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Understanding the complex viscoelastic properties of polymeric liquids remains a challenge in materials sci-
ence and soft matter physics. Here, we present a simple and computationally efficient criterion for the topolog-
ical constraints in polymeric liquids using the Dissipative Particle Dynamics (DPD). The same approach is also
applicable in other soft potential models. For short chainsthe model correctly reproduces Rouse-like dynamics
whereas for longer chains the dynamics becomes reptationalas the chain length is increased—something that is
not attainable using standard DPD or other coarse-grained soft potential methods. Importantly, no new length
scales or forces need to be added.

I. INTRODUCTION

The static and dynamic properties of polymeric liquids are,
by and large, dominated by topological constraints. The origin
of these constraints is easy to understand: polymers can slide
past but not penetrate through each other. That is the physical
origin of the reptation model [1–3] which is the most success-
ful theory in describing the behavior of entangled polymers.
Despite active research in the field, entangled polymeric liq-
uids keep posing many challenges to theorists [4–6], exper-
imentalists [7–9] and computational modelers [10–16]. The
importance of understanding the fundamentals of polymeric
liquids can hardly be overemphasized as they are one of the
key issues in novel (bio)materials science [17, 18].

The dynamics of polymer melts is typically described in
terms of the Rouse and reptation models [3]. Short chains are
able to move to any direction and are not entangled. That is
the physical origin of the Rouse model [3, 19]. For longer
chains, entanglements and uncrossability of chains cannotbe
ignored, and the chains become constrained to move in the
direction of the chain backbone. This motion resembles that
of a reptating snake—hence the name reptation model [1–3].

Computer simulations offer a detailed look into polymers
and their dynamics. In classical molecular dynamics simula-
tions the system size and simulation time pose limits as they
are typically of the order of 10 nm in linear size and around
10 ns in time. In contrast, coarse grained methods, such as
dissipative particle dynamics (DPD), allow access to microm-
eter and microsecond scales. That is due to the soft potentials,
and, like everything in life, they do not come without a price
to pay: the softness of the conservative potentials allows the
chains to slide through each other thus strongly affecting the
dynamics of the system. Indeed, the scaling laws obtained
from DPD simulations of polymer melts [20, 21] are not able

to describe entangled liquids. This is a direct consequence
of the fact that in DPD simulations, polymers can penetrate
through themselves. Whereas that is not a problem in study-
ing the equilibrium properties in the Rouse regime, reptation
cannot be studied using the basic DPD model with soft inter-
actions.

To preserve the advantages of coarse-grained models and to
correct for their deficiencies, Padding and Briels [13] recently
introduced an algorithm that explicitly detects and prevents
bond crossings. They consider bonds as elastic bands that be-
come entangled and use energy minimization to determine the
entanglement positions. This approach is general and very
promising but it is also complicated to implement and compu-
tationally intensive [13].

Another promising approach was put forward by Pan and
Manke [22]. They reduce the frequency of bond crossings by
introducing segmental repulsive forces between the pointsof
nearest contact between neighboring chains. This approachis
simple to implement but the introduction of a new force and
a related cutoff increases the computational load, and addsa
new length scale whose physical determination is somewhat
ambiguous. On the other hand, the model seems to be able to
capture both the Rouse and reptational behavior [22] like that
of Padding and Briels [13, 23].

In this article, we introduce a simple and generic criterion
based on simple geometrical arguments to solve the crossabil-
ity problem. No new forces are added, the approach is con-
ceptually simple and does not depend on the level of coarse
graining. Importantly, it allows easy, and if necessary even
on-the-fly, tuning between the Rouse and reptation regimes.

The rest of this paper is organized as follows. In the next
section we will briefly describe the DPD method. Section III
describes our criterion for including topological constraints in
DPD, or for that matter any other soft potential, simulation.
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In Sec. V we show results from our simulations and compare
them to other methods. Finally, we finish with a discussion
and outlook in Sec. VI

II. DISSIPATIVE PARTICLE DYNAMICS

In DPD, the time evolution of particles is given by the New-
ton’s equations of motion, and the total force acting on particle
i is given as a sum of pairwise conservative, dissipative, and
random forces, respectively, as~Fi =

∑

i6=j(
~FC

ij + ~FD
ij + ~FR

ij ).
The conservative force is independent of the dissipative and

random forces. Typically it takes the form

~FC
ij =

{

aij(1 − rij/rc)~eij , if rij < rc

0, otherwise,
(1)

with ~rij ≡ ~ri−~rj , rij ≡ |~rij |, and~eij ≡ ~rij/rij . The variable
aij describes the repulsion between particlesi andj, and thus
produces excluded volume interactions.

The dissipative force is expressed as

~FD
ij = −γωD(rij)(~vij · ~eij)~eij , (2)

whereγ is a friction parameter,ωD(rij) a weight function
for the dissipative force, and~vij ≡ ~vi − ~vj . The dissipative
force slows down the particles by decreasing kinetic energy
from them. This effect is balanced by the random force due to
thermal fluctuations,

~FR
ij = σωR(rij)ζij~eij , (3)

whereσ is the amplitude of thermal noise,ωR(rij) is the
weight function for the random force, andζij(t) are Gaus-
sian random variables with〈ζij(t)〉 = 0 and〈ζij(t)ζkl(t

′)〉 =
(δikδjl + δilδjk)δ(t− t′). The conditionζij(t) = ζji(t) is re-
quired for momentum conservation. That is a necessary con-
dition for the conservation of hydrodynamics.

The weight functionsωD(rij) andωR(rij) cannot be cho-
sen arbitrarily. Español and Warren [24] showed that the
fluctuation-dissipation relationsωD(rij) = [ωR(rij)]

2and
σ2 = 2γkBT must be satisfied for the system to have a
canonical equilibrium distribution. HereT is the temperature
of the system andkB is the Boltzmann constant. The func-
tional form of the weight functions is not defined by the DPD
method but virtually all DPD studies use

ωD(rij) = [ωR(rij)]
2 =

{

(1 − rij/rc)
2, if rij < rc

0, otherwise. (4)

Coarse graining in DPD comes in through the soft conser-
vative potential and forces (Eq. (1)). A detailed account of
DPD, derivation of time and length scales, and its applications
is given by R.D. Groot [25]. An in depth discussion of coarse
graining by P. Español can be found in the same reference.

III. TOPOLOGICAL CONSTRAINTS

To take into account the topological constraints, chain
crossings must be prevented. As discussed in the introduc-

lmaxrmin2
1

FIG. 1: Two bonds crossing each other. If Eq. (5) is satisfied,cross-
ings cannot occur.

tion, there are currently two off-lattice methods [13, 22] for
this purpose. Here, we introduce a third alternative.

First, each individual bead has a radiusrmin which is im-
penetrable to other beads. In systems with Lennard-Jones
potentials that condition is automatically satisfied due tothe
r−12 part that takes care of the Fermi exclusion principle.
In mesoscopic simulations with soft potentials that constraint
needs special attention. Second, the intramolecular bonds
have some maximum stretch,ℓmax. By using simple geom-
etry, we can postulate that if the condition

√
2rmin > ℓmax (5)

is satisfied, any two bonds cannot cross each other, see Fig. 1.
The length scales involved, i. e.,rmin andℓmax have a clear
physical meaning.

The obvious question is whether that condition is actually
useful and when does it work. As an example, let us con-
sider DPD simulations of polymers. The parameters used in
these simulations are often justified on the basis of the Flory-
Huggins theory [25, 26], where the key component is the solu-
bility as expressed by theχ-parameters. Then, in simulations
of block co-polymers, e.g., it is the mutual repulsion between
the different components that matters—as a matter of fact,
the values of the interaction parametersaij may be derived
in different ways and their values tell only about the degree
of coarse-graining. The condition set by Eq. (5) can thus be
met by a proper degree of coarse graining, complemented by
a reasonable description for bond stretching (springs). Indeed,
aboveℓmax is limited by the type of springs used in the model.
With FENE springs [27] that is easy to tune as they have only
finite extension after which the force becomes infinite. With
harmonic springs more care is needed to satisfy Eq. (5) as
there is no FENE-like cutoff set by the equation of motion.
We will return to that in the Sec. V.

IV. SIMULATIONS

For simplicity, and to be able to compare the model with
other simulations, we considered a melt of linear polymers
in a cubic box (3D) with periodic boundary conditions. To
avoid finite size effects, the linear box sizeL was chosen to be
at least 1.75 times the average end-to-end distance of chains.
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a (amplitude of the conservative force)50 100 150 200

k (spring constant) 100 200 300 400

∆t (time step) 0.03 0.02 0.015 0.0125

TABLE I: The parameters used in this study.

We also carried out simulations with different box sizes to
ensure that the systems were free of finite size effects. That
was done since it is known that static properties are affected
by them [28] .

All the systems had 128 chains consisting ofN monomers,
and no additional solvent or free monomers were present. All
monomers were chosen to be identical, and thus the monomer
mass was set equal to unity,m = 1, fixing the scale of mass.
The cutoff distancerc sets the length scale for the model. The
conservative forces had the form given in Eq. (1), withrc = 1
andaij = a for all particle pairs. The values ofa, as well
as other simulation parameters used in these simulations are
listed in Table IV.

For the random and dissipative forces we used Eqs. (2) and
(3) with the common choices [25, 26, 29, 30]γ = 4.5 and
σ = 3. This sets the temperature tokBT = 1, and hence the
time scale is given by

√

mr2
c/kBT .

The monomers were connected using harmonic springs,
i. e., ~FS

i =
∑

j k(ℓ − rij)~eij , where the sum runs over all
particlesj to which particlei is connected. The equilibrium
bond length was set toℓ = 0.95. That particular value was
chosen as it is very near the first maximum of the radial dis-
tribution function (at the densityρ = 1). The spring constant
was chosen to bek = 2a. If k is much smaller, bonds are very
flexible and Eq. (5) is not satisfied. On the other hand, ifk is
much larger thana, the time step∆t must be decreased from
the value set by the choice ofa thus decreasing the computa-
tional efficiency. Another possibility would be to use FENE
springs [28] since they have finite extension.

The density was chosen to beρ = 1, which is lower than
the densities typically used in DPD simulations [25, 26]. The
reason for high densities is to give different repulsive interac-
tions for different particle types. This works only if particles
overlap each other considerably. In the present work, we don’t
need such interactions, and therefore the lower density is suffi-
cient. In fact, the density ofρ = 1 sets the monomer-monomer
coordination number near 12, which is a typical value for real
liquids.

All systems were started from random flight initial config-
urations and they were equilibrated for106 time steps. After
the equilibration, we simulated systems at least for107 time
steps to compute the desired quantities. Equations of motion
were integrated using the DPD-VV algorithm [29, 31, 32].

V. RESULTS

Figure 2 shows snapshots of the chain motion during the
simulation at different times and regimes. For clarity, the
chain is projected onto two dimensions. It is immediately

-16

-8

0

8

16

-16 -8 0 8 16

y

x

-16

-8

0

8

16

-16 -8 0 8 16

y

x
a) b)

FIG. 2: The snapshots present 10 superpositions of configurations for
a chain of lengthN = 256 taken at times 100 apart. Green: times up
to 500 (in DPD time units), red: times from 500 to 1000.a) Rouse
dynamics (a = 25, k = 50) andb) reptation (a = 100, k = 200).

clear that the motions in Figs. 2a and 2b are qualitatively
different. Figure 2a shows Rouse-like motion in which the
polymers are free to move in every direction, and Fig. 2b rep-
resents reptation confined into a tube.

A. Radial distribution function

We will now study the static properties to see the effect of
Eq. (5). As discussed, by tuning the chain stiffness it is pos-
sible to move gradually from the Rouse regime to reptation.
This should be reflected in both the radial distribution func-
tion and the bond length distribution.

The radial distribution function (RDF)g(r) describes the
qualitative structure of a fluid. It is defined asg(r) = ρ(r)/ρ
whereρ(r) is the average density from a given particle at a dis-
tancer. Figures 3a and 3b show the radial distribution func-
tion g(r) and the bond length distributionfℓ(r) for different
parameter sets for chains of lengthN = 32. The arrows in the
figures indicate the values ofrmin andℓmax in Eq. (5). As the
figures show, Eq. (5) is satisfied for larger values ofa andk.
The small non-zero values belowrmin are due to the softness
of the interparticle DPD potentials.

The above can be characterized by taking a look at the
average bond lengths are their mean square deviations. For
aij = 50 we measured〈ℓ〉 = 0.977 ± 0.092. As the strength
of interaction is increased we obtain〈ℓ〉 = 0.968 ± 0.064
for aij = 100, 〈ℓ〉 = 0.966 ± 0.051 for aij = 150, and
〈ℓ〉 = 0.965 ± 0.045 for aij = 200. The most important
issue is the decrease of the mean square deviation as that re-
stricts the amount of overlap between the monomers of differ-
ent chains. Importantly, for FENE chains this can be directly
controlled by using the above measurements and RDF as a
guideline and setting the maximum extent of the chain to an
appropriate value.

A comparison of the radial distribution functions shows
that the current approach allows for tuning between typical
DPD results [21, 26, 32] and typical molecular dynamics sim-
ulations using Lennard-Jones potentials [28]. As the bond
strength is increased (a ≥ 100, k ≥ 200), g(r) becomes qual-
itatively similar to that from a Lennard-Jones system.
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FIG. 3: a) Radial distribution function in the case ofN = 32. The
arrow shows the distancermin, and the inset the region at lengths
shorter thanrmin. Compare with LJ models (rc = 1, 2.5). b) Bond
length distribution (N = 32). The arrow shows the location ofℓmax,
and the inset the region at values larger thanℓmax.
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FIG. 4: a) The radius of gyration as a function of chain length for
different parameters.b) The end-to-end vector autocorrelation (a =

100, k = 200) for chains of different length.

B. Static scaling

Next, we studied the end-to-end distanceR and the radius
of gyrationRg. The former is defined asR = |~R| = |~r1− ~rN |
and the latter asR2

g = 1

N

∑N
i=1

(~ri − ~rcm)2, where~rcm =
1

N

∑N
i=1

~ri. In a polymer melt, they are expected to scale
as 〈R〉 ∝ N1/2 and 〈Rg〉 ∝ N1/2 in both Rouse and the
reptation regime. Previous studies using soft potentials [20]
and systems with more realistic hard potentials [28] exhibit
scaling. In Fig. 4a we plot the results for the radius of gyration
for different parameter sets. It is clear from the figure thatthe
system exhibits the proper scaling behavior independentlyof
the interaction parameters as it should.

C. Relaxation time

One of the main practical obstacles in simulations of poly-
meric solutions is the long stress relaxation time. The longest
relaxation time,τ , depends on the molecular weight and the
reptation theory predicts it to scale asτ ∝ N3. That pre-
diction assumes only one mechanism for relaxation, i. e., dif-
fusion along the countour [1]. The Rouse model predicts a
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FIG. 5: a) Scaling of the longest relaxation timeτ . There is a
crossover from Rouse scaling (τ ∝ N2) to reptation (τ ∝ N3).
b) Similarly, the proper scaling limits are reached for the diffusion
coefficientD.

distinctly different behavior withτ ∝ N2.
To estimate the scaling behavior, we measured the end-to-

end autocorrelation function. It is shown in Fig. 4b for poly-
mers of different length. Assuming exponential decay, i. e.,

〈~R(t) · ~R(0)〉 ∼ exp(−t/τ),

we can extract the longest relaxation timeτ by fitting. Fig-
ure 5a shows that both scaling regimes are captured properly.
Fig. 5a illustrates one of the main results of this paper: the
simple criterion summarized by Eq. (5) allows an easy, phys-
ical and computationally efficient tuning between the Rouse
regime and reptation.

The scaling exponents 2 and 3 for Rouse and reptation, in
respective order, are the limiting laws. The exponents have
been frequently debated in the literature. For example, for
the same values ofN as used here, Padding and Briels [23]
found two scaling regimes inτ , one with exponent2.8 and
the other one with exponent3.5. The dependenceτ ∝ N3.4 is
experimentally observed for the longest relaxation time inthe
entangled regime [33]. This discrepancy is often associated
with fluctuations of the contour length of the primitive path. In
a real situation, however, the tube has a characteristic lifetime
and the length of the primitive path fluctuates since the Rouse
modes continue in the direction along the primitive path.

Determining the value of the exponent was not the main
goal here, and thus we did not attempt to evaluate it in a high
precision—we will focus on that in a future publication. The
above simply to demonstrates that it is indeed possible to use
the soft DPD model to describe entangled polymer liquids
realistically without introducing additional length scales and
forces.

D. Diffusion

The motion of a polymer, or its segments, is described by
the diffusion coefficient. Typically, one measures the center-
of-mass diffusion coefficient for a polymer chain, i. e.,

D = lim
t→∞

1

6
〈[~rcm(t) − ~rcm(0)]

2〉.
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The scaling ofD with molecular weight has been studied
intensely over the years, see e. g. the discussion in [4].

The theory predicts two scaling limits,D ∝ N−1 for the
Rouse model andD ∝ N−2 for the pure reptation model (N
is proportional to molecular weight). Figure 5b shows that
both scaling regimes are found.

Considering the nature of the DPD model, it is remarkable
that both regimes are recovered. In simulations using the plain
DPD model without paying attention to the criterion given by
Eq. (5), only Rouse scaling has been observed [20, 21] even
in the case of long polymers.

As with the longest relaxation time, the exponents typ-
ically reported are between the scaling limits. Pearsonet
al. [34] measuredD as a function of molecular weightMw

in polyethylene and they found that the diffusion coefficient
follows a power lawD = 1.65M−1.98

w cm2/s for the entire
range fromMw = 600 to Mw = 12000 (g/mol). The simula-
tions by Kremeret al.[11, 28] and Padding and Briels [13, 23]
confirmed this finding: the center of mass diffusion coefficient
scales asD ∝ N−2 in melt.

Padding and Briels [23] compared their results to different
simulations and experiments, and found that in ethylene the
crossover between Rouse-like and reptational dynamics takes
place at molecular weight of 560 g/mol (corresponds to 40
ethylenes). Because in Fig. 5b the crossover takes place be-
tweenN = 40 andN = 60, we can picture each particle
roughly as one ethylene unit.

VI. DISCUSSION

In this article we have presented a simple criterion for topo-
logical constraints in coarse grained DPD simulations of poly-
meric liquids. No new forces or length scales were added.
We showed that this approach is able to reproduce the Rouse
model at one limit and reptational dynamics at the other. Here,

we validated and demonstrated this approach against other
models and experimental results using linear homopolymers.
This approach can also be used for systems of, e. g., block co-
polymers with different interactions and monomer sizes, and
shear simulations. In practice, one can always run a short test
simulation, and useg(r) and the bond length distribution (as
in Figs. 3a and b) to verify that the criterion set by Eq. (5) is
met.

There is one other issue that we need to address, namely
by tuning the chain stiffness one inevitably changes the en-
tanglement length in addition to intercrossability of chains.
It is known from previous simulations using Lennard-Jones
as well as some coarse-grained models that increasing chain
stiffness intensifies reptation [35–37]. To account for this in
order to use coarse-grained methods such as DPD with soft
potentials in a controlled way, one should use (at least) the
persistence length as measure that should be matched between
the coarse-grained and the atomistic models. Here, we did not
attempt to do that systematically.

Here, we made no attempt to determine the precise scaling
exponents for the diffusion coefficient or the longest relax-
ation time. Though, there are a lot of subtleties, such as the
tube dimensions, lifetime, friction and the plateau modules,
related to the scaling behavior [11]. A future publication will
focus on them and the detailed mechanisms.
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