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Understanding the complex viscoelastic properties ofpefyc liquids remains a challenge in materials sci-
ence and soft matter physics. Here, we present a simple anputationally efficient criterion for the topolog-
ical constraints in polymeric liquids using the DissipatRarticle Dynamics (DPD). The same approach is also
applicable in other soft potential models. For short ch#iesmodel correctly reproduces Rouse-like dynamics
whereas for longer chains the dynamics becomes reptatigrthk chain length is increased—something that is
not attainable using standard DPD or other coarse-graiofgatential methods. Importantly, no new length
scales or forces need to be added.

I. INTRODUCTION to describe entangled liquids. This is a direct consequence
of the fact that in DPD simulations, polymers can penetrate

The static and dynamic properties of polymeric liquids ::1re,.throm3h themselves. Whereas that is not a problem in study-

by and large, dominated by topological constraints. Thgiori "9 the equilibrium properties in the Rouse regime, reptati
01¥these c%nstraints is easyy tgungerstand: polymersrg‘ﬁ\ slj cannot be studied using the basic DPD model with soft inter-
past but not penetrate through each other. That is the pﬂysicacuons' )

origin of the reptation model [1-3] which is the most suceess ~ To preserve the advantages of coarse-grained models and to
ful theory in describing the behavior of entangled polymerscorrect for their deficiencies, Padding and Briels [13] rlye
Despite active research in the field, entangled polymegic li introduced an algorithm that explicitly detects and presen
uids keep posing many challenges to theorists [4—6], expe,bond crossings. They consider bonds as elastic bands that be
imentalists [7—9] and computational modelers [10-16]. Thecome entangled and use energy minimization to determine the
importance of understanding the fundamentals of polymeri€ntanglement positions. This approach is general and very
liquids can hardly be overemphasized as they are one of tHfomising but it is also complicated to implement and compu-
key issues in novel (bio)materials science [17, 18]. tationally intensive [13].

The dynamics of polymer melts is typically described in Another promising approach was put forward by Pan and
terms of the Rouse and reptation models [3]. Short chains afdanke [22]. They reduce the frequency of bond crossings by
able to move to any direction and are not entangled. That i§itroducing segmental repulsive forces between the points
the physical origin of the Rouse model [3, 19]. For longernearest contact between neighboring chains. This appisach
chains, entanglements and uncrossability of chains careot Simple to implement but the introduction of a new force and
ignored, and the chains become constrained to move in th2 related cutoff increases the computational load, and adds
direction of the chain backbone. This motion resembles thaiew length scale whose physical determination is somewhat
of a reptating snake—hence the name reptation model [1-3]ambiguous. On the other hand, the model seems to be able to

Computer simulations offer a detailed look into polymerscapture both the Rouse and reptational behavior [22] liké th

and their dynamics. In classical molecular dynamics simula®f Padding and Briels[13, 23]. o
tions the system size and simulation time pose limits as the% In this article, we introduce a simple and generic criterion
are typically of the order of 10 nm in linear size and aroundPased on simple geometrical arguments to solve the créssabi
10ns in time. In contrast, coarse grained methods, such d4& problem. No new forces are added, the approach is con-
dissipative particle dynamics (DPD), allow access to mivro  ceptually simple and does not depend on the level of coarse
eter and microsecond scales. That is due to the soft pdgntiagraining. Importantly, it allows easy, and if necessaryreve
and, like everything in life, they do not come without a price on-the-fly, tuning between the Rouse and reptation regimes.
to pay: the softness of the conservative potentials alllvgs t  The rest of this paper is organized as follows. In the next
chains to slide through each other thus strongly affectieg t section we will briefly describe the DPD method. Section il
dynamics of the system. Indeed, the scaling laws obtainedescribes our criterion for including topological consttain
from DPD simulations of polymer melts [20, 21] are not ableDPD, or for that matter any other soft potential, simulation



In Sec. V we show results from our simulations and compare
them to other methods. Finally, we finish with a discussion
and outlook in Sec. VI 'TIT
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I1. DISSIPATIVE PARTICLE DYNAMICS

In DPD, the time evolution of particles is given by the New-
ton’s equations of motion, and the total force acting oniplart
i IS given as a sum of pairwise conservative, dissipative, and
random forces, respectively, &= 3. .(FC + EP + FE). . o
" e F#j N if i A : fheass-
The conservative force is independent of the dissipatide an.FlG' 1: Two bonds crossing each other. If Bq. (5) is satistedss
. . Ings cannot occur.
random forces. Typically it takes the form

FS - { 8?'7(1 rig /7%, gtﬁgrf\,igé (1) tion, there are currently two off-lattice methods [13, 2@j f
this purpose. Here, we introduce a third alternative.
with 7 = 7 =7, rij = |75, andéy; = 75 /ri;. The variable First, each individual bead has a radit,, which is im-
a;; describes the repulsion between parti¢laad;, and thus  penetrable to other beads. In systems with Lennard-Jones
produces excluded volume interactions. potentials that condition is automatically satisfied du¢h®
The dissipative force is expressed as r~12 part that takes care of the Fermi exclusion principle.
=D D oL In mesoscopic simulations with soft potentials that caistr
Fij = —w(rig) (i - €5) €5, @ needs special attention. Second, the intramolecular bonds

where~ is a friction parametery(r;;) a weight function ~Nave some maximum stretchy,.x. By using simple geom-
for the dissipative force, and; = @ — #,. The dissipative €y, We can postulate thatif the condition

force slows down the particles by decreasing kinetic energy

from them. This effect is balanced by the random force due to V2min > lmax ()

thermal fluctuations, is satisfied, any two bonds cannot cross each other, see.Fig. 1

ﬁif; = ow™(ri;)¢ij €, (3)  The length scales involved, i. e, and/y,.x have a clear
physical meaning.
whereo is the amplitude of thermal noise;"(r;;) is the The obvious question is whether that condition is actually
weight function for the random force, arg;(t) are Gaus- yseful and when does it work. As an example, let us con-
sian random variables witft;; (t)) = 0 and((;; (¢)Cu(t')) = sider DPD simulations of polymers. The parameters used in

(Gikdji + 0ud;x)0(t —t'). The conditiong;;(t) = (ji(t) isre-  these simulations are often justified on the basis of theyFlor
quired for momentum conservation. That is a necessary corquggins theory [25, 26], where the key componentis the solu-
dition for the conservation of hydrodynamics. bility as expressed by the-parameters. Then, in simulations
The weight functions,” (r;;) andw®(r;;) cannot be cho-  of block co-polymers, e.g., it is the mutual repulsion betwe
sen arbitrarily. Espafiol and Warren [24] showed that thehe different components that matters—as a matter of fact,
fluctuation-dissipation relations” (r;;) = [w™(r;)]?and  the values of the interaction parameters may be derived
0® = 2vkpT must be satisfied for the system to have ain different ways and their values tell only about the degree
canonical equilibrium distribution. HefE is the temperature of coarse-graining. The condition set by Eq. (5) can thus be
of the system andp is the Boltzmann constant. The func- met by a proper degree of coarse graining’ Comp]emented by
tional form of the weight functions is not defined by the DPD a reasonable description for bond stretching (springsieéd,

method but virtually all DPD studies use abovel,,.« is limited by the type of springs used in the model.
(1= rij /re)2, i re; <7 With FENE springs [27] that is easy to tune as they have only
WP (rij) = Wiy = { 0 whnes o othgrwisé (4) finite extension after which the force becomes infinite. With

harmonic springs more care is needed to satisfy Eq. (5) as
Coarse graining in DPD comes in through the soft conserthere is no FENE-like cutoff set by the equation of motion.
vative potential and forces (Eq. (1)). A detailed account of\We will return to that in the Sec. V.
DPD, derivation of time and length scales, and its appleceti
is given by R.D. Groot [25]. An in depth discussion of coarse
graining by P. Espafiol can be found in the same reference. V. SIMULATIONS

For simplicity, and to be able to compare the model with
II1. TOPOLOGICAL CONSTRAINTS other simulations, we considered a melt of linear polymers
in a cubic box (3D) with periodic boundary conditions. To
To take into account the topological constraints, chainavoid finite size effects, the linear box sizavas chosen to be
crossings must be prevented. As discussed in the introduet least 1.75 times the average end-to-end distance ofshain
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a (amplitude of the conservative forg&0 |100|150 |200
k (spring constant) 100|200|300 |400 8
At (time step) 0.030.02/0.0150.0125

TABLE I: The parameters used in this study.

We also carried out simulations with different box sizes to 4 : :
ensure that the systems were free of finite size effects. That 16 -8 0 g8 It 6 8 0 8 1€
was done since it is known that static properties are affiecte
a) b)
by them [28] .
All the systems had 128 chains consisting\dfnonomers,  FIG. 2: The snapshots present 10 superpositions of confignsgor
and no additional solvent or free monomers were present. Al chain of lengthV = 256 taken at times 100 apart. Green: times up
monomers were chosen to be identical, and thus the monom#&r 500 (in DPD time units), red: times from 500 to 10Gf).Rouse
mass was set equal to unity, = 1, fixing the scale of mass. dynamics ¢ = 25, k = 50) andb) reptation ¢ = 100, & = 200).
The cutoff distance,. sets the length scale for the model. The
conservative forces had the form given in Eq. (1), with= 1
anda;; = a for all particle pairs. The values af, as well clear that the motions in Figs. 2a and 2b are qualitatively
as other simulation parameters used in these simulati@ns a¢lifferent. Figure 2a shows Rouse-like motion in which the
listed in Table IV. polymers are free to move in every direction, and Fig. 2b rep-
For the random and dissipative forces we used Egs. (2) an@Sents reptation confined into a tube.
(3) with the common choices [25, 26, 29, 30]= 4.5 and
o = 3. This sets the temperaturetgT = 1, and hence the S )
time scale is given bX/W- A. Radial distribution function

The monomers were connected using harmonic springs, ) _ )
i.e., S = Y. k(¢ — ri;)é;;, where the sum runs over all We will now study the static properties to see the gffect of
particles;j to which particlei is connected. The equilibrium Ed: (5). As discussed, by tuning the chain stiffness it is-pos

bond length was set t6 = 0.95. That particular value was sible to move gradually from the Rouse regime to reptation.

chosen as it is very near the first maximum of the radial disThis should be reflected in both the radial distribution func

tribution function (at the density = 1). The spring constant tion and the bond length distribution. _
was chosen to be = 2a. If k is much smaller, bonds are very The radial distribution function (RDF)(r) describes the

flexible and Eq. (5) is not satisfied. On the other hand,ig ~ dualitative structure of a fluid. Itis defined &) = p(r)/p
much larger tham, the time stepA¢ must be decreased from wherep(r) is the average density from a given particle at a dis-
the value set by the choice ofthus decreasing the computa- t&ncer. Figures 3a and 3b show the radial distribution func-

tional efficiency. Another possibility would be to use FENE 10N ¢(r) and the bond length distributiof(r) for different
springs [28] since they have finite extension. parameter sets for chains of length= 32. The arrows in the

The density was chosen to be= 1, which is lower than ﬁgures indicate the va_lues ie‘f“.i“ andmax in EQ. (5). As the
the densities typically used in DPD simulations [25, 26]eTh fll%ures s“ow, Eq. (5) ISI sat|ts)f|led for Iargder valui&dn;jk.
reason for high densities is to give different repulsiveiat- ¢ ?]Sma non-_zlero vajues be 9‘?{““ are due to the softness
tions for different particle types. This works only if patgs 0 the mtsrpartlc € %PD rp])otentla_s. d by taki look h
overlap each other considerably. In the present work, wé& don The above can be ¢ aracterized by taking a look at the
need such interactions, and therefore the lower densitffis s 2verage bond lengths are their mean square deviations. For
cient. Infact, the density gf = 1 sets the monomer-monomer a?’_: 50 we m_ea_sure«j@ 3 0'977bi 0.092. As the strength
coordination number near 12, which is a typical value fof rea0' INteraction is increased we o tajf) = 0.968 + 0.064
liquids. for a;; = 100, (¢) = 0.966 + 0.051 for a;; = 150, and

All systems were started from random flight initial config- {£) = 0.965 + 0.045 for a;; = 200. The most important

urations and they were equilibrated foi® time steps. After issue is the decrease of the mean square deviation as that re-
the equilibration, we simulated systems at Ieastl[afnr time stricts the amount of overlap between the monomers of differ

steps to compute the desired quantities. Equations of motio® "'t chains. Importantly, for FENE chains this can be disect

; - R - controlled by using the above measurements and RDF as a
were integrated using the DPD-VV algorithm [29, 31, 32]. guideline and setting the maximum extent of the chain to an

appropriate value.
A comparison of the radial distribution functions shows
V. RESULTS that the current approach allows for tuning between typical
DPD results [21, 26, 32] and typical molecular dynamics sim-
Figure 2 shows snapshots of the chain motion during thellations using Lennard-Jones potentials [28]. As the bond
simulation at different times and regimes. For clarity, thestrength is increased (> 100, & > 200), g(r) becomes qual-
chain is projected onto two dimensions. It is immediatelyitatively similar to that from a Lennard-Jones system.
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) ) FIG. 5. a) Scaling of the longest relaxation time There is a
FIG. 3: a) Radial distribution function in the case &f = 32. The  Ccrossover from Rouse scaling (x N*) to reptation ¢ oc N?).
arrow shows the distancg.i, and the inset the region at lengths b) Similarly, the proper scaling limits are reached for thedion
shorter thanmi,. Compare with LI models-{ = 1,2.5). b) Bond  coefficientD.
length distribution v = 32). The arrow shows the location 6f, .,

and the inset the region at values larger thag.. o . . . 9
distinctly different behavior withr o« N=.

125 To estimate the scaling behavior, we measured the end-to-
end autocorrelation function. It is shown in Fig. 4b for poly
mers of different length. Assuming exponential decay, i. e.

(R(t) - R(0)) ~ exp(~t/7),
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we can extract the longest relaxation timdoy fitting. Fig-

ure 5a shows that both scaling regimes are captured properly
Fig. 5a illustrates one of the main results of this paper: the
simple criterion summarized by Eq. (5) allows an easy, phys-
ical and computationally efficient tuning between the Rouse

b) regime and reptation.

The scaling exponents 2 and 3 for Rouse and reptation, in
respective order, are the limiting laws. The exponents have
been frequently debated in the literature. For example, for
the same values oWV as used here, Padding and Briels[23]
found two scaling regimes im, one with exponen?.8 and
the other one with exponeBit5. The dependencec N34 is
experimentally observed for the longest relaxation timg
entangled regime [33]. This discrepancy is often assatiate

. : - = N with fluctuations of the contour length of the primitive palth
of gyrationf,. The formler Is defined a — 1Bl =1 =& 3 eal situation, however, the tube has a characterisgiirtie
and the latter af] = £ 37,7, (7 — 7om)?, Wherefom = and the length of the primitive path fluctuates since the Rous
% vazl 7. In a polymer melt, they are expected to scalemodes continue in the direction along the primitive path.
as(R) o« N'/? and (Ry) o N1/2 in both Rouse and the Determining the value of the exponent was not the main
reptation regime. Previous studies using soft potent20$ [ goal here, and thus we did not attempt to evaluate it in a high
and systems with more realistic hard potentials [28] exthibi precision—we will focus on that in a future publication. The
scaling. In Fig. 4a we plot the results for the radius of gprat ~ above simply to demonstrates that it is indeed possibledo us
for different parameter sets. It is clear from the figure that  the soft DPD model to describe entangled polymer liquids
system exhibits the proper scaling behavior independently realistically without introducing additional length sealand
the interaction parameters as it should. forces.

FIG. 4: a) The radius of gyration as a function of chain length for
different parameters) The end-to-end vector autocorrelatien=£
100, k = 200) for chains of different length.

B. Staticscaling

Next, we studied the end-to-end distari¢@nd the radius

C. Relaxation time D. Diffusion

One of the main practical obstacles in simulations of poly- The motion of a polymer, or its segments, is described by
meric solutions is the long stress relaxation time. Thedsng the diffusion coefficient. Typically, one measures the eent
relaxation time;, depends on the molecular weight and the©f-mass diffusion coefficient for a polymer chain, i. e.,
reptation theory predicts it to scale asx N?3. That pre-
diction assumes only one mechanism for relaxation, i. &., di o1 . )
fusion along the countour [1]. The Rouse model predicts a D = lim = {[Fem(t) = Tem (0)]7)-

t—o0
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The scaling ofD with molecular weight has been studied we validated and demonstrated this approach against other
intensely over the years, see e. g. the discussion in [4]. models and experimental results using linear homopolymers
The theory predicts two scaling limit€) oc N~! for the  This approach can also be used for systems of, e. g., block co-
Rouse model and « N2 for the pure reptation modeN  polymers with different interactions and monomer sizes, an
is proportional to molecular weight). Figure 5b shows thatshear simulations. In practice, one can always run a shsirt te
both scaling regimes are found. simulation, and use(r) and the bond length distribution (as
Considering the nature of the DPD model, it is remarkabldn Figs. 3a and b) to verify that the criterion set by Eq. (5) is
that both regimes are recovered. In simulations using tie pl met.
DPD model without paying attention to the criterion given by  There is one other issue that we need to address, namely
Eq. (5), only Rouse scaling has been observed [20, 21] eveny tuning the chain stiffness one inevitably changes the en-
in the case of long polymers. tanglement length in addition to intercrossability of cigai
As with the longest relaxation time, the exponents typ-It is known from previous simulations using Lennard-Jones
ically reported are between the scaling limits. Pearsbn as well as some coarse-grained models that increasing chain
al. [34] measuredD as a function of molecular weighit/,, stiffness intensifies reptation [35-37]. To account fos tini
in polyethylene and they found that the diffusion coeffitien order to use coarse-grained methods such as DPD with soft
follows a power lawD = 1.65M,,1-%8cm? /s for the entire  potentials in a controlled way, one should use (at least) the
range fromM,, = 600 to M,, = 12000 (g/mol). The simula-  persistence length as measure that should be matched betwee
tions by Kremeet al.[11, 28] and Padding and Briels[13, 23] the coarse-grained and the atomistic models. Here, we did no
confirmed this finding: the center of mass diffusion coeffitie attempt to do that systematically.
scales a® o« N2 in melt. Here, we made no attempt to determine the precise scaling
Padding and Briels [23] compared their results to differentexponents for the diffusion coefficient or the longest relax
simulations and experiments, and found that in ethylene thation time. Though, there are a lot of subtleties, such as the
crossover between Rouse-like and reptational dynamiestak tube dimensions, lifetime, friction and the plateau module
place at molecular weight of 560 g/mol (corresponds to 4Qelated to the scaling behavior [11]. A future publicatiofi w
ethylenes). Because in Fig. 5b the crossover takes place bfscus on them and the detailed mechanisms.
tweenN = 40 and N = 60, we can picture each particle

roughly as one ethylene unit.
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