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ABSTRACT

Motivation: Error correction is critical to the success of next-
generation sequencing applications, such as resequencing and
de novo genome sequencing. It is especially important for high-
throughput short-read sequencing, where reads are much shorter
and more abundant, and errors more frequent than in traditional
Sanger sequencing. Processing massive numbers of short reads
with existing error correction methods is both compute and memory
intensive, yet the results are far from satisfactory when applied to
real datasets.
Results: We present a novel approach, termed Reptile, for error
correction in short-read data from next-generation sequencing.
Reptile works with the spectrum of k-mers from the input reads, and
corrects errors by simultaneously examining: (i) Hamming distance-
based correction possibilities for potentially erroneous k-mers; and
(ii) neighboring k-mers from the same read for correct contextual
information. By not needing to store input data, Reptile has the
favorable property that it can handle data that does not fit in
main memory. In addition to sequence data, Reptile can make use
of available quality score information. Our experiments show that
Reptile outperforms previous methods in the percentage of errors
removed from the data and the accuracy in true base assignment.
In addition, a significant reduction in run time and memory usage
have been achieved compared with previous methods, making it
more practical for short-read error correction when sampling larger
genomes.
Availability: Reptile is implemented in C++ and is available through
the link: http://aluru-sun.ece.iastate.edu/doku.php?id=software
Contact: aluru@iastate.edu
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1 INTRODUCTION
High-throughput sequencing is profoundly changing the way
genetics data are collected, stored and processed (Shendure and
Ji, 2008). The advantages of the new technology have led to
revitalization of old techniques and discovery of novel uses, with
growing applications in resequencing, de novo genome assembly,
metagenomics and beyond (Ansorge, 2009; Marguerat et al., 2008).
New technology inevitably comes with challenges. For many
next-generation sequencers, the advantage of deeper and cheaper
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coverage comes at the cost of shorter reads with higher error rates
compared with the Sanger sequencing they replace.

Genome assembly, the de novo inference of a genome without
the aid of a reference genome, is challenging. Sanger reads,
typically 700–1000 bp in length, are long enough for overlaps
to be reliable indicators of genomic co-location, which are used
in the overlap-layout-consensus approach for genome assembly.
However, this approach does poorly with the much shorter reads
of many next-generation sequencing platforms (e.g. 35–100 bp
for Illumina Genome Analyzer II). In this context, de Bruijn
graph (Idury and Waterman, 1995) and string graph (Myers, 2005)
based formulations that reconstruct the genome as a path in a
graph perform better due to their more global analysis and ability
to naturally accommodate paired read information. As a result,
they have become de facto models for building short-read genome
assemblers, e.g. ALLPATHS (Butler et al., 2008), Velvet (Zerbino
and Birney, 2008), ABySS (Simpson et al., 2009) and Yaga (Jackson
et al., 2010). Error correction has long been recognized as a critical
and difficult part of these graph-based assemblers. It also has
significant impact in other next-generation sequencing applications
such as resequencing.

We give a brief review of several well-known error correction
methods. Alignment-based error correction methods, such as MisEd
(Tammi et al., 2003) for Sanger reads, require refined multiple read
alignments and assume unusually isolated bases to be read errors.
Like the Sanger-motivated assembly algorithms, these approaches
do not adapt well to short reads. Hence, Chaisson et al. (2004)
proposed the spectral alignment problem (SAP): in a given dataset,
a kmer is considered solid if its multiplicity exceeds a threshold,
and insolid otherwise. Reads containing insolid kmers are corrected
using a minimum number of edit operations so that they contain only
solid kmers post-correction. Similar approaches have been adapted
and used by others (Butler et al., 2008). To overcome the typically
long run times of SAP-based approaches, Schröder et al. (2009)
proposed SHREC, a method based on a generalized suffix tree
constructed from short-read data using both forward and reverse
complementary strands. SHREC compares the multiplicity of a
substring, represented by a node in the suffix tree, with its expected
frequency of occurrence calculated analytically, assuming uniform
sampling of the genome and uniformly distributed sequencing
errors. The nodes with observed counts that deviate beyond a
tolerable threshold from their expected values are considered
erroneous. An erroneous node is corrected to a sibling when
applicable, and all its descendants are transferred to the selected
sibling. Well-engineered code is necessary to cope with the large
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memory requirement of the suffix tree data structure. Unlike these
general purpose error correction methods, FreClu (Qu et al., 2009)
targets transcriptome data. The error rates for each position of a read
are estimated in the same experiment via a set of control reads of a
known bacterial artificial chromosome (BAC) sequence. Reads are
clustered using the estimated error rates, and after error correction,
FreClu could map ∼5% more reads back to the reference genome.

Error correction of short-read data is particularly challenging
because of the massive datasets, non-uniformly distributed read
errors introduced at relatively high rates, and non-uniform coverage
of the target genome. Next-generation short-read sequencers
produce hundreds of millions of reads in a single run, and this
trend of fast, massive data generation is continuing to accelerate.
To process these data, even an efficient linear space algorithm could
easily exceed available memory on a standard desktop computer. The
high rate of sequencing errors also significantly increases memory
usage due to the introduction of numerous erroneous kmers that
are not present in the genome. Errors are typically identified as the
unusual reads or kmers occurring less frequently than a threshold
calculated under the assumptions of uniform coverage and error
distribution. Neither assumption holds true in real data, leading to
an excess of false error predictions.

In this article, we present Reptile, a scalable short-read error
correction method that effectively addresses the above challenges.
We draw upon the k-spectrum approach pioneered in earlier
results, but explore multiple alternative kmer decompositions of
an erroneous read and use contextual information specified by
neighboring kmers to infer appropriate corrections. Reptile also
incorporates quality score information when available. We present
algorithmic strategies to store kmer Hamming distance graphs and
efficiently retrieve all graph neighbors of a kmer as candidates
for correction. We compare our results with SHREC (Schröder
et al., 2009), a high-quality short-read error correction method,
and one of the more recent in a line of continuously improving
error correction protocols. In all experiments with Illumina
datasets, Reptile outperforms SHREC in percentage of errors
corrected and accuracy of true base assignment. Futhermore,
a significant reduction in memory usage and run time makes
Reptile more applicable to larger datasets. As with most current
approaches including SHREC, Reptile is targeted to short reads
with substitution errors, assuming insertion and deletion errors are
rarely produced by short-read sequencing technology (Dohm et al.,
2008).

2 NOTATIONS
Let R={r1,r2,...,rn} be a collection of short reads sequenced from
genome G. For simplicity (but without loss of generality), we assume
each read ri has a fixed length L. The coverage of the genome by the
reads is given by Cov= nL

|G| , where |G| denotes the genome length.

Define the k-spectrum of a read r to be the set rk={r[i : i+k−1] |0≤
i<L−k+1}, where r[i : j] denotes the substring from position i to
j in r. We index the positions of a string starting from 0. The k-
spectrum of R is given by Rk=⋃n

i=1rk
i .

Let α and β be two strings such that α[(|α|− l) : (|α|−1)]=β[0 :
(l−1)] for some 0≤ l<min(|α|,|β|). We define the l-concatenation
of α and β, denoted α||l β, to be the string γ of length |α|+|β|−l
such that γ[0 : (|α|−1)]=α and γ[(|γ|−|β|) : (|γ|−1)]=β.

The Hamming distance between two strings α1 and α2 for
|α1|=|α2|, denoted hd(α1,α2), is the number of positions at
which they differ. For a kmer αi∈Rk , define its d-neighborhood
Nd

i ={αj ∈Rk |hd(αi,αj)≤d}. Its complete d-neighborhood Nd
ci={αj |hd(αi,αj)≤d} contains all kmers within Hamming distance d,

whether or not they occur in Rk .

3 METHODS
The success of any error correction method relies on an adequate coverage
of the target genome. If we know the genomic location of every read, we
could layout all reads that contain a specific genomic position into a multiple
alignment (Fig. 1) and correct all erroneous bases to the consensus base under
the reasonable assumption that errors are infrequent and independent. For
instance, base T in r3 would be considered a sequencing error to be corrected
to the consensus base A.

The main idea underlying Reptile is to create approximate multiple
alignments, with the possibility of substitutions, in the absence of location
information. Multiple alignments with substitutions could be created by
considering all reads with pairwise Hamming distance less than some
threshold, but such alignments are already hard (Manthey and Reischuk,
2005) and even in high coverage situations, the occurrence of many exactly
coincident reads, e.g. r0 and r1 in Figure 1, are rare. We therefore resort to
alignments on subreads, the substrings of a read.

Storing R, let alone all its subreads, could be memory intensive, not
to mention the memory required to store information required for error
correction. Inspired by the idea for bounding memory usage with de
Bruijn graphs in short-read assembly, we work with kmer subreads of
input data, where the memory of storing the k-spectrum Rk is bounded by
O(min(4k,n(L−k+1))). Typically, k is chosen so that the expected number
of occurrences of any kmer in the genome should be no more than one,
i.e. 4k > |G|. Therefore, choosing 10≤k≤16 is sufficient for microbial or
human genomes, in which case the k-spectrum would fit within 4 GB RAM
regardless of input size.

Focusing on reasonably short kmers has several advantages. First, we
expect an adequate number of kmers to align to the same position along the
genome even with relatively low coverage (e.g. 40×). High local coverage
is needed to identify erroneous bases. For instance, in Figure 1, there exist
five subreads, four copies of α2 and one copy of α′2, aligning to the same
starting position in the genome, but this number reduces to three for the
longer subread α2||0α3. Second, it is less compute intensive to identify Nd

i
when k is small, since there are fewer ways to select d out of k positions. Last,
sequencing errors in kmers are much less frequent compared with full-length
reads, so d need not be large.

Fig. 1. G is the target genome, shown as a bold line; ri’s (0≤ i≤8) represent
reads, shown as thin lines; αj (0≤ j≤8), α′2 and α′′2 are kmer instances in
the reads, shown as rectangles. Every read is drawn aligned to its origin of
sequencing position on the target genome. The bases at two positions in the
kmers α2, α′2 and α′′2 are shown. All other positions in these kmers match
across all three variants.
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Nevertheless, relying solely on short kmers can easily lead to ambiguities
when resolving erroneous bases. For instance, in Figure 1, without knowing
the alignment, it is unclear if α′2 should be corrected to α2 or α′′2, since both
hd(α′2,α2)=hd(α′2,α′′2)=1 and α2 and α′′2 have a similar higher frequency.
However, the contexual information of α′2 available from read r3 (in this
case, α1) uniquely identifies α2 as the right correction. We seek a way to
use contextual information to help resolve errors without increasing k and
lowering local coverage.

Contextual information is provided by noting which kmers co-exist in
observed reads. For instance, α1 ||0 α2 exists in r0, r1 or r4, and α5 ||.5k α6

exists in r5 in Figure 1. The following definitions formalize the notion of
contextual information.

Definition 1. t=α1 ||l α2 (0≤ l<k) is a tile of read r if t is a substring of
r, and |α1|=|α2|=k.

Definition 2. t′ =α′ ||l β′ is a d-mutant tile of t=α||l β if hd(α,α′)≤d and
hd(β,β′)≤d.

Definition 3. Tr= (t1,t2,...,tm) is a tiling of read r if r= t1 ||l1 t2 ...||lm−1 tm
such that (1) ti (1≤ i≤m) is a tile of r, and (2) li≥1 (1≤ i<m).

Note that if ti is specified as r[j : j′], then the overlaps between
consecutive tiles can be inferred; i.e. li’s can be derived from ti’s. Multiple
tilings exist for any read. For example, both ((α7 ||.5k α4),(α5 ||.5k α6))
and ((α7 ||0 α8),(α8 ||0 α6)) are tilings of r5. We also extend the
concept of d-mutant tiles to tilings. For instance, we can think of
((α1 ||0 α′2),(α′2 ||0 α3)) as a one-mutant tiling of Tr0 = ((α1 ||0 α2),(α2 ||0 α3)).
Similarly, ((α1 ||0 α′′2)(α′′2 ||0 α3)) is a two-mutant tiling of Tr0 . Formally:

Definition 4. A d-mutant tiling of Tr= (t1,t2,...tm) of read r is a sequence
of tiles (t′1,t′2,...t′m) such that (1) |ti|=|t′i | and |ti ||li ti+1|=|t′i ||li t′i+1|, where
li is implicitly determined by r for 1≤ i<m, and (2) t′i is a d-mutant tile of
ti for 1≤ i≤m.

If read r contains errors and Tr is a tiling of r, then we expect to find
a tiling Ts of the true read s as one of the d-mutant tilings of Tr , where
constituent tiles of Ts have higher coverage than those of Tr . However, in
some cases, Ts will not be found among the d-mutant tilings.

3.1 The algorithm
For ease of presentation, we assume R can fit in main memory (this
requirement will be relaxed later). The algorithm consists of two major
phases. We first provide a brief overview, and subsequently describe the
algorithm in more detail and analyze its time and space complexity.

(1) Information extraction.

(a) Derive the k-spectrum Rk of R.

(b) Derive Hamming graph GH= (VH ,EH ), where vi∈VH

represents αi∈Rk and ∃ eij= (vi,vj)∈EH ⇐⇒ hd(vi,vj)≤d, for
a given threshold d.

(c) Compute tile occurrences.

(2) Individual read error correction.

(a) Place an initial tile t at the beginning of the read.

(b) Identify d-mutant tiles of t.

(c) Correct errors in t as applicable.

(d) Adjust tile t placement and go to step 2b, until tile placement
choices are exhausted.

Given a read r∈R, any of its constituent kmers α is a vertex v in the
Hamming graph. The d-neighborhood of α is accessible via the edges
incident to v. Hence, if α contains at most d substitution sequencing errors,
the kmer it should be corrected to exists in its d-neighborhood. By building
local, approximate alignments of tilings constructed from d-neighborhoods,
our strategy identifies a tiling of the true read as a high frequency tiling.

3.1.1 Phase 1: information extraction Constructing Rk involves one
linear scan of each read in R. This takes O(nL) time. We maintain Rk in
sorted order using O(|Rk |log|Rk |) time. The space requirement for Rk is
given by |Rk |=O(min(4k,n(L−k+1)). Any non-ACGT characters (due to
difficulty in base calling) are initially converted to A, which will be validated
or corrected later by the algorithm.

During error correction, it is important to have fast access to the d-
neighborhood of any kmer, ideally in constant time per neighboring kmer.
One could do so by storing the entire Hamming graph GH , but it would
require large amount of memory. If we assume G as a random string, and
errors accumulate independently with probability pe, then the probability that
a node is linked to another is pk=∑d

e=1

(k
e

)[0.25k−e0.75e+(1−pe)k−epe
e],

including the chance that another random kmer in the genome is within d
Hamming distance of the current kmer and the chance that the current kmer

contains up to d errors. Thus, the expected memory usage is O
((|Rk |

2

)
pk

)
.

Alternatively, we could recover all edges associated with a given kmer
αi by checking whether each kmer in its complete neighborhood, αj ∈Nd

ci,
exists in Rk . If αj ∈Rk , then there is an edge between vi and vj in the
Hamming graph. This takes O(log|Rk |) time using binary search. There
are

(k
d

)
4d possible candidate mutant kmers for each αi∈Rk , so it takes

O
((k

d

)
4d |Rk |log|Rk |

)
time to identify all edges.

To reduce the average time for inferring Nd
i of αi, we replicate Rk in

memory and sort each replicate on a different subset of positions in the kmer
string, using the following strategy:

(a) Store indices 0 to k−1 in a vector A.

(b) Divide A evenly into c (d <c≤k) chunks, each of size 
k/c� or �k/c.
(c) For every choice of

(c
d

)
chunks, sort Rk by masking the indices from

selected chunks and store the sorted results separately.

To identify Nd
i of αi, we query αi against each sorted k-spectrum Rk

j (0≤
j<

(c
d

)
) by binary search considering only indices used for sorting Rk

j . All
kmers that belong to the d-neighborhood of αi are adjacent to αi in at least
one Rk

j . If sequencing errors accumulate independently, then the expected

number of elements of Nd
i found in every Rk

j is h=|Rk |/4k−d�k/c. Hence,

we need approximately
(c

d

)
h|Rk |log|Rk | expected time to recover all edges

of the Hamming graph, i.e. O(|Rk |log|Rk |) time assuming both
(c

d

)
and h

are constants. Typically, |Rk |<<4k , therefore, choosing a larger c value
will use more memory, but less expected run time. As an example, in a
real Escherichia coli dataset with 160× coverage, storing 13 copies of Rk

required only ∼560 MB memory, but the average number of hits per 13mer
in each 13-spectrum was less than one. Therefore, identifying each element
of N1 for a 13mer took constant time on average.

The above method provides an exact solution for identifying all edges in
the Hamming graph.Alternatively, a simpler recursive approximation derives
Nd by inferring N1 for every element in Nd−1. This stategy might be more
biologically meaningful (Qu et al., 2009), but is only an approximation since
an edge between two vertices vi and vj could be recovered only if there exists a
path connecting them such that adjacent vertices represent kmers that differ
by exactly one position. In this case, choosing a smaller k, using a larger
dataset, or having a higher sequencing error rate all improve the chance to
identify all edges.

Tiles are l-concatenations of consecutive or overlapping kmers found in
reads. Here, we use one fixed value of l but several different values of l can
be used to consider tiles with different lengths. We compute the multiplicities
of tiles by a linear scan of every read to record all tiles, followed by a sort
of the collected tiles and one linear scan of the sorted list. This process takes
O(|R2k−l|log|R2k−l|) time, where |R2k−l|=O(min(42k−l,n(L−2k+l+1))).
Meanwhile, we record the number of occurrences of each tile, where every
position has a quality score exceeding some threshold Qc. Typically, a quality
score is associated with every base of a short read. The score indicates
the probability pe that the corresponding base is sequenced incorrectly.
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For instance, Illumina GenomeAnalyzer encodes the quality score as Q=
−10log10(pe/1−pe). A higher score indicates a more reliable base call.

To deal with the double strandedness of the target genome, we consider
both the forward and reverse complementary strands of every read. Edge
identification in the Hamming graph takes twice the time, but no additional
memory is needed since Rk is already generated using both strands.

3.1.2 Phase 2: error correction We use the contextual information in read
r to identify sequencing errors through the process of choosing a tiling Tr and
comparing it with its d-mutant tilings. In particular, if r contains x errors, and
we choose any tiling Tr , then an error-free tiling Ts belongs to the collection
of d-mutant tilings of Tr if d≥x. Under the standard assumption of uniform
coverage, the tiles of Ts should be substantially more abundant than at least
some of the tiles of Tr with errors. After Ts is identified, the true read s can
be readily inferred from Ts.

In practice, x could be large, and sequencing errors tend to cluster toward
the 3′ end of a read. Since we prefer d to be small to limit memory usage,
run time and false error detection, it is entirely possible that Ts is not one
of the d-mutant tilings of Tr . On the other hand, an alternate tiling �r of r
may lower the maximum number of mutations per kmer to below d such that
�s with high frequency tilings is one of the d-mutant tilings of �r . In the
case that there is no such tiling �r , we examine a subset of constituent tiles
in �r . If a high coverage path of these selected tiles is present, the tiles are
corrected. With some errors removed, a tiling may now exist that contains
the true read among its d-mutant tilings.

These observations are sufficient to motivate the following procedure for
identifying and correcting read errors. Place a tile t on r and attempt to correct
t via comparisons with its d-mutant tiles (tile correction). If t is validated or
corrected, move to the next tile in the standard tiling and repeat. If t cannot
be corrected or validated, look for an alternative tiling, presumably one that
avoids clusters of more than d errors that are thwarting attempts to find
error-free tiles within the d neighborhoods. We first describe tile correction
in Algorithm 1, then the overall procedure for read correction in Algorithm 2.

Tile correction. For each tile in R, we have recorded its multiplicity Oc

in R and the number Og of those instances where the quality score of every
base exceeds Qc. If a short read dataset comes with unreliable or missing
quality score information, we set Og=Oc. Otherwise, Og is a better estimate
of the number of error-free occurrences of each tile.

The tile correction procedure is given in Algorithm 1. A decision to correct
tile t is based on a comparison of the high-quality occurrence counts Og

of t compared with its d-mutant tiles. As a rule of thumb, there must be
compelling evidence before a correction is made. Any tile is automatically
validated if its occurrence count exceeds an upper threshold Cg (lines 1–2). A
low occurrence tile with no d-mutant tiles is validated only if it occurs more
than a low threshold Cm times (lines 4–6). When there exist d-mutant tiles of
t with much higher frequencies (at least Cr times, Cr >1) than t and which
differ at low-quality bases (<Qm) in t, it is likely that t contains error(s) and
the true tile is one of its d-mutant tiles. In such cases, a correction is possible
only if there is a unique d-mutant tile with the closest Hamming distance,
including a mutation at a low-quality base in t (line 14). We will replace t
with this tile. Otherwise, we choose not to modify t to avoid false corrections.
Similar reasoning applies to t with very low multiplicity (lines 17 and 18).
Since there exist a constant number of d-mutant tiles of t, and correcting t
requires comparison of every base between t and t′ ∈T , Algorithm 1 takes
constant time.

Read correction. The overall procedure for correcting a read is given
in Algorithm 2. In line 1, an initial tile is chosen and d1 and d2, two
parameters specifying the maximum Hamming distance allowed in the two
constituent kmers while identifying mutant tiles, are initialized to d. The
algorithm terminates when no more plausible tiles can be identified. Within
the while loop, d-mutant tiles are identified for the current tile (line 3), which
is validated or corrected using Algorithm 1 (line 4). The new placement
of tile tnext is chosen according to which of the three decisions is made by
Algorithm 1 (line 4). Repeated placement of tnext according to decisions, [D1]

Algorithm 1 Tile t error correction.
1. if Og(t)≥Cg then
2. t is valid; return.
3. end if
4. if t has no d-mutant tiles t′ then
5. if Og(t)≥Cm then
6. t is valid; return.
7. end if
8. return due to insufficient evidence.
9. end if

10. if Og(t)≥Cm then

11. Select d-mutant tiles T={t′ | Og(t′)
Og(t) ≥Cr}.

12. If T=∅, t is valid; return.
13. For every t′ ∈T , record those positions differed from t and

corresponding quality scores.
14. Correct t to t′ and return if 1) hd(t,t′)≤hd(t,t′′) for all t′′ ∈T .

2) at least one of the corrected bases has quality score less
than Qm in t.

15. If t′ is not unique, return due to insufficient evidence
(ambiguities).

16. else
17. if t has only one d-mutant tile t′ s.t. Og(t′)≥Cm then
18. Correct t to t′; return.
19. else
20. return due to insufficient evidence.
21. end if
22. end if

through [D3] (lines 6–8), gradually forms a validated or corrected tiling of
read r, although some reads may never be fully validated.

To better understand how the rules in lines 6–8 choose a tiling, we
illustrate with an example in Figure 2 for d=1. An initial tile t0 is chosen
as shown. Since there exists one error in each of the constituent kmers, t0
can be corrected. Tile t1 is chosen as the next tile according to [D2], but
two sequencing errors within the second kmer of t1 lead to an inconclusive
decision. Hence, t1 is not selected in the tiling and an alternative tile τ1

is chosen according to [D3(a)]. The algorithm iterates and if tiles can be
validated or corrected at every stage, we are able to complete a tiling
moving from 5′ to 3′ along the read. Unfortunately, non-uniform coverage
and the existence of more than one reasonable d-mutant tile can lead to an
inconclusive decision in Algorithm 1 regardless of tiling choice. In Figure 2,
the 5′ to 3′ tiling encounters an inconclusive dead-end at arrow a3. To move
past dead-end tiles, a non-overlapping tile τ2 is chosen by [D3(b)]. A small
unvalidated gap is left in the middle of the 5′ to 3′ tiling of this read. The
example shows only the tiling from 5′ to 3′. The same strategy is applied in
the 3′ to 5′ direction.

We briefly analyze the run time of Algorithm 2. Tiles are sorted, so
tile information is accessed in O(log(nL)) time. Therefore, line 3 requires
O(log(nL)) time. Once some tiles have been corrected, the search space for
new d-mutant tiles shrinks when d1 or d2 is set to 0 in line 5. The maximum
number of non-overlapping tiles in a tiling is the constant L/|t|. Hence, the
time spent in correcting each read is O(log(nL)), and the overall run time of
Algorithm 2 is O(nL log(nL)).

3.1.3 Choosing parameters Although analytical calculations like those
adopted in existing methods can be used to choose parameters ofAlgorithm 1,
we choose their values based on the input data to help avoid the unrealistic
assumptions of uniformly distributed read errors and uniform genome
coverage. Given short-read data R, we examine the empirical distribution
of quality scores and choose threshold Qc such that a given percentage
(e.g. 15–20%) of bases have quality score value below Qc. This value could
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Algorithm 2 Read error correction.
1. Initialize: t← t0, where t0 is a prefix of r; d1,d2←d.
2. while t �=∅ do
3. Identify d-mutant tiles of t=α1 ||l α2 as the set

{t′ =α′1 ||l α′2 | (α′1,α′2)∈Nd1
1 ×Nd2

2 }.
4. Correct t (Algorithm 1).
5. Based on the decisions made on t in the former step, tile tnext

of r will be chosen according to [D1]–[D3] as follows. If
there is insufficient space to place a tile toward the end of a
read r, tnext will be chosen as the suffix of r.

6. [D1] t is valid: select tnext such that the suffix–prefix overlap
between t and tnext equals α2; d1←0.

7. [D2] t was corrected to t′ =α′1 ||l α′2 and t is replaced with t′
in r: select tnext such that the suffix–prefix overlap between t′
and tnext equals α′2; d1←0.

8. [D3] Insufficient evidence to correct t: set tnext to be one of the
following. Let r[i1 : i2] be a maximal validated or corrected
region of r that overlaps with the 5′ region of t, where i2−
i1+1≥|t|, and r[i2+1 : i3] be a maximal uncorrected region
from previous iterations due to insufficient evidence.

a. If r[i2+1 : i3]=∅, then tnext←r[i2−|t|+2,i2+1] and
d1←1.

b. If r[i2+1 : i3] �=∅, then tnext←r[i3+1,i3+|t|].
Similarly, if r[i1 : i2] overlaps with 3′ end of t and r[i3 : i1−1]
is a maximal uncorrected region from previous iterations, then
if r[i3 : i1−1]=∅, set tnext←r[i1−1 : |t|+ i1−2] and d2←1.
In above cases, tnext is valid only if it was not assigned with
the same value in previous iterations (unless tnext became the
suffix of r). If such a choice does not exist, tnext←∅.

9. t← tnext.
10. end while

Fig. 2. An illustration of choosing a tiling of a read for d=1. A read is
represented on top by a concatenation of rectangles, where each rectangle
denotes a kmer. Each tile is represented by a concatenation of two adjacent
arrows, which denote its kmer composition. For simplicity of illustration, we
choose the read length to be divisible by k and each tile is a 0-concatenation
of two adjacent kmers. X’s denote sequencing errors. Each bold arrow, ai (1≤
i≤4), denotes tile with insufficient evidence for correction. The placement
of an alternative tile is indicated by a dotted arrow.

be adjusted to consider the error rates of the particular next-generation
sequencing equipment in use. Given Qc and counts of high-quality tile
ocurrences, we choose Cg so that only a small percentage (e.g. 1–3%) of
tiles have high-quality multiplicity greater than Cg. Cm is chosen so that a
larger percentage (e.g. 4–6%) of tiles occur more than Cm times in R. As Cm

value decreases, more errors are corrected at the cost of an increased risk of
false error correction. The specific values chosen depend on the histogram of
tile occurrences. By default, we set Cr=2 such that a low frequency tile could
only be corrected to a tile with at least twice the frequency. Increasing Cr

improves the confidence in error correction. Finally, we choose k=�log4 |G|
when an estimate of the length of the genome is available, otherwise, a
number between 10 and 16 should work. Tile size is ∼2k, so kmer overlap
is 0 to a few bases. The maximum Hamming distance d is set to one by
default. But when k is chosen to be relatively large (e.g. 14 to 16), increasing
d allows us to identify more sequencing errors but incurs a longer run time
and increases the risk of false error prediction.

3.1.4 Overall complexity Combining the analysis for each step, the overall
run time is O(nL log(nL)) and the space usage is O(|Rk |+|R|t||).

When the collection of input short reads R does not fit in main memory,
we propose a divide and merge strategy where R is partitioned into chunks
small enough to occupy just a portion of main memory. For each chunk, we
stream through each read and record the k-spectrum and tile information,
merging it with the data from previous chunks. Reads need not be stored
in memory after they have been processed. A similar strategy is applied for
error correction: R is reloaded into memory in chunks, tilings and d-mutant
tilings are inferred for each read, and errors are corrected as warranted.

4 RESULTS
We evaluated Reptile on several Illumina/Solexa datasets and
compared the results with SHREC (Schröder et al., 2009) version
2.0, a recent high-quality short-read error correction method that
is itself shown to give superior results over prior k-spectrum
approaches. We omitted evaluation on simulated data because
simulations with random errors or synthetic genomes do not
accurately reflect actual short-read sequencing errors (Dohm et al.,
2008), and could even be misleading. Our test datasets are Illumina-
generated short reads of well-characterized, Sanger assembled
bacterial genomes. Knowledge of the genomes is needed for
determining the accuracy of the error correction methods. The
six experimental datasets, downloaded from the sequence read
archive at NCBI, are listed in Table 1. Datasets D1 (Accession
Number: SRX000429), D2 (SRR001665_1), D5 (SRR022918_1)
and D6 (SRR034509_1) are Illumina reads from the E.coli str.
K-12 substr (NC_000913) genome (∼4.64 Mbp); datasets D3
(SRR006332) and D4 are Illumina reads from the Acinetobacter
sp. ADP1 (NC_005966) genome (∼3.6 Mb). The first four datasets
are generated by Solexa 1G Genome Analyzer, where each read has
the same length 36 bp. The latter two datasets are generated using
the more recent Illumina Genome Analyzer II, with read lengths
of 47 bp in D5 and 101 bp in D6. D1 has high coverage and low
error rate. D2 has typical coverage and low error rate. D3 has high
coverage and high error rate. D4 is derived from D3 by randomly
selecting short reads amounting to 40× coverage. This is done for
evaluating performance on a low coverage, high error rate dataset.
Both D5 and D6 have higher error rates. In addition, >13.9% of the
reads in D6 contain ambiguous nucleotides, denoted by character N.
Since SHREC cannot process non-ACGT characters, we eliminated
all reads with ambiguous bases, even though Reptile has no such
limitation. The number of discarded reads is indicated in column 5,
Table 1.

Similar to Schröder et al. (2009), we evaluated error correction
results with the aid of RMAP (v2.05) (Smith et al., 2008), which
maps short reads to a known genome by minimizing mismatches.
We allowed up to five mismatches per read in the first four datasets
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Table 1. Experimental datasets

Data Genome Read Number Discarded Cov. Error
length (bp) of reads (M) reads rate (%)

D1 E.coli 36 20.8 107.7 K 160× 0.6
D2 E.coli 36 10.4 48.3 K 80× 0.6
D3 A. sp. 36 17.7 456 K 173× 1.5
D4 A. sp. 36 4.0 0 40× 1.5
D5 E.coli 47 7.0 32.7 K 71× 3.3
D6 E.coli 101 8.9 1.44 M 193× 2.2

Error rate is estimated by mapping the reads to the corresponding genome using RMAP,
and finding mismatches based on uniquely mapped reads.

Table 2. Results of mapping each dataset to the corresponding genome using
RMAP

Data Allowed Number Uniquely Ambiguously
mismatches of readsa mapped reads (%) mapped reads (%)

D1 5 20708709 96.5 2.5
D2 5 10359952 96.7 2.5
D3 5 17675271 79.9 1.5
D4 5 4000000 84.1 1.6
D5 10 7049153 62.5 1.5
D6 10 8874761 63.5 1.2

15 68.8 1.4

aNumber of reads containing no ambiguous bases.

and allowed up to 10 mismatches (default value of RMAP) in D5
and fifteen mismatches in D6 since the reads are longer in the
latter two datasets. Reads that could not be mapped to the genome,
or that map to multiple locations, are discarded. The mismatches
between uniquely mapped reads and the genome are considered read
errors. Quality of the datasets varied as shown in Table 2, with the
percentage of reads that are uniquely mapped ranging from 62.5 to
96.7%. The large percentage of unmappable reads, the higher error
rates as well as the large percentage of reads with ambiguous bases
indicate that D5 and D6 have lower quality than D1 to D4.

Since the goal of error correction is to identify and correct each
erroneous nucleotide, we assess the quality of error correction at the
base level. A true positive (TP) is any erroneous base that is changed
to the true base, a false positive (FP) is any true base changed
wrongly, a true negative (TN) is any true base left unchanged,
and a false negative (FN) is any erroneous base left unchanged.
Then Sensitivity = TP/(TP + FN) and Specificity = TN/(TN + FP).
Note that these definitions are different from those used by Schröder
et al. (2009), which target read-level error detection (whether a read
is flagged as containing an error or not). This is a less stringent
measure because any read containing errors was classified as TP
provided at least one of its errors was detected and irrespective of
whether they were accurately corrected or not.

We propose two additional measures for assessing the quality of
error correction:

• Erroneous base assignment (EBA): let ne denote the number
of erroneous bases that are correctly identified but changed to
a wrong base. Then, EBA = ne/(TP+ne) reflects how well we
are able to correct an erroneous base to the true base after a

sequencing error has been identified. A lower value of EBA
indicates a more accurate base assignment.

• Gain: (TP−FP)/(TP + FN). This measures the percentage of
errors effectively removed from the dataset, which is equivalent
to the number of errors before correction minus the number
of errors after correction divided by the number of errors
before correction. Clearly, Gain should approach one for the
best methods, but may be negative for methods that actually
introduce more errors than they correct.

We regard these measures as important because they penalize
failing to detect an erroneous base, correctly detecting an erroneous
base but wrongly correcting it, and characterizing a correct base to
be an erroneous base. In particular, we strongly advocate the Gain
measure as it captures data quality post-error correction compared
with the quality prior to the correction.

The results of running Reptile and SHREC on the six datasets
are summarized in Table 3. Due to the larger memory usage of the
SHREC program, we were not able to obtain results for D3, D5
and D6. In all other cases, Reptile had higher Gain and lower EBA
than SHREC. With other parameters fixed in Reptile, we varied
maximum d value used for inferring Hamming graph in D1 and D2.
As expected, the run time significantly increased as d increased,
since the size of d-neighborhood for each kmer increased. Also, we
see an increase in both TP and FP and four to five times higher EBA,
indicating that when we increase the search space, we run the risk
of false error detection and correction but increase the chance to
identifying more errors.

An inherent difficulty in using any method is the challenge of
choosing optimal parameters. The results reported in Table 3 are
obtained when using the parameter choices suggested in Section 3.
To show that even better performance is possible, we applied a series
of parameter choices to dataset D3 (Fig. 3). Gain improved from 63%
with the default parameters to as high as 72%. We chose to report on
Reptile using the default parameters for all cases in Table 3 because
it is unfair to choose optimal parameters for each individual case
based on our knowledge of the genome, which would generally
not be known. Similarly, we used the default parameter settings for
SHREC. Using a different combination of parameters may vary the
results of both SHREC and Reptile. In this article, we have presented
a method to select parameters for Reptile based on known quantities
such as kmer frequency and quality score histograms. A similar
guidance is needed for the SHREC program and is beyond the scope
of the article. Note that we do not take into account improved results
that can only be obtained by the knowledge of the genome (Fig. 3).
One can observe that our method of parameter estimation based
on statistics from the dataset is performing better than analytical
calculations based on the assumptions of uniform error distribution
and uniform coverage of genome by reads.

In addition, we compared the run time and memory usage of
SHREC and Reptile. SHREC is a multi-threaded program while
the current release of Reptile can only use a single core. Hence,
we report run times in total CPU hours. Both methods were run
on a SUN Fire X2200 workstation with dual quad-core 2.3 GHz
AMD Barcelona three processors with 8 GB RAM and 4 GB swap
memory, running Debian GNU/Linux x86_64. Results in Table 3
show Reptile is 3–10 times faster and uses 8–11 times less memory
than SHREC. As expected, memory usage of Reptile is associated
with the length of the genome and the number of errors in the data
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Table 3. Results of Reptile and SHREC on Illumina sequenced short reads

Data Method (d) TP FN FP TN EBA (%) Sensitivity (%) Specificity (%) Gain (%) CPU Memory
(Cov) Hours (GB)

D1 SHREC 2819754 1183861 667435 740 842 474 1.794 70.4 99.9 53.8 - >8
(160x) Reptile (1) 3164394 839221 133558 741 376 351 0.007 79 99.9 75.7 0.79 1.1

Reptile (2) 3457717 545898 245417 741 264 492 0.028 86.4 99.9 80.2 2.49 1.1

D2 SHREC 1303505 422337 251228 370 981 202 1.549 75.5 99.9 61.0 3.6 7.1
(79.5x) Reptile (1) 1169256 556586 44959 371 187 471 0.009 67.8 99.9 65.2 0.35 0.84

Reptile (2) 1315277 410565 91205 371 141 225 0.042 76.2 99.9 70.9 1.23 0.84

D3 SHREC − − − – – – – – – –
(172.5x) Reptile (1) 7138883 2361813 1138666 610 144 638 0.013 75.1 99.8 63.2 1.66 2.2

D4 SHREC 1473252 530736 613921 141 382 091 1.306 73.5 99.6 42.9 2.78 7.6
(40x) Reptile (1) 1422949 581039 222218 141 773 794 0.091 71 99.8 59.9 0.26 0.66

D5 SHREC − − − – – – – – – –
(71x) Reptile (1) 3551764 3189748 985674 323 583 005 0.017 52.7 99.7 38.1 0.94 1.9

D6 SHREC − − − – – – – – – –
(193x) Reptile (1) 17158925 2947342 1298891 874 945 703 0.01 85.3 99.9 78.9 2.76 4.6

Fig. 3. Gain and sensitivity versus different parameter choices for D3. The
first 11 sample points use parameters k=11,d=1,|t|=22, and (Cm, Qc)
values (14, 60), (12, 60), (10, 60), (10, 55), (8, 60), (8, 55), (8, 50), (8, 45),
(7, 45), (6, 45), (5, 45), respectively. The last sample point uses parameters
(k=12,d=2,|t|=24,Cm=8,Qc=45).

(compare D1 and D2), while the memory usage of SHREC increased
with the number of reads, genome length and sequencing errors. In
addition, although D1 contains many more reads (20.8M) than D3
(17.7M), the higher error rate significantly increased memory usage
in both methods.

To enable fair comparison with SHREC, the above experiments
were carried out by excluding all reads containing ambiguous bases.
However, Reptile does have functionality to deal with ambiguous
bases, which is useful in the following cases: (i) if a read contains
few ambiguous bases, the surrounding high-quality regions provide
sufficient information to infer correct bases by referencing the
k-spectrum; (ii) in some datasets, neglecting reads containing
ambiguous bases leads to excessive loss of data, which further
distorts uniformity of the sampling. For instance, as much as 13.9%
reads in dataset D6 contain N’s.

Reptile attempts to correct ambiguous bases in regions where their
density is low. If a read contains too many ambiguous bases, it is
low quality and untrustworthy. Some reads may have ambiguous
bases clustered in some region, e.g. the 3′ region, while other

Table 4. Quality of ambiguous base correction using Reptile

Data N Accuracy Sensitivity Specificity Gain EBA
(%) (%) (%) (%) (%)

D2 A 99.98 66.4 100 63.7 0.01
C 100 66.4 100 63.8 0.01
G 100 66.4 100 63.7 0.01
T 100 66.3 100 63.7 0.01

D6 A 99.99 85.1 99.8 78.5 0.01
C 99.99 85.2 99.8 78.4 0.009
G 100 85.3 99.8 78.5 0.01
T 99.99 85.3 99.8 78.5 0.009

parts may still be of good quality. It is more meaningful to try
correcting ambiguous bases in the latter parts alone, since a cluster
of ambiguous nucleotides in a read makes it unlikely to pinpoint
other reads that have the same genomic co-location. Formally,
Reptile attempts to correct an ambiguous base b of read r, if in
any substring r[i : i+w−1] that contains b, there are no more than
d ambiguous bases. The ratio of d to w constrains the maximum
density of ambiguous bases allowed in attempting error correction.
By default, w is set to k (to equal kmer length), while d is
set to the maximum Hamming distance allowed (Section 3). To
implement the above idea, all ambiguous bases satisfying the density
constraint are changed to one of the bases from the set {A, C, G, T}
initially (default ‘A’), and will be validated or corrected later by the
algorithm.

To test the accuracy of this procedure as well as study the effect
of the choice of the default base, we conducted Reptile runs on
the full datasets of D2 (36 bp) and D6 (101 bp) by setting the
ambiguous bases to the chosen default. The results are presented in
Table 4. The default base used is shown under Column ‘N’. Accuracy
is defined to be the percentage of ambiguous bases that have
been successfully corrected (again, only reads uniquely mapped by
RMAP are considered as truth is unknown otherwise). The last four
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columns are as defined in Table 3. As can be observed from Table 4,
(i) the accuracy of ambiguous base correction is high and consistent
with the overall EBA rate, (ii) changing the default base slightly
influenced the results due to the resulting differences in k-spectrum
composition and (iii) the sensitivity and Gain values are slightly
lower than reported in Table 3, mainly because the ambiguous bases
that were left uncorrected by Reptile could sometimes be uniquely
mapped to the reference genome using RMAP, hence increasing the
FN value.

5 DISCUSSION
The proposed error correction algorithm is conservative because
it avoids changing bases unless there is a compelling under-
representation of a tile compared with its d-mutant tiles. Actual
errors in read r cannot be corrected if r occurs in a very low coverage
region of the genome or there exist multiple candidate d-mutant tiles,
probably because of genome repetition. On the other hand, a tile may
be miscorrected if it contains a minor variant of a highly repetitive
element in the genome or it traverses a low coverage region that is
similar to other regions with normal coverage. Our method is not
unique in being challenged by non-uniform coverage on repetitive
genomes. Error correction for highly repetitive genomes is essential
for successfully assembling larger eukaryotic genomes but none of
the existing methods successfully addresses this problem, including
Reptile.

Short-read mapping provides a reasonable method to evaluate
error correction methods in well-assembled, low repetition genomes.
Nevertheless, it is not possible to unambiguously determine
all errors. There are natural polymorphisms among bacterial
lines, and some presumed polymorphisms may be unrecognized
assembly errors. Furthermore, the mapping software chooses among
alternative mappings by invoking parsimony, but there is some
chance that the true number of errors is less than the minimum.
Lastly, mapping software cannot map reads that contain more than
a constant number of substitutions, typically just two, with full
sensitivity, although we considered 5 here and tested as many as
15 with similar results. Despite these limitations, we believe that
most errors are correctly identified, and this approach can provide a
fair comparison of error correction methods.

We and others (Smith et al., 2008) have found that sequence
quality scores provide valuable information. Our use of quality
scores probably helped us account for the error patterns in next-
generation sequencing data (Dohm et al., 2008) without explicitly
modeling them. However, it has been observed (Dohm et al., 2008)
that high quality scores may be too optimistic and low quality scores
too pessimistic in estimating sequencing errors in Solexa data. Since
quality scores may not be precise measures of misread probabilities,
the current version of Reptile uses quality score information in a very

simple manner, but can be modified to make more sophisticated use
of quality scores if warranted. Finally, although quality scores are
needed to run Reptile, it can be run effectively without scores by
setting all quality scores and the threshold Qc to the same value.

There remain several additional challenges in next-generation
sequencing error correction. One challenge is to distinguish
errors from polymorphisms, for example, single nucleotide
polymorphisms (SNPs). Reptile could accommodate SNP prediction
with modification in the tile correction stage (Algorithm 1), where
ambiguities may indicate polymorphisms. Another challenge is
the growing read length of upcoming high-throughput sequencers.
Currently, we define tiles as concatenations of two kmers. it might
prove useful to extend the tile definition to more than two kmers in
order to address error correction in much longer reads.
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