
the timing of hatching) and also phenotypic traits of
the offspring (Burger 1989, 1990, 1991, 1998;
Burger et al. 1987; Burger & Zappalorti 1988). Thus,
reproducing females directly influence the pheno-
types of their offspring by selecting nest-sites with
specific incubation conditions (Shine & Harlow
1996). Seasonal or geographical variation in weather
conditions generates significant variation in hatchling
phenotypes (Webb et al. 2001). Because much of
embryogenesis occurs before oviposition (Shine
1983; Blackburn 1995), maternal thermoregulation
can also modify hatchling phenotypes (at least in liz-
ards; Shine 1995). Most dramatically, the shift from
oviparity to viviparity considerably changes both the
mean and variance of thermal and hydric conditions
under which the embryos develop (Shine 1995;
Arnold & Peterson 2002). The evolution of maternal
brooding, especially in pythons that regulate nest
temperatures by shivering thermogenesis, similarly
modifies hatchling characteristics (Shine et al.
1996). Female pythons (Liasis fuscus) demonstrate
remarkable flexibility by nest brooding only when
benefits to the offspring exceed costs to the mother
(Madsen & Shine 1999b).

Although no snakes are known to show temperature-
dependent sex determination (TSD), incubation tempera-
ture can influence hatchling sex ratios via a higher mor-
tality of sons at lower temperatures (Burger & Zappalorti
1988). Similarly, maternal body temperatures during
pregnancy affected scalation traits of sons more than
daughters in a viviparous snake species (Arnold & Peter-
son 2002). Such sex differences in responses to incubation
temperature may favour the evolution of TSD (Charnov &
Bull 1977), and facilitate maternal control over offspring
sex ratios by nest-site selection or maternal thermoregul-
ation. Intriguingly, offspring sex ratios in viviparous snakes
have been reported to shift with maternal age (Madsen &
Shine 1992c), body size (Dunlap & Lang 1990; Weather-
head et al. 1998) and reproductive output (Luiselli et al.
1996). Studies on lizards confirm that TSD can occur in
viviparous species (Robert & Thompson 2001) and that
incubation temperature can override genetic sex determi-
nation even in species with heteromorphic sex chromo-
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somes (Shine et al. 2002a). The potential for further work
in this area is clear.

(f ) Overview for females
Because reproduction is very energy-expensive for female

snakes, the acquisition, storage and expenditure of energy
are fundamental themes of their reproductive adaptations.
This emphasis has many implications. Female snakes, for
example, often grow larger than conspecific males (thus
increasing fecundity; Shine 1994), have larger heads rela-
tive to body length (thus eating larger prey; Houston &
Shine 1993), are more heavy-bodied (reflecting energy
storage; Scott et al. 1995; Madsen & Shine 2002), and
coordinate their reproductive decisions with temporal
fluctuations in energy availability (Madsen & Shine 2000b;
Bonnet et al. 2001). Because many macrostomate snakes
rely on infrequent ingestion of large prey items (Greene
1983), food intake may be low relative to maternal body
size. Thus, female reproduction is infrequent, and is often
fuelled by long-term energy stores (capital breeding; Bon-
net et al. 1998). The critical importance of energy has also
favoured adaptations to reduce energy expenditure,
including sedentary behaviour, low basal metabolic rates,
and the ability to downregulate organs (such as the diges-
tive tract) during quiescent periods (Pough 1980; Secor &
Diamond 1995). Logistically, the scarcity of post-hatching
parental care in snakes (Shine 1988b) simplifies measures
of resource allocation to reproduction, and reliance on a
few large meals allows experimenters to manipulate the
food intake of free-ranging animals to examine plasticity
in traits such as thermoregulation, reproduction and habi-
tat use (Blouin-Demers & Weatherhead 2001).

3. MALES

As in females, reproduction for male snakes imposes
costs as well as benefits. Energy allocation is less
important than it is for females, but may still be significant
(Olsson et al. 1997). Male snakes frequently forgo feeding
during the mating season thus also experiencing ‘opport-
unity costs’ (Madsen & Shine 2000a). In many snake
species, for males, the major cost of reproduction may be
the risk of mortality due to extensive movements during
the mating season (Aldridge & Brown 1995; Bonnet et al.
1999a). Differing movement patterns at this time of year
may impose selection for sex differences in colour
(Shine & Madsen 1994; Forsman 1995).

The reproductive tactics under selection in male snakes
differ in important respects from those for females, albeit
with many points of commonality.

(a) Seasonal timing of reproduction
The extensive interspecific variation in the seasonality

of sperm production has stimulated classificatory schemes
(e.g. prenuptial versus postnuptial; Saint Girons 1982)
but remains puzzling. In many species, males produce
sperm shortly before mating and mate shortly before
females ovulate. However, there may also be substantial
time lags between these components, sometimes reflecting
winter inactivity (i.e. sperm produced in autumn, mating
in spring; e.g. Saint Girons 1982). In some snake species,
males mate long after the sperm has been produced and
while their circulating androgen levels are low (Saint
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Girons 1982; Crews 1984; Crews et al. 1984). Sperm stor-
age in either males or females is thus an essential part of
the reproductive cycle in many snake species (e.g. Alme-
ida-Santo & Salomo 1997; Bull et al. 1997); as for many
aspects of snake reproduction, it confers great flexibility
(in this case, it decouples the timing of mating from
ovulation). Sperm may remain viable inside the female
reproductive tract for up to several years (Seigel & Ford
1987).

(b) Total energy allocation to reproduction
Male snakes, unlike females, do not require any thresh-

old level of energy stores to initiate reproduction (Bonnet &
Naulleau 1996; Aubret et al. 2002). We might expect rela-
tive testis mass to vary among snake species in accord with
mating opportunities; for example, larger testes are
expected in taxa with frequent multiple mating and, hence,
a high potential for sperm competition (Olsson & Madsen
1998). This prediction remains untested. In garter snakes
(Thamnophis), limits on a male’s ability to produce gelati-
nous mating plugs may constrain the total number of
copulations per male per season and hence, select for male
mate choice (Shine et al. 2001a).

(c) Frequency of reproduction
The often-low reproductive frequencies of female

snakes do not apply to males, which typically reproduce
every year after maturation (based on testis development;
Saint Girons 1982). Males also often mature earlier than
females (Parker & Plummer 1987) and thus, operational
sex ratios (OSRs; Emlen & Oring 1977) typically are male-
biased. OSRs vary among years and populations in
response to local resource availability (and thus, the pro-
portion of adult females reproducing). In turn, shifts in
OSR modify determinants of male reproductive success.
In male adders, for example, selection on body size is
more intense in years when fewer females reproduce and
hence, most matings are preceded by male–male combat
(Madsen & Shine 1992d). Intriguingly, some adult-size
males may not engage in reproductive activities in some
years (e.g. in Nerodia sipedon; Weatherhead et al. 1995),
suggesting an unexplained temporal complexity in male
tactics.

(d) Number of matings
Variation in mating success constitutes the major raw

material for sexual selection in males of most snake popu-
lations, and operates to optimize male performance at a
variety of tasks.

(i) Mate location. If reproductive females are difficult to
find, mate-searching tactics will be under strong
selection. During the mating season, males move
around in ways that maximize their probability of
encountering a receptive female (i.e. move more,
and often in straight lines or in specific habitats
where females are concentrated; Duvall et al. 1985,
1990). They detect females using subtle cues such
as pheromonal trails deposited on the substrate, and
follow these trails to locate the female (Mason 1992,
1993; Mason et al. 1989; Greene et al. 2001;
LeMaster et al. 2001). We do not know the extent
of variation in trail-detection and trail-following
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abilities among male snakes, nor its importance for
male mating success (but see Madsen et al. 1993).

(ii) Male–male rivalry. Males may vanquish rivals by
excluding them from a prime habitat; although
rarely reported, this behaviour may nonetheless be
common (e.g. Carpenter 1984; Webb & Shine
1997). Perhaps more often, males defeat rivals by
defending areas around the female rather than any
fixed territory. Males of many snake species engage
in highly ritualized physical struggles during the
mating season, typically involving intertwining wres-
tling matches; biting may sometimes be involved
(Gillingham 1987). Losing males may be severely
stressed, and postpone further reproductive activities
(Schuett 1996). Even in species in which males do
not show overt physical rivalry, such as natricine col-
ubrids and boids in ‘mating balls’ of many males
plus a female, more subtle physical struggles may
influence reproductive success (Rivas & Burghardt
2001). For example, males may push aside the tails
of their rivals, such that larger males obtain more
matings than do smaller conspecifics (Madsen &
Shine 1993a; Weatherhead et al. 1995; Luiselli
1996; Shine et al. 2000e).

(iii) Alternative male mating tactics within a single popu-
lation. In European adders (Vipera berus), some
males guard females after mating and thereby reduce
the probability of subsequent insemination (Madsen
et al. 1993; Luiselli 1995). Small males may avoid
battles with larger males, but instead wait nearby
and court the female after their larger rival has
departed (Madsen et al. 1993). Ontogenetic shifts in
the pheromonal cues that stimulate courtship in gar-
ter snakes (Thamnophis sirtalis) mean that much of
the courtship by smaller males is directed towards
females too small to attract attention from larger
males (Shine et al. 2001a). Although originally
described as an alternative mating tactic based on
confusing other males within a ‘mating ball’
(Mason & Crews 1985), female mimicry in the same
species seems more likely to reflect advantages unre-
lated to mating. Courted ‘she-males’ are warmed by
the attention of other males, and protected from
attack by predatory crows (Shine et al. 2000b,
2001b).

(iv) Courtship effectiveness. Despite detailed descriptive
studies on snake courtship, we still do not under-
stand the process by which a courting male snake
induces receptivity in his partner. This interaction
has generally been interpreted as ritualized persuasion
(e.g. Devine 1984), but recent studies suggest intense
conflict between the sexes, including the possibility
of forcible insemination (Shine et al. 2000c). In cap-
tivity, male presence may accelerate female repro-
ductive cycling (Python curtus; DeNardo & Autumn
2001).

Sexual struggles in male snakes generate diverse corre-
lations between male phenotypic traits and mating success.
The most obvious involve body size, with larger males
obtaining more matings, not only in species with male–male
combat (e.g. Vipera berus; Madsen et al. 1993; Agkistrodon
contortrix; Schuett 1997), but also in species with less
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vigorous physical battles (tail-wrestling; Madsen & Shine
1993a; Luiselli 1996; Shine et al. 2000e). However, larger
size might be a disadvantage if other males use body size
as a cue to elicit courtship (Eunectes murinus; Rivas &
Burghardt 2001). One unusual study documented the
appearance of a novel gene in an adder population, influ-
encing colour pattern as well as sexual-size dimorphism.
This gene rapidly spread through the population, as pre-
dicted by measures of mating ability (Madsen & Shine
1992b). Success may also go to heavier-bodied and/or
more vigorous males (Shine et al. 2000a,e), those with
longer tails relative to body length (Shine et al. 1999b) or
those with ‘average-length’ tails (Shine & Shetty 2001).
Mating systems of some snake species may genuinely be
‘scrambles’, with no reproductive advantage to larger body
size in males (Acrochordus arafurae; Shine 1986; Laticauda
colubrina; Shetty & Shine 2002). Even in species with male
combat (where we might expect larger males to obtain
more matings), variance in male mating success may be
driven by mate-searching ability rather than fighting ability
and hence, larger size may be irrelevant to reproductive
success (Duvall & Schuett 1997). However, phylogenetic
analyses reveal that the degree of sexual-size dimorphism
is influenced by the mating system: the evolution of male–
male combat has been accompanied by shifts in male
growth patterns and hence, in the direction and degree of
sexual dimorphism in mean adult body size (Shine 1994).

(e) Sperm competition
Mating success may bear little relationship to male fit-

ness, if paternity is strongly influenced by competition
among sperm from rival males, within the female’s repro-
ductive tract (Olsson & Madsen 1998). The opportunity
for sperm competition is high in snakes; females of many
species mate with multiple partners and show multiple
paternity of the resulting clutches (Schwartz et al. 1989;
Hoggren 1995; Garner et al. 2002; see Olsson & Madsen
(1998) for a review). Mate guarding, mating plugs and
prolongation of copulation may be evolutionary responses
to this phenomenon (Andersson 1994; Olsson & Madsen
1998; Shine et al. 2000d). Molecular analyses of paternity
will doubtless clarify these issues in coming years.

(f ) Mate quality
Males of at least two distantly related snake species allo-

cate more courtship to larger females (Thamnophis sirtalis;
Aleksiuk & Gregory 1974; Laticauda colubrina; Shetty &
Shine 2002). Male garter snakes also court heavy-bodied
females more actively than thin females (Gartska et al.
1982). A female’s size and body shape predict her repro-
ductive output (see above) and hence, courtship to larger
fatter animals may enhance male fitness. Pheromones
(skin lipids) may offer the most important cues for such
discrimination both among females within a single popu-
lation, and as species-isolating mechanisms to maintain
separation between sympatric taxa (Mason 1992; Shine et
al. 2002b).

(g) Overview for males
Two dominant themes in the reproductive tactics of

male snakes are the central role of mate location as a
determinant of reproductive success, and the presence of
a remarkable chemosensory apparatus that facilitates this
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task. Low female reproductive frequencies in many snakes
may also have favoured male ability to discriminate
between reproductive and non-reproductive females, in
order to direct courtship to the former rather than the lat-
ter. Indeed, sexual selection may well have driven much of
the evolution of the snake vomeronasal system, although it
has also been co-opted for other tasks such as foraging
and predator detection (Greene 1997). In turn, the depen-
dence on pheromonal trail following may reflect the loco-
motor mode of snakes, which usually results in continuous
deposition of substrate trails. Animals that walk, hop,
swim or fly do not deposit such continuous trails and
hence, may best be located using other sensory modalities.
One consequence of the sophisticated vomeronasal system
of snakes is that pheromonally based male mate choice
may be more important in this lineage than in most other
vertebrate groups.

4. DIRECTIONS FOR STUDY

The spectacular recent increase in the volume of
research on reproductive tactics in snakes has been
accompanied by a massive expansion of the ecological,
geographical and phylogenetic systems under study. Until
the late 1970s, studies in this field were firmly based
around a few ‘model organisms’: notably natricine colub-
rids in North America (Thamnophis) and northern Europe
(Natrix), and viperids from the same two areas (Crotalus,
Vipera). These organisms continue to be the focus of dis-
proportionate attention, but studies in other parts of the
world and on other snake lineages are providing a broader
view of the diversity in snake reproduction. A major
challenge for the field continues to be the development
of new ‘models’, preferably from lineages (such as
scolecophidians) that are phylogenetically and ecologically
very different from previously studied organisms.

The conceptual focus of snake reproductive studies has
also broadened. Earlier paradigms of snakes as primitive
inflexible organisms have been replaced by an increasing
appreciation of the subtlety, complexity and, above all,
plasticity of snake biology. Topics such as social organiza-
tion and sex allocation may become major fields of
enquiry in their own right. Increasingly, experimental
approaches take advantage of the high levels of phenotypic
plasticity in snakes to explore direct environmental effects
on morphology and behaviour.

This phenotypic plasticity has generated substantial
intraspecific variation in many reproductive traits. Nearby
populations of the same species often display remarkable
differences (table 1). Island populations offer some of the
most extreme examples, with spatial variation in prey
resources generating massive divergence in snake mor-
phology and behaviour (e.g. Schwaner & Sarre 1988; For-
sman 1991; Pearson et al. 2002). Much of this variation
is directly induced by prey availability influencing growth
trajectories of individual animals, but other examples of
this variation may have a genetic underpinning (e.g. Sei-
gel & Ford 1991; Madsen & Shine 1993b). Thermal het-
erogeneity in the environment may also induce substantial
shifts in life-history traits (Madsen & Shine 1999b).

These sources of variation mean that only rarely are
major reproductive traits common to all members within
major lineages (contra Schuett et al. 2001). To examine
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evolutionary shifts in traits of interest, we need robust
phylogenetic hypotheses within as well as among lineages.
The increasing availability of such phylogenetic infor-
mation provides exceptional opportunities to explore the
fine-grained heterogeneity in ecological, behavioural and
reproductive traits among snakes within an evolutionary
perspective. In turn, this rapid expansion of phylogenetic
and ecological data provides powerful opportunities to
pose and test hypotheses inaccessible for study in many
other kinds of organisms.

Many colleagues, collaborators and students have contributed
to my education about snake reproduction; I am grateful to all
of them. Comments on the manuscript were provided by Xav-
ier Bonnet, Rex Cambag, Greg Brown and Thomas Madsen.
The Australian Research Council has supported my work.
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