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ABSTRACT
A prototype platform has been developed that allows pro-
cessing of packets at the edge of a multi-gigabit-per-second
network switch. This system, the Field Programmable Port
Extender (FPX), enables packet processing functions to be
implemented as modular components in reprogrammable
hardware. All logic on the on the FPX is implemented in two
Field Programmable Gate Arrays (FPGAs). Packet process-
ing functions in the system are implemented as dynamically-
loadable modules.

Core functionality of the FPX is implemented on an FPGA
called the Networking Interface Device (NID). The NID con-
tains the logic to transmit and receive packets over a net-
work, dynamically reprogram hardware modules, and route
individual traffic flows. A full, non-blocking, switch is imple-
mented on the NID to route packets between the networking
interfaces and the modular components. Modular compo-
nents of the FPX are implemented on a second FPGA called
the Reprogrammable Application Device (RAD). Modules
are loaded onto the RAD via reconfiguration and/or partial
partial reconfiguration of the FPGA.

Through the combination of the NID and the RAD, the
FPX can individually reconfigure the packet processing func-
tionality for one set of traffic flows, while the rest of the
system continues to operate. The platform simplifies the
development and deployment of new hardware-accelerated
packet processing circuits. The modular nature of the sys-
tem allows an active router to migrate functionality from
softare plugins to hardware modules.
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1. BACKGROUND
Internet routers and firewalls need high performance to

keep pace with the the growing demands for bandwidth. At
the same time, however, these devices need flexibility so that
they can be reprogrammed to implement new features and
functionality. Most of the functionality of a router occurs
at the ingress and egress ports of a switch. Routers become
bottlenecked at these locations when they are required to
perform extensive packet processing operations.

Hardware-based routers and firewalls provide high through-
put by including optimized packet-processing pipelines and
parallel computation circuits. By using Application-Specific
Integrated Circuits (ASICs), traditional routers are able to
implement the performance-critical features at line speed.
The static nature of an ASIC circuit, however, limits the
functionality of these performance-critical features to only a
fixed set of the system’s functionality.

Software-based based routers and firewalls excel in their
ability to implement reprogrammable features. New fea-
tures can be added or removed in an active router by load-
ing software new software modules. The sequential nature of
the microprocessor that executes that code, however, limits
the throughput of the system. Routers that solely use soft-
ware to process packets typically archive throughputs that
are several orders of magnitude slower than their hardware-
based counterparts.

Routers and firewalls that utilize FPGAs can implement
a desirable balance between performance and flexibility [1].
They share the performance advantage of ASICs in that
customized pipelines can be implemented and that parallel
logic functions can be performed over the area of the device
They also share the flexibility found in software systems to
be reconfigured [2].



Figure 1: FPX Module

2. THE FPX SYSTEM
The Field-programmable Port Extender enable the rapid

prototype and deployment of hardware components for mod-
ern routers and firewalls [3]. The system is intended to allow
researchers or hardware developers to quickly prototype new
functionality in hardware, then download that functionality
into one or more nodes in a network. The architecture of
the FPX makes it well suited to implement applications like
IP routing, per-flow queuing [4], and flow control algorithms
[5] in hardware.

Components of the FPX include two FPGAs, five banks
of memory, and two high-speed network interfaces. Net-
working interfaces on the FPX were optimized to enable the
simultaneous arrival and departure of data cells at SONET
OC48 rates. This is the equivalent bandwidth of multiple
channels of Gigabit Ethernet.

A photograph of the FPX module is shown in Figure 1.
The FPX circuit itself is implemented as a 12-layer printed
circuit board with the dimensions 20 cm × 10.5 cm. The
FPX has two Xilinx Virtex FPGAs: a XCV600Efg676 and
a XCV1000Efg680. Future versions of the FPX will utilize
a larger, pin-compatible XCV2000Efg680 to provide addi-
tional logic resources for user-defined functionality.

SRAM components on the FPX are mounted above and
below the RAD. SDRAM memories are mounted on the back
of the FPX in sockets. Reconfiguration data for the FPGAs
are stored both in non-volatile Flash memory for the NID
and SRAM memory for the RAD.

The FPX integrates with another open hardware platform
called the Washington University Gigabit Switch (WUGS)
[6]. Figure 2 shows an FPX mounted in one port of a WUGS.
By inserting one or more FPX modules at each port of the
switch, parallel FPX units are used to simultaneously pro-
cess packets as they pass through the network on all ports
of the switch.
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2.1 Logical Configuration
The FPX implements all logic using two FPGA devices:

the Network Interface Device (NID) and the Reprogramma-
ble Application Device (RAD). The interconnection of the
RAD and NID to the network and memory components is
shown in Figure 3.

The RAD contains the modules that implement the mod-
ule-specific functionality. Each module on the RAD con-
nects to one Static Random Access Memory (SRAM) and
to one, wide Synchronous Dynamic RAM (SDRAM). In to-
tal, the modules implemented on the RAD have full con-
trol over four independent banks of memory. The SRAM is
typically used for applications that need to implement table



Figure 2: Photo of FPX mounted in WUGS Switch

lookup operations (like the Fast IP lookup algorithm), while
the SDRAM interface is typically used for applications like
packet queuing that transfer bursts of data and can tolerate
a higher memory latency.

The RAD communicates with the NID using a Utopia-like
interface. Packets on this interface are segmented into a se-
quence of fixed-size cells that are formatted as IP over ATM.
Each interface has a small amount of buffering and imple-
ments flow control. A Start of Cell (SOC) signal is asserted
at the input of a module to indicate the arrival of data.
The Transmit Cell Available (TCA) signal is asserted back
towards an incoming data source to indicate downstream
congestion.

3. NETWORK INTERFACE DEVICE
The Network Interface Device (NID) on the FPX controls

how packet flows are routed to and from modules. It also
provides mechanisms to dynamically load hardware modules
over the network and into the router. The combination of
these features allows these modules to be dynamically loaded
and unloaded without affecting the switching of other traffic
flows or the processing of packets by the other modules in
the system.

As shown in Figure 4, The NID has several components,
all of which are implemented in FPGA hardware. It contains
a four-port switch to transfer data between ports; Virtual
Circuit lookup tables (VC) on each port in order to selec-
tively route flows; a Control Cell Processor (CP), which
is used to process control cells that are transmitted and
received over the network; logic to reprogram the FPGA
hardware on the RAD; and synchronous and asynchronous
interfaces to the four network ports that surround the NID.

3.1 Per Flow Routing
The NID routes flows among the modules on the RAD

and the network interfaces to the switch and line card using
a four-port switch. Each traffic flow that arrives on any
incoming port can be forwarded to any destination port.

Each of the NID’s four interfaces provide a small amount
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of buffering for short-term congestion. Buffers on the NID
are implemented using on-chip memory. When packets con-
tend for transmission to the same destination port, the NID
performs arbitration. For longer term congestion, the NID
avoids data loss by sending a back-pressure signal to the
previous module or network interface along the that net-
work flow’s path. The design of the four-port switch and
scheduling algorithm used to arbitrate among flows is based
on the design of the iPOINT switch [7] [8].

IP Packets are routed through the FPX and switch based
on assignment of cell headers that transport that packet.
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The NID supports forwarding for both aggregate traffic flows
and individual traffic flows. The NID’s Virtual Circuit look-
up table (VC) maps these flows into next-hop destinations
at each of the four ports. As shown in Figure 5, the NID’s
flow routing table contains entries for each of the four ports
in the switch that identify the destination port (d1 . . . d4) of
each flow. The table has sufficient entries to support 1024
virtual paths for aggregated traffic and another 1024 virtual
circuits for individual flows.

Examples that illustrate the NID’s switching functionality
are shown in Figure 6. By default, cells are simply passed
between the line card interface and the switch. To imple-
ment egress flow processing (i.e., process packets as they
exit the router), the NID routes a flow from the switch,
to a RAD module, then out to the line card. Likewise, to
implement ingress cell processing, the NID routes a virtual
circuit from the line card, to a RAD module, then out to the
switch. Full RAD processing occurs when data is processed
in both directions by both modules on the RAD. Loopback
and partial loopback testing can be programmed on the NID
to debug experimental modules. Modules can implement
selective packet forwarding by reassignment of the headers
that transport each packet.

3.2 Control functions
The NID implements a Control Cell Processor (CCP) in

hardware to manage the operation of the FPX and to com-
municate over the network. On the ingress interface from the
switch, the CCP listens and responds to commands that are
sent on a specific virtual circuit. The NID processes com-
mands that include: (1) modification of per-flow routing
entries; (2) reading and writing of hardware status regis-
ters, (3) reading and writing of configuraton memory, and
(4) commands that cause the logic on the RAD to be repro-
grammed. After executing each command, the NID returns
a response in a control cell.

3.3 FPX Reprogrammability
In order to reprogram the RAD over the network, the

NID implements a reliable protocol to fill the contents of
the on-board RAM with configuration data that is sent over
the network. As each cell arrives, the NID uses the data
and the sequence number in the cell to write data into the
RAD Program SRAM. Once the last cell has been correctly
received, and the FPX holds an image of the reconfiguration
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Figure 8: Larger Configuration of FPX Modules

bytestream that is needed to reprogram the RAD. At that
time, another control cell can be sent to NID to initiate
the reprogramming of RAD using the contents of the RAD
Program SRAM.

The FPX supports partial reprogramming the RAD by
allowing configuration streams to contain commands that
only program a portion of the logic on the RAD. Rather
than issue a command to reinitialize the device, the NID
just writes the frames of reconfiguration data to the RAD’s
reprogramming port. This feature enables the other mod-
ule on the RAD to continue processing packets during the
partial reconfiguration. Similar techniques have been imple-
mented in other systems using software-based controllers [9]
[10].

3.4 Modular Interface
Application-specific functionality is implemented on the

RAD as modules. A modular interface has been developed
that provides a standard interface to access packet content
and to interface with off-chip memory.

Hardware plugin modules on the RAD consist of a re-
gion of FPGA gates and internal memory, bounded by a
well-defined interface to the network and external memory.
Currently, those regions are defined as one half of an FPGA
and a fixed set of I/O pins.

The modular interface of an FPX component is shown in
Figure 7. Data arrives at and departs from a module over
a 32-bit wide, Utopia-like interface. Data passes through
modules as complete ATM cells. Larger IP datagrams pass
through the interface in multiple cells.

The module provides two interfaces to off-chip memory.
The SRAM interface supports transfer of 36-bit wide data to
and from off-chip SRAM. The Synchronous Dynamic RAM
(SDRAM) interface provides a 64-bit wide interface to off-
chip memory. In the implementation of the IP lookup mod-
ule, the off-chip SRAM is used to store the data structures
of the fast IP Lookup algorithm [3].

3.5 Larger Configurations
As the capacity of FPGAs increases, it is possible to in-

tegrate more modules together onto the same FPGA. In
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the current system, each module occupies one-half of an
XCV1000E. In future systems, a larger number of modules
can fit into a higher-capacity FPGA.

The interface that is used by hardware modules in the
existing system is designed to remain unchanged in a larger
configuration. Applications retain the same interfaces and
timing relationships to the data bus, memory buses, and
control lines. Hardware modules need only be resynthesized
so that they fit into a fixed region of the new device.

A configuration of larger configuration of FPX modules is
shown in Figure 8. Physically, each module occupies a fixed
region of the FPGA device. Intra-chip routing interconnects
the data paths between the modules. Common signal lines
internconnect the modules with SRAM and SDRAM.

3.6 Combined Hardware/Software Modules
Complex packet processing algorithms can require both

hardware and software components [14] [15].Through an-
other research project, an active processing node called the
Smart Port Card (SPC) has been built that contains a rout-
ing chip called the APIC and an embedded Pentium proces-
sor that runs the NetBSD kernel [16] [17]. When combined
with the FPX, interesting applications can be implemented
which perform active processing in both hardware and soft-
ware. The physical configuration of the combined system
is shown in Figure 9. Physically, the FPX and SPC stack
between the ports of the WUGS switch.

The logical configuration of the combined system is shown
in Figure 10. Packets enter and exit the combined system
at the interfaces to the switch fabric and line card. Data
flows can be selectively forwarded between the network in-
terfaces, the hardware modules on the FPX, and the soft-
ware modules on the SPC by configuration of virtual circuits
and virtual paths on the NID and APIC.

As an example of an application that can utilize both
hardware and software modules to process packets, consider
the implementation of an Internet router in the combined
system. Packet flows would enter the line card and be for-
warded by the APIC and NID to a hardware module on
the FPX. This hardware module, in turn, performs a fast
IP lookup on the packet, then forwards standard packets
on a pre-established virtual circuit that leads through the
NID and switch fabric to the appropriate egress port [3].
For packets that require non-standard processing, such as
those with IP options, the hardware module can forward
the packet to a software module on the SPC for further pro-
cessing. By using both hardware and software, the combined
system can provide high-throughput for the majority of the
packets and full processing functionality for exceptions.

3.7 Networking Testbed
The FPX provides an open-platform environment that can

be used for the rapid prototype of a broad range of hardware-
based networking components. Through a National Science
Foundation grant, FPX hardware can be made available to
researchers at Universities interested in developing network-
ing hardware components [11].

The implementation of a sample FPX module, including
the VHDL source code and I/O pin mappings on the RAD,
can be downloaded from the web [12]. Other modules have
been developed for the FPX to perform IP routing, packet
buffering, and packet content modification. Details about
the FPX are available on the project website [13].

4. CONCLUSIONS
The Field Programmable Port Extender enables customized

packet processing functions to be implemented as modules
which can be dynamically loaded into hardware over a net-
work. The Networking Interface Device implements the core
functionality of the FPX. It allows the FPX to individually
reconfigure the packet processing functionality for a set of
traffic flows, while not disrupting the packet processing func-
tions for others. The modular design of the FPX has made
the system of interest for active networking systems, as it
allows customized applications to achieve the higher perfor-
mance via hardware acceleration.
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