RepuCoin: Your Reputation is Your Power

Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Esteves-Verissimo, Fellow, IEEE

Abstract—Existing proof-of-work cryptocurrencies cannot tolerate attackers controlling more than 50% of the network’s computing
power at any time, but assume that such a condition happening is “unlikely”. However, recent attack sophistication, e.g., where
attackers can rent mining capacity to obtain a majority of computing power temporarily, render this assumption unrealistic.

This paper proposes RepuCoin, the first system to provide guarantees even when more than 50% of the system’s computing power is
temporarily dominated by an attacker. RepuCoin physically limits the rate of voting power growth of the entire system. In particular,
RepuCoin defines a miner’s power by its ‘reputation’, as a function of its work integrated over the time of the entire blockchain, rather
than through instantaneous computing power, which can be obtained relatively quickly and/or temporarily. As an example, after a single
year of operation, RepuCoin can tolerate attacks compromising 51% of the network’s computing resources, even if such power stays
maliciously seized for almost a whole year. Moreover, RepuCoin provides better resilience to known attacks, compared to existing
proof-of-work systems, while achieving a high throughput of 10000 transactions per second (TPS).

Index Terms—Blockchain, cryptocurrency, fault tolerance, consensus.

1 INTRODUCTION

ITCOIN [1] is the most successful decentralized cryp-
B tocurrency to date. However, despite its enormous com-
mercial success, many weaknesses have been associated
with Bitcoin, including weak consistency, low transaction
throughput and vulnerabilities to attacks, such as double
spending attacks [2, 3], eclipse attacks [4, 5], selfish-mining
attacks [6, 7], and flash attacks [8].

Several promising existing solutions [9-14] targeted the
low throughput problem of Bitcoin. Nevertheless, these
solutions either provide only probabilistic guarantees about
transactions (weak consistency) [13] or can provide strong
consistency but suffer from liveness problems even when
an attacker has a relatively small computing power [15].
Moreover, the resilience of such solutions against attacks,
such as selfish mining attacks where an attacker has more
than 25% of the computing power [3, 6, 7, 16], remains
unsatisfactory. In addition, all existing contemporary proof-
of-work (PoW) based variants of Bitcoin (e.g. [13, 15, 17, 18])
rely on the assumption that an attacker cannot have more
than 33% or 50% of computing power at any time. However,
with the sophistication of attacks mounted on Bitcoin, e.g.,
flash attacks (a.k.a. bribery attacks), where an attacker can
obtain a temporary majority (>50%) of computing power by
renting mining capacity [8], all these systems would fail. In
brief, existing solutions that address the weaknesses associ-
ated with Bitcoin still suffer from significant shortcomings.

This paper addresses these shortcomings —liveness of
current high-throughput solutions, and vulnerability to at-
tacks such as selfish mining and flash attacks. In particular,
we propose RepuCoin, the first system that can prevent
attacks against an attacker who may possess more than
50% computing power of the entire network temporarily
(e.g., a few weeks or even months). Our proof-of-concept
implementation shows that while providing better security
guarantees than predecessor protocols, RepuCoin also en-
sures a very high throughput (10000 transactions per sec-
ond). In practice, Visa confirms a transaction within seconds,

and processes 1.7k TPS on average [19]. This shows that
RepuCoin satisfies the required throughput of real world
applications.

Design principle. Our system addresses the aforemen-
tioned challenges by defining a new design principle, called
proof-of-reputation. Proof-of-reputation is based on proof-of-
work, but with two fundamental improvements.

First, under proof-of-reputation a miner’s decision
power (i.e., the voting power for reaching consensus in the
system) is given by its reputation. A miner’s reputation is
not measured by what we call the miner’s ‘instantaneous’
power, i.e., the miner’s computing power in a short time
range, as in classic PoW. Instead, the reputation is computed
based on both the total amount of valid work a miner has
contributed to the system and the regularity of that work,
over the entire period of time during which the system has
been active. We call this the miner’s ‘integrated power’. So,
when an attacker joins the system at time ¢, even if it has a
very strong mining ability that is, high computational (i.e.,
instantaneous) power, it would have no integrated power at
time ¢, or even shortly after, as it did not contribute to the
system before ¢.

Second, when a miner deviates from the system spec-
ifications, RepuCoin lowers the miner’s reputation, and
hence its integrated power, in consequence of this negative
contribution. This prevents a powerful malicious miner
from attacking the system repeatedly without significant
consequences. In contrast, classic PoW systems either do
not support any feature for punishing miners that do not
abide by system specifications, or they punish these miners
by merely revoking their rewards — this does not prevent
them from attacking the system again immediately after.

RepuCoin provides deterministic guarantees on trans-
actions by employing a reputation-based weighted voting con-
sensus. Consensus is carried by a group formed of the top
reputable miners. Every member of that group has a weight
associated to its vote. The weight of a member’s vote is
the percentage of that member’s reputation w.r.t. the entire
group’s reputation. Such weights ensure that one’s voting

power depends, not on the sheer instantaneous (computing)
power — which is the enabler of flash attacks— but on the
integrated power, which both takes time to build, and is
built on the miner’s honesty and historical performance.
In fact, quantifying a miner’s voting power based on its
performance in the entire blockchain highlights the self-
stabilizing characteristics of our approach: qualitatively, to
acquire power in RepuCoin a miner is urged to exhibit
normal, honest behavior; quantitatively, the speed with
which a miner can gain power is dictated by the regularity
and amount of that miner’s contributions in the entire
blockchain.

To illustrate the robustness of the design choices under-
lying RepuCoin, we present our analysis of the security pro-
vided by the mechanisms used in RepuCoin. In particular,
we show that achieving the safety and liveness correctness
conditions of the reputation-based weighted voting consen-
sus protocol is physically guaranteed by the growth rate
of the proof-of-reputation function, and the rate of decision
power growth of the entire system is bounded. In addition,
we present experiments exemplifying concrete values for
the decision power growth in several situations, showing
that the network achieves very high stochastic robustness
against attacks on its liveness or safety. For instance, we
demonstrate that after a single year of operation, RepuCoin
is resilient to all attacks that compromise 26%, 33%, and 51%
of the networks computing resources, even if such power
stays maliciously confiscated for almost 100 years, 2 years,
and 1 year respectively. Also, in the same setting, even if an
attacker can afford to seize a huge computational power for
a specific period, due to the cost of such attacks (e.g., 90%
for up to 3 months), it will not break RepuCoin. Moreover,
we provide an analysis of the non-rationality of infiltration
attacks, with a comparison of the cost of attacking different
systems. Furthermore, we provide in detail how RepuCoin
prevents known attacks.

2 RELATED WORK

Consensus is the key component and backbone of
Blockchains, which use two main types of consensus mech-
anisms, namely proof-of-X based consensus, and Byzantine-
fault tolerant (BFT) consensus. The former is generally per-
missionless, where anyone can join and leave the potentially
large consensus group; and the latter is permissioned, where
the set of participants running consensus is small and pre-
defined. Due to space limitations, we give a brief review
here, and refer readers to our report [20], and the associated
works for more details.

Proof-of-X based consensus has gained much interest
since the use of Proof-of-work in Bitcoin, already described
in the introduction. Proof-of-stake, which was first dis-
cussed in a Bitcoin community forum [21], has been pro-
posed to use virtual voting to provide quicker transaction
confirmation. Proof-of-space (a.k.a. proof-of-capacity) [22,
23] has been proposed to use physical storage resources to
replace computing power in the proof-of-work mechanism.
Proof-of-coin-age [24] shares a similar concept as proof-
of-stake, as participants also perform virtual “mining” by
demonstrating possession of a quantity of currency. Proof-
of-activity [25] puts every coin owner into a mining lottery;

periodically, winners are randomly determined by transac-
tions. A winner is expected to respond with a signed mes-
sage within a small time interval to claim its award. Proof-
of-elapsed time [26], proposed by Intel and implemented
as a Hyperledger project, uses Intel SGX enabled CPUs
to do virtual voting through a random sleeping time to
replace the proof-of-work mechanism. Proof-of-membership
system in ByzCoin [15] creates a consensus group formed
by recent PoW-based block creators, and this group runs a
BFT protocol for reaching consensus. However, it is shown
that ByzCoin still suffers from selfish mining attack [15], and
that it can permanently lose liveness during reconfiguration,
if too many miners disappear in a short time [27] or can
repeatedly lose liveness temporarily [15]. Unfortunately,
none of the permissionless consensus protocols described
is able to provide a meaningful security guarantee when an
attacker is able to control a majority of mining power.

Notable state of the art of BFT protocols include
PBFT [28], MinBFT/MinZyzzyzva [29], or ReBFT [30].
PBFT [28] proposes the first Byzantine fault-tolerant al-
gorithm that has an acceptable performance in practice.
MinBFT/MinZyzzyva [29] are hybrid protocols presenting
non-speculative and speculative BFT algorithms, which are
efficient and only require 2 f + 1 replicas (rather than 3f +1)
in total to tolerate a maximum number f of faulty players,
thanks to the use of a trusted monotonic counter associating
sequence numbers to each operation. ReBFT [30] is an
approach that relies on a passive-replication paradigm to
minimize the number of non-faulty replicas that participate
in system operations in the absence of faults.

3 SYSTEM AND THREAT MODEL

3.1 System Context

RepuCoin makes use of two types of blocks, namely key-
block and microblock. Keyblocks are created through PoW,
as a means to elect a leader, and they do not contain
any transaction. Microblocks are proposed by a randomly
selected leader to record transactions into the blockchain.

All participants of the system, no matter whether they
are miners or mobile clients, learn about new transactions
and blocks in the same way as in BitCoin and other
blockchains, through a peer-to-peer protocol.

In RepuCoin, we verify and commit microblocks, as well
as decide on the keyblocks to be added to the blockchain,
using Byzantine fault tolerance protocols (e.g., [28, 30])
with minor modifications, as presented in §4.4. Such form
of agreement prevents a malicious leader from double
spending a coin, and resolves potential forks resulting from
simultaneously mined keyblocks. According to Byzantine
quorums theory [31], in order to reach an agreement, classic
BFT protocols require votes from at least 2f + 1 nodes',
to prevent an adversary controlling f nodes from breaking
the protocol. In practice, however, an open BFT-based system
cannot guarantee that an attacker will never be able to control
more than f nodes. To enforce the assumption that no more
than f Byzantine nodes are ever involved in a consensus, we

1. Hybrid BFT protocols with trusted hardware components, such as
MinBFT [29], only require votes from f + 1 nodes.

introduce novel mechanisms to make it infeasible, in prac-
tice, for an attacker to seize f nodes within the consensus
group, as detailed below.

3.2 System Model

RepuCoin is a system composed of a non-predetermined
number of nodes, called miners. Each miner has a reputation
score, which determines that miner’s ability of obtaining
rewards. A miner’s reputation score is based on the correct-
ness of its behavior and its regularity in adding blocks to the
existing chain, hence correlated with the miner’s computing
power. RepuCoin considers a network that is untrustworthy
and unreliable. In addition, we assume the network has
partial synchrony [32].

To address the above-mentioned uncertainty (Sec-
tion 3.1) in the definition of the consensus quorums and
outcomes for open BFT-based protocols, RepuCoin resorts to
two main techniques. First, we rely on the notion of having
a consensus group, i.e., a subset of the miners denoted by X
capable of controlling the operations of RepuCoin, namely
running the consensus protocol. Second, the voting rules
in the underlying consensus schemes are not nominal, but
based on a novel reputation-based weighted voting. To this end,
we refine the definition of quorums as follows: reaching
agreement not only requires votes from 2f 4 1 nodes, but
also demands that these nodes collectively have more than
2 of the cumulative reputation of the consensus group.

The consensus group size is defined as the minimum
number of miners with enough decision power (i.e., cumu-
lative reputation) to ensure safe and live control of the sys-
tem, given our quorum definition. Therefore, the consensus
group members are obviously the miners with the highest
reputation scores. This stratagem has two virtuous effects.
First, RepuCoin’s safety is guaranteed by consensus, which
can be viewed as a deterministic control orchestrated by
a set of miners with overwhelming cumulative reputation.
By definition, such reputation itself gives an expectation
of the correct behavior of these miners. Second, openess
and fairness of RepuCoin relies on X being parametric and
agnostic of identity of network members, as we show in
Section 4.2. At configuration time, the size of X is calculated
by meeting a target percentage of the overall decision power,
and so it can be large or small, depending on the mining
pool composition, but not pre-determined. On the other
hand, as miners gain or lose reputation, they can (by merit
or demerit) enter and leave the consensus group.

3.3 Threat Model

We consider a malicious (a.k.a. Byzantine) adversary, who
can arbitrarily delay, drop, re-order, insert, or modify mes-
sages. We also consider collusions of an arbitrary number
of miners, to model a malicious real organization capable
of deploying a significant number of virtual miners under
its direct dependence. We assume the security of the used
cryptographic primitives, including a secure hash function
and a secure signature scheme.

Such adversary can potentially control as many miners
as it wishes, and coordinate them in real time with no delay.
In consequence, the consensus group can be infiltrated by
adversaries. However, we assume that the adversary has

the ability to control at most f < LN%J group members

whose collective reputation is less than £ of the cumulative
reputation of the members of consensus group X. Under this
assumption, the system is safe and live.

The coverage of this assumption, i.e., how to constrain
the adversary’s ability of infiltrating the consensus group,
to meet the aforementioned assumption, is explained in Sec-
tion 4.3. The dynamics of the reputation mechanism allow
the consensus group controlling RepuCoin to be infiltrated
with safety, making it practically infeasible for an attacker
to break the system (as shown in Table 2 of Section 6).

4 REPUCOIN

In this section, we present details describing the different
concepts and modules underlying RepuCoin. In particular,
Section 4.1 details the different types of blocks, the leader
election mechanism, and the reward system proposed. Then,
we present our reputation-based weighted voting mecha-
nism in Section 4.2, and the reputation system in Section 4.3.

4.1 Block Mining and Reward System

As mentioned earlier, in order to support higher throughput
rates, RepuCoin decouples leader election (keyblocks) from
transaction serialization (microblocks).

Keyblock and leader election. Miners solve Bitcoin-
like puzzles to create keyblocks, and receive rewards corre-
sponding to keyblock creations. However, the keyblock cre-
ator is not necessarily the leader that commits transactions
into microblocks. Rather, the leader is randomly elected
from the reputable miners. The puzzle is defined as follows:

H(prev_K B_hash||Nonce||PK) < target

where H(-) is a cryptographically secure hash function,
prev_K B_hash is the hash value of the previous keyblock,
PK is the miner’s public key, which the miner’s reputation
score @ is associated with, and target is a target value
defined by the system. (For simplicity, we use reputation
score and reputation interchangeably in this paper.)

RepuCoin solves forked chains on the fly by dynami-
cally forming the consensus group and agreeing on which
chain to choose. The consensus group members are the
top reputed miners in the mining network. The reputation
score of miners can be calculated by using data from the
blockchain, and is maintained locally by each miner. When
different miners have the same reputation, a naive solution
would be to order them according to their public key PK
(a.k.a. address). However, this gives a miner with small
PK an advantage. To avoid this, in RepuCoin, miners with
the same reputation score are ordered by H(PK, R), where
reputation R (and therefore the hash value) is updated each
time a new keyblock becomes part of the blockchain.

Each time a new keyblock is created, the creator proposes
it to the consensus group. The group verifies the received
keyblocks, and runs the underlying Byzantine agreement
protocol to decide which keyblock to choose (if multiple
conflicting keyblocks are proposed). We call a keyblock that
is agreed upon and signed by the group a pinned keyblock. A
pinned keyblock is final and canonical, it defines the unique
global blockchain from the genesis block up to the pinned

keyblock. All keyblocks that conflict with a pinned keyblock
are considered invalid. New keyblocks are mined based on
the hash value of the previous pinned keyblock.

The format of a pinned keyblock is as follows:

keyblock keyblock pin

’ prev_KB_hash | Nonce | PK | R | K_sig | sig_KB_agmnt

The (new) K B_hash is the hash of a pinned keyblock,
ie., all the material in the frame above, where K_sig
is a signature on the hash value of (prev_KB_hash,
Nonce, PK, R), and sig_K B_agmnt is the signed agree-
ment from the consensus protocol on committing this key-
block. The first keyblock is called the genesis block (as in
Bitcoin), which is defined as part of the system. Note that
to verify a keyblock, consensus group members check the
validity of K_sig, the solution to the mining puzzle, and
the reputation R.

Each time a new keyblock is pinned, the next leader
— which verifies transactions and commits them into mi-
croblocks — is selected as follows:

l=xz; st.x;eX A j=H(K_sig;) mod |X|

where [; is the i-th leader determined by the hash value
H(K_sig;) of the signature K_sig; contained in the i-th
pinned keyblock, and X is the set of miners constituting
the consensus group. Since a cryptographically secure hash
function is considered a random oracle, the leader is selected
randomly in the consensus group with probability ﬁ.
However, one concern with this leader selection process is
that consensus group members can determine the following
leader before pinning a block. Thus, a consensus member
interested in getting more rewards would only accept (de-
cide to pin) a block that makes itself the new leader. To
address this issue, a simple approach is to determine a
leader by using H (sig;) instead of H (K _sig;), where sig; is
a signature on the current length of the blockchain issued by
the keyblock creator. Note that it is important to issue this
signature only after the keyblock has been pinned by the
consensus group. This way, each consensus member would
accept a block with equal probability.

Remark 1. Note that in consensus schemes, a suffi-
cient number of signed votes determines an agreement,
and only one valid agreement can be reached. How-
ever, different combinations of (a sufficient number
of) signed votes can be used to form this agreement.
So, even though the agreement is unique, the collec-
tion (i.e., sig_KB_agmnt) of signed votes may have
different valid values. This results in different valid
prev_K B_hash on the same keyblock.

Hence, miners may solve their puzzles based on
different valid prev_K B_hash. However, this will not
form a fork in the system, as only one of the valid
solutions to the puzzle will be validated by the con-
sensus group, as detailed in §4.2. In addition, upon
reaching the agreement on the next keyblock, the
prev_K B_hash is considered the only valid hash value
of the previous pinned keyblock, and only this value
will be recorded in the blockchain.

. \ KB_hash; \ KB_hash; \ KB_hash;
prev_KB_hash prev_KB_hash prev_KB_hash
Nonce; Nonce;+1 Nonce;+2
PK; PKi 41 PKi 2
Ri Rit1 Riy2
K _sigi K_sigiy1 K_sigito
sig KB_agmnt; sig_KB_agmnt; sig_KB_agmnt; >

. MB_hash; MB_hash; MB_hash; >
\ H(K _sigi) \ H(K _sig;) \ H(K _sig;,,)
prev_MB_hash prev_MB_hash prev_MB_hash

TXs TXs TXs
M_sig M_sig M_sig
sig_MB_agmnt sig_MB_agmnt sig_ MB_agmnt

Fig. 1: A figure presentation of the blockchain structure.

Microblock. The current leader commits transactions
into microblocks. To prevent double spending, each mi-
croblock is proposed to the consensus group before being
accepted, and hence committing the transactions it encom-
passes. The group members verify the microblock, and
initiate a consensus instance to agree on that microblock,
which upon agreement is called a pinned microblock.

The format of a pinned microblock is shown below:

microblock microblock pin

‘ H(K_sig) | prev_MB_hash | TXs | M_sig | sig_MB_agmnt

where H (K _sig) is the hash value of the K_sig con-
tained in the current pinned keyblock, prev_M B_hash is
the hash value of the previous pinned microblock; T'X's is
a set of transactions organized as a Merkle tree, M _sig is a
signature on the hash value of (K B_hash, prev_M B_hash,
TXs), and sig_M B_agmnt is the signed agreement from
the consensus protocol on the microblock. In this sense,
in order to verify a microblock, consensus group members
check the validity of M _sig, verify the hash values of the
keyblock and the previous microblock, and verify the set
of transactions T'Xs. If invalid transactions are detected,
then the leader is punished, as presented in §4.3. The (new)
M B_hash is the hash of the microblock (without a pin). In
other words, the ‘microblock pin” presented in the above
frame is not part of the hash function’s input. In this way,
a leader can issue microblocks without waiting for the
agreement, which optimizes the throughput of RepuCoin.
The blockchain structure containing both keyblocks and
microblocks is presented in Figure 1.

Reward system. In RepuCoin there are two types of
rewards, namely mining rewards and transaction fees. Upon
successfully mining a keyblock, a miner is entitled to get a
reward, precisely if that miner’s keyblock gets pinned. This
mining reward is of a pre-set amount.

Every transaction within the microblock carries a trans-
action fee. The randomly elected leader shares the transac-
tion fees with the miner of the pinned keyblock according
to Algorithm 1. Roughly speaking, the miner’s reputation
determines the number of microblocks from which it can
obtain transaction fees; the leader gets the rest. However, a
leader that can determine the microblocks from which it gets
transaction fees, may optimize its income by putting trans-
actions with higher transaction fees into these microblocks.

To avoid this unfair game, RepuCoin uses the hash value of
the next pinned keyblock, i.e., the keyblock pinned at the
end of the new epoch, to decide which pinned microblocks
are allocated to the miner and which go to the leader.
Since the hash value of the next pinned keyblock cannot
be predicted, RepuCoin eliminates the above situation.

More precisely, let M = {mg,my,...,m,_1} be the
sequence of n microblocks that are pinned by the consensus
group. Let R € [0, 1] be the reputation score of the miner
which creates the (i—1)-th pinned keyblock. The transaction
fees contained in the set M’ and M” of microblocks are
shared between the miner of the (i — 1)-th pinned keyblock
and the leader, respectively, as shown in Algorithm 1.

Algorithm 1 Reward sharing algorithm

Input: The sequence M = {mg, m1, ..., mn—1} of microblocks pinned in the
(¢ — 1)-th epoch, the signature K _sig; contained in the i-th pinned keyblock,
and the reputation R of the miner who created the (¢ — 1)-th keyblock.

Output: Two subsets M/,M’ C M of microblocks, where transaction fees
contained in M’ (resp. M"’) are allocated to the miner (resp. the leader) as
reward.

1 i’ = H(K_sig;) mod n
=0

=90

: whilek < R-ndo
j=14+k modn
M,:M’U{m]‘}
k=k+1

: end while

S M7 =M\ M

EF°

ORI LN

The way transaction fees are shared between keyblock
creators and leaders motivates miners to increase their rep-
utation. First, keyblock creators with higher reputation gain
higher shares of rewards. Second, highly reputed miners
constitute the consensus group; hence they can become
leaders and get shares of transaction fees.

Similar to the Bitcoin system, to spend a reward, the
miner simply makes transactions by using the SK which
is associated with the PK contained in the keyblock, and
provides the hash of the keyblock or microblock as an input
of the transaction.

In Bitcoin, a miner needs to wait a maturity period of 100
blocks to avoid non-mergeable transactions from forks. In
RepuCoin, each pinned keyblock and its underlying pinned
microblocks are canonical, so leaders do not need to wait for
this period to avoid non-mergeable transactions.

Remark 2. With RepuCoin, miners, even the newly
joined ones with initial reputation, will get much more
reward than what they can get in Bitcoin. In particular,
a miner with RepuCoin gains the same mining reward
as with Bitcoin, and gains transaction fees that are
at least 60 times as high as with Bitcoin. A detailed
analysis can be found in our full report [20].

4.2 Block Pinning

In RepuCoin, we use consensus to pin both keyblocks and
microblocks. Transactions belonging to pinned microblocks
cannot be unrolled at a later point in time. In this section,
we describe in more detail the underlying consensus mech-
anism we use to pin such blocks.

Byzantine fault-tolerant consensus algorithms typically
rely on processes voting. A process needs to collect a quo-

rum of votes on a given value/action for that value/action
to be considered legal by the system. The size of the quorum
is selected in a way that guarantees (i) safety of decisions,
e.g., avoiding conflicting decisions, and (ii) liveness of the
system, i.e., miners should be able to hear eventually a
number of votes on some value/action from a quorum of
miners. It has been shown that in systems, as soon as % or
more of the miners are compromised, an attacker can make
the system inconsistent — an attacker can make different
parts of the system decide differently [31]. In order to make
our system robust to such attacks, we propose to modify the
traditional nominal voting mechanism, i.e., hearing from a
sufficient number (quorum) of miners, by requiring as well
to hear from a sufficient number of miners such that their
added reputation is above a defined threshold. Such a mod-
ification prevents an attacker from breaking the correctness
of the system directly upon compromising any % of the
miners: it should compromise as well enough miners that
their added reputation is at least % of the total reputation of
the consensus group. Details on how to adapt a chosen BFT
protocol to RepuCoin are presented in §4.4.

Consensus in RepuCoin employs a novel reputation-based
weighted voting mechanism, i.e., rather than treating each vote
from consensus group members equally (e.g., as in classic
Byzantine protocols), the weight of each vote becomes its
reputation over the total reputation of the group. More
precisely, let {x1, ..., 7x } be the consensus group, and each
member x; of the group has its reputation score ;. The
weight of z;’s vote is %R, for all possible z;.

Instead of only Wailtfﬁglto hear from at least 2f + 1
nominal members to validate a value or an action, it is also
necessary that the collective reputation of those members is
more than % of the total reputation of the consensus group.

Remark 3. Weighted-voting [33] is a classic and well
known concept. The novelty of our weighted-voting
system comes from the way that this weight is defined.
More precisely, the weight of a miner’s vote is given
by this miner’s reputation, i.e., its ‘integrated power’.
In particular, it considers the quantity and regularity of
contributions over the entire blockchain, and provides
a model to punish misbehaved miners (see section 4.3).
In other words, we constrain the evolution of repu-
tation over time. Thus, unlike in traditional systems,
it becomes significantly difficult for an attacker to re-
obtain enough voting power after a deviation, or to
flash-build it like in flash attacks.

Consensus group. As mentioned in Section 3.2, the size
|X] of the consensus group is not pre-determined, but rather
calculated by meeting a target percentage® of the overall
decision power. We select the members of the consensus
group based on our reputation system; namely, the [X|
miners with the top reputations constitute the members.

We define an epoch as the period between any two suc-
cessive keyblocks that become part of the blockchain. Every
epoch possesses a leader, which is the miner that should

2. Similar to the parameters of other systems, such as the block size
of Bitcoin or the window size of ByzCoin, the target percentage of the
overall decision power is a system parameter that can be reconfigured
if necessary.

issue a maximum pre-specified amount of microblocks. In
every epoch, the reputation of only one miner, the creator
of that pinned keyblock, may gain an extra increase; the
reputation of all other miners would only have a very minor
change according to Algorithm 2, or drops to “0” if they lie
(see Section 4.3). Accordingly, given that f < LWT_IJ can
be malicious, the members of the consensus group in any
two consecutive epochs can differ by at most f members.
This stability in the members of the consensus group of con-
secutive epochs ensures the safety of consensus decisions.
Namely, at the beginning of a new epoch correct consensus
group members are aware of all committed transactions and
hence do not accept/validate any conflicting transactions
proposed by the new leader.

Committing microblocks. The leader of the current
epoch, issues transactions in the form of microblocks. After
generating a microblock, the leader initiates a consensus
instance for this microblock proposing an accept to commit
that microblock. Other consensus members will propose
to either accept or decline (by not accepting) this micro-
block, depending on the transactions contained within and
of course their validity. In other words, if transactions within
the micro-block are invalid then members should decline
committing that microblock. The leader continues to issue
microblocks that are proposed to the consensus group for
validation and commitment, until a new leader is elected.

Committing keyblocks. Upon successfully mining a
keyblock, the miner of that block sends that keyblock to
all members of the consensus group.

Upon receiving a keyblock, this group member initiates
a consensus instance proposing the received keyblock (first
received keyblock in the case when many such keyblocks are
received). As a result, the members of the consensus group
decide on a single keyblock to be part of the blockchain. The
miner of that block is termed as the “winner”. The hash of
the new keyblock output by the consensus decides which
member of the consensus group becomes the leader of the
current epoch as previously mentioned.

A member of the consensus group that successfully
decides on the identity of the new leader stops validating
microblocks relative to the previous leader. Afterwards,
that member initiates a consensus instance to agree on
the total set of committed microblocks. Consensus group
members need to agree on the total set of microblocks, since
a leader is selected from this group. A leader that does not
know the total set of committed microblocks might propose
microblocks that are in conflict with committed ones and
accordingly lose its reputation, not out of maliciousness but
simply out of lack of knowledge. To avoid this situation,
every member after reaching a decision on the identity of
the new leader submits to consensus the largest sequence
number of microblocks that have been committed along
with a verifiable proof of this claim. Namely we assume
that all consensus algorithms we use are implemented using
digital signatures. As such, having a sufficient number N of
signatures on a decision constitute a proof of its validity. We
say the number N of signatures is sufficient if N > 2f + 1
and if the total reputation of the miners issuing these N
signatures is more than 2 of the total reputation of the
group.

Upon reaching a decision on the new leader and on

TABLE 1: The notations.

Notation Explanation
L the length of the current blockchain;
c the size of a block chunk, pre-defined by the system;
t t = [L£7 is the number of block chunks contained in a blockchain
with length L;
Euxt the optional external source of reputation for the miner;
H a binary presenting whether the miner is honest (“1”) or not
(0"
ki the number of keyblocks created by the miner in chunk 7;
N, the number of times that the miner is elected as a leader;
mj the number of valid microblocks created by the miner at the j-th
time it is the leader;
m the maximum number of microblocks that a leader is allowed to
create, as defined by the system.
mean; the mean value of keyblocks (if 7 = k) or microblocks (if ¢ = m)
created by a miner or a leader across all epochs in the blockchain,
respectively.
Si the standard deviation corresponding to mean;, for i € {k, m}.
(a,\) reputation system parameters

the global set of committed microblocks, each consensus
group member also sends a message to notify the winner,
the current leader, and the newly elected leader of this
result. A consensus group member waits to either hear from
consensus or from a sufficient number N’ of other group
members about the identity of the new leader and the global
set of committed microblocks, before it adopts that member
as leader. We say N’ is sulfficient if the total reputation of
the issuers of the N’ signatures is more than % of the total
reputation of the group and if N > f + 1. In that case,
the current leader simply stops issuing microblocks and the
new leader takes over proposing microblocks.

Optimizing agreement on committed microblocks. In
order to have agreement on the set of committed mi-
croblocks without resorting to a consensus instance, we
propose the following optimization. Due to the PoW, it is
known that mining a keyblock successfully takes a certain
time depending on the mining difficulty (e.g. on average
10 minutes in Bitcoin). If we assume that a leader issues
microblocks to be committed at a pre-specified rate, then we
can assume that on average a leader commits m microblocks
per epoch. Accordingly, all consensus group members do
not validate or commit more than m microblocks for any
given leader. Upon reaching a decision on the identity of a
new leader (as a result of having a new keyblock mined)
a consensus group member only initiates consensus on the
set of committed microblocks if it has not seen m committed
microblocks from the previous leader.

The benefits of fixing the number of microblocks (that
a leader can commit) to m microblocks per epoch extends
beyond having a fast and efficient agreement on the set of
committed microblocks. It can also be used to incentivise
leaders not to hinder throughput, e.g., a malicious leader in
the worst case might decide not to submit any microblocks
to intentionally stall the throughput. However now, since
a leader is expected to commit m microblocks per epoch,
leaders which cannot meet that constraint can be punished
for example by decreasing their reputation and hence de-
creasing their chances of staying part of the consensus group
and becoming leaders again.

4.3 Reputation System

This section describes our reputation system and the proof-
of-reputation. We first highlight the shortcomings of pre-

vious systems. For example, a proof-of-work based system
requires a miner to show that it has done some work in
order to include its set of proposed transactions, and hence
extend the chain. Thus, a miner that has a high computing
power can join the system at any time and can play attacks.
Similarly, in the proof-of-membership system [15], a miner
has to show that it has created enough blocks recently to
demonstrate its computing power, then it can issue mi-
croblocks and can gain power in the consensus protocol.
Again, an attacker with higher computing power can join
the system at any time and can break the system. However,
with proof-of-reputation, in addition to creating enough
recent keyblocks, a miner has to show that it has behaved
honestly and created keyblocks regularly for a period of
time before being able to launch any attacks on the system.

Given the blockchain, the reputation of any miner can
be calculated at any point in time. Accordingly, each miner
maintains its own copy of the reputation score of all miners,
based on the globally agreed blockchain. We denote by R
the reputation of a miner, which can take values in [0, 1].
R is calculated according to Algorithm 2. The notations are
defined in Table 1.

In particular, Ext € [0,1] is the (optional) external
source reputation of the miner. For example, when Citybank
joins RepuCoin, it may have a starting reputation that is
higher than a random individual joiner. In RepuCoin, this
is encoded by using Fxt>. H € {0,1} is the honesty of
the miner, which is set to “1” for each new joiner, and is
set to “0” if a miner has misbehaved*. A miner is said to
misbehave if:

o it presents conflicting signed messages to other con-
sensus group members; or

e it commits microblocks with conflicting transactions
when the miner is elected as leader.

Algorithm 2 Reputation algorithm

Input: L, {k;}i_,, {mj}Nl 1, m, ¢, a X\ H, and Ext.

Output: Reputation R € fO, 1] of the corresponding miner.

t
1: mean; = 217‘1 .
. _ 1 Nmy
2: mean,, = N it
t
R] t ki Zi—1kiyo
Btsk =\ Xio(F—)
: = /L. N (™1 N Ty
4 sm = \/N, =1 (5 N 221 m
. _ meany,
5: y1 = s
6: if N; > 1 then
__ meanyy
Y2 = 115
“m
7: else
8: ya =1
9: end if

10: z =y1 - y2 - L
11: f(=) = 51+ x522%7)
12: R = min(1, H - (Ext + f(x)))

Upon their occurrence, an evidence of such misbehavior
is included in the blockchain as a special transaction, similar
to past work [13, 34]. Non-Byzantine miners are incentivised

3. Note that this is only used to optimize the reputation system.
However, to study the worst case, our analysis in §6.3 also shows the
security guarantee without having this external source of reputation.

4. Once the honesty H of a miner has been set to “0”, the Ext of the
corresponding entity will be set to “0” as this entity is not trustworthy.

to place such a proof of fraud into the blockchain, to make
malicious acts visible to everyone, hence preserving the
health of the system. If a cryptocurrency system is not
healthy, then its users will lose their confidence in the
system. This may result in the plummeting of its currency
exchange rate, and all miners will have a loss. So, miners are
incentivised to keep the health of the system for their own
profit.

The reputation function. We intended to define the
social objectives of reputation in RepuCoin in a precise
and parameterizable way. Those objectives are: (i) careful
start, through an initial slow increase; (ii) potential for quick
reward of mature participants, through fast increase in mid-
life; (iii) prevention of over-control, by slow increase near
the top.

The formula defining the progression (resp. regression)
of reputation, f(x) above, is a sigmoid function. It ensures
that miners, at the start, can only increase their reputation
slowly, even if having a strong computing power. A miner
needs to stay in the system and behave honestly for a
long enough period, to progressively increase its reputation
up to the turning point, where it is trusted enough to be
incentivized to make it grow more quickly, to more inter-
esting levels. And finally, the curve inflects again, so that
the reputation does not grow forever, but asymptotically
reaches a plateau that promotes a balance of power amongst
miners. The reputation function is also parameterized, to
allow to mark these points precisely, namely the parameters
(a, A) can be tuned to adopt changes on when and how
fast/slow miners can increase their reputation. The slope of
f(z) is directly correlated with the value of \. The inflection
point of f(x) occurs at + = a, and is the point where a
miner’s reputation growth rate starts to decline.

We denote by a block chunk (or just ‘chunk” for simplic-
ity) a sequence of successive keyblocks in the blockchain.
Blocks chunks satisfy the following: (i) all block chunks are
of the same size, and (ii) any keyblock is included in exactly
one block chunk.

y1, defined at line 5 of Algorithm 2, captures the miner’s
“regularity” of generating keyblocks in each block chunk. In
other words, y1 shows how reqularly the miner contributes its
computing power to the system.

In particular, the numerator meany, of y; is the percent-
age of pinned keyblocks generated by the miner, represents
the fraction of valid work that a miner has contributed to
the whole system. In the denominator, s; is the standard
deviation of the pinned keyblocks generated by the miner,
indicates the regularity with which a miner contributes to
every chunk. Together, they guarantee that a miner’s repu-
tation is computed based on the miner’s integrated power.
Hence, a miner’s integrated power is given by the total
amount of valid work a miner has done over the period
of time it has been active and the regularity of that work
in the entire blockchain, rather than the miner’s mining
ability at a given time (or instantaneous power) as in classic
proof-of-work. As such, when the system has been operated
for some time, even a miner with strong computing power
cannot build-up its reputation quickly: it needs to contribute
honestly and regularly to the system to gain reputation. We
present a more detailed analysis in §6.3.

Similarly, > represents the “regularity” with which a

leader commits the defined number of microblocks when it
is selected. This incentivises leaders to optimize the through-
put of RepuCoin.

4.4 Adapting Existing BFT Protocols

RepuCoin uses existing leader-based BFT protocols support-
ing digital signatures, to pin blocks. Apart from modifying
the weight of the votes, RepuCoin also requires the follow-
ing changes to adapt the existing BFT protocols.

Secure bootstrapping. With the potentially unbalanced
amount of mining power in different blockchains, how to do
secure bootstrapping is an open challenge in all blockchain
systems. This, however, is not a problem with the classical
BFT protocols, where the set of participants are predefined
and fixed. Thus, to adapt existing BFT protocols, we need to
provide a mechanism to establish a secure way to initialize
consensus group, when no keyblock is created.

In RepuCoin, we assume the existence of a social com-
munity where participants vote to make decisions on sev-
eral aspects of the system, such as the security parameters
and external reputation factors. Such community exists for
almost all permisionless blockchains. For example, with
BitCoin this is the community who votes for proposals such
as changing the maximum block size.

This community in RepuCoin votes a set of parties with
external reputation to ensure a controlled bootstrapping,
and record the result in the genesis block. The parties with
initial higher external reputation will form the consensus
group. During the secure bootstrapping phase, other miners
with small or zero external reputation will gradually gain
reputation and enter the consensus group.

View change. Classical BFT protocols provide view
change — leader election and membership update — as a
housekeeping function in the course of failures or recoveries
in the (static) system participants roster. In addition to these
technical functions, these protocols can be used in non-
standard ways in blockchain consensus. That was the case
for example of ByzCoin, where a new leader is elected
every time a new keyblock is created, by invoking the PBFT
view-change protocol [15]. Similarly, with RepuCoin a view
change is enforced by the pinning of a new keyblock, which
ends an epoch, and thus establishes a consistent cut where
the systems flushes (achieving consensus on the blockchain
closing the epoch). Thus, several operations can be safely
performed at this clean (re-)starting point: (i) a new consen-
sus leader is elected; (ii) and the consensus membership is
updated.

To adapt existing classical PBFI-like systems, the first
difference is that, for (i), the leader election is deliberately
provoked in this case (not on account of e.g., a failure) and
the criterion changes to random selection, as presented in
§4.1. For (ii), what happens is, again, a non-standard redef-
inition of the membership: the (ending epoch) consensus
group re-evaluates the rule for consensus group formation
(a quorum of the top reputed miners, see §4.2). Note that
this can directly and deterministically be derived from the
data in the blockchain, so consensus is safely achieved on
the new roster of X, which is installed for the new epoch.
We recall that these operations occur through stable and safe
states of the system, as mentioned before.

Crash/leave detection. As this is a permissionless envi-
ronment, any miner can join, leave or crash at any time. If
a consensus group member left the system, then RepuCoin
will eventually detect that this has happened, by checking
whether this member has been involved in the last instances
of the consensus. If it is the epoch leader, view change
ensues in the usual manner in BFT consensus protocols.

Message size. Most existing BFT protocols have been de-
signed for state machine replication, and even optimized for
short messages/commands. Performance shown in existing
publications mostly concerns tests with relatively “small”
block sizes. As shown in [35], the impact of largely increased
block sizes on blockchain consensus performance should
not be neglected either when choosing existing protocols,
or when designing blockchain-specific BFT protocols.

5 PERFORMANCE EVALUATION
5.1 Implementation

Setup. We extend the BFT-SMaRt [36] library for our Re-
puCoin implementation. We deploy each member of the
consensus group on a different machine, each having the
following specifications: Dell FC430, Intel Xeon E5-2680
v3 @2.5GHz, 48GB RAM. To simulate wide-area network
conditions, we impose a round-trip network latency of 200
ms between any two machines, and a maximum commu-
nication bandwidth between any pair of machines to 35
Mbps. To better simulate the system in the real world
scenario, we make use of the mining power distribution from the
Bitcoin mining network®. More details and justifications of our
setting, including the choice of POW mining rate and mining
power distribution, can be found in our technological report
[20].

Consensus goup. We consider consensus groups that
initially control from about 50% to 98.1% of computing
power. With the current Bitcoin mining power distribution,
the corresponding consensus group sizes would range from
4 to 19. However, since we show, in §6.3, that security
is hampered for consensus groups that control more than
90% computing power, given Bitcoin’s computing power
distribution, we only present the performance results with
consensus group controlling computing power from 44.7%
to 90%.

5.2 Consensus Latency

In this section, we measure the latency of our consensus im-
plementation , and compare it with the latency of the orig-
inal BFT-SMaRt. Such a comparison illustrates the timing
overhead that is incurred relative to using our reputation-
based weighted voting mechanism. We recall that in order
to reach consensus, BFT-SMaRt requires at least 2f + 1
members to agree on a value, while our reputation-based
weighted voting variant requires in addition that these
members (which are at least 2f + 1) have collectively more
than 2 of the reputation of the entire consensus group.

5. The sequence of computing power of the top 24 pools is (15.1, 10.1,
10.0,95,83,7.1,64,59,55,4.0,29,28,24,22,1.7,15,1.5,0.7, 0.5,
0.5, 0.3, 0.3, 0.2, 0.2), respectively. https:/ /bitcoinchain.com/pools (as
of April 2017)

1ann

—— Block size-L12KS
— Aok sise=THR
Block slze=2Mg
—— Bockzize-4ME

—=— Block siz=— 1KE
—— Rluck sise=517KR
TR Hlock slzz=1MB
Block siz=—2ME —
.

1on - —a— Rlock siso—dMA

Throughput (K transactions/sec)
/
i

a [£ n 1

d E 1 17
Consensus aroub size

r
Consensus aroub size

(a) Consensus latency (b) Throughput.

Fig. 2: Performance evaluation, where (a) provides a com-
parison of consensus latency between BFT-SMaRt (dashed
lines) and RepuCoin (straight lines); and (b) shows the
throughput of RepuCoin.

We run experiments using keyblocks of size 1KB and
microblocks of sizes 512KB, 1MB, 2MB, and 4MB. Unlike
microblocks, keyblocks are typically small in size as they do
not contain any transactions. Figure 2a presents the consen-
sus latency of RepuCoin. It shows that RepuCoin and BFT-
SMaRt have a similar consensus latency values and patterns.
For example, in both RepuCoin’s consensus and BFT-SMaRt,
consensus latency increases dramatically with the block size.
The reason behind this trend can be explained by two things.
First, it takes longer for the leader to propose microblocks to
the consensus group, and for the group members to transmit
a batch of the PROPOSE message which contains un-hashed
microblock. Second, computing the hash value of a larger
block and verifying the transactions it contains consume
more time.

Moreover, in both RepuCoin’s consensus and BFT-
SMaRt, when the group size increases from 4 (which con-
trols 44.7% computing power of the network) to 13 (which
controls 90% computing power of the network), the consen-
sus latency increases by more than 50%. However, despite
this increase in latency, consensus can be reached in about
0.5-1.2 second, even when considering the blocks of size
4MB.

5.3 Throughput

Figure 2b presents the throughput of RepuCoin. First, as
expected, our results in Figure 2b show that the smaller
the consensus group the higher the throughput. For exam-
ple, using 2MB microblocks, the throughput increases from
slightly more than 10000 TPS with a consensus group of size
13 (controlling 90% computing power), to 22500 TPS with
a consensus group of size 4 (controlling 44.7% computing
power). Second, for all group sizes, one can see, as expected,
that the throughput tends to increase as blocks become
larger, and this is what we observe up to 2MB. For example,
when the consensus controls 90% computing power of the
entire network (group size of 13), the throughput for blocks
of 512KB, 1MB, and 2MB, is respectively equal to 6200, 9400,
and 10000 TPS. We observe that using larger block sizes
(e.g., 4MB), decreases the throughput. However, this outlier
is an artefact of the underlying protocol we use, i.e., the BFT-
SMaRt library, whose sheer performance, as a regular BFT
protocol, is seemingly affected for very large block sizes, as
discussed in Section 4.4.

When RepuCoin provides the best security guarantee
(when the consensus group controls 90% computing power,
as shown in §6.3), RepuCoin achieves a throughput of 10000
TPS when using 2MB blocks. This means that RepuCoin can
handle the average transaction rates of Paypal and VISA
as measured in real-life, which are 115 TPS and 1700 TPS
respectively.

According to a survey [37], our throughput, i.e., 10K TPS,
is outstanding among the analysed systems, as the reported
peak figure for permissionless ledgers is also 10k TPS. We
refer readers to the survey for more details.

6 SECURITY ANALYSIS

In this section, we present our analysis of the security
provided by the mechanisms used in RepuCoin, namely
reputation-based weighted voting consensus and proof-
of-reputation function. We begin by discussing the safety
and liveness correctness conditions of the reputation-based
weighted voting consensus protocol in Section 6.1, with pre-
defined bounds on the relative reputation scores of partic-
ipants. Then, we present in Section 6.2 a theorem (proven
in [20]) showing that the achievement of those scores, which
give decision power, is physically bounded by the condi-
tions imposed on the growth rate of the proof-of-reputation
function. Next, in Section 6.3, we present experiments exem-
plifying concrete values for the decision power growth vs.
time in several situations, showing that RepuCoin indeed
achieves very high stochastic robustness against attacks on
its liveness or safety. Moreover, in Section 6.4 we provide
an analysis of the non-rationality of infiltration attacks, with
a comparison on the cost of attacking different systems. Fi-
nally, we describe in detail how RepuCoin prevents known
attacks in Section 6.5.

6.1 Reputation-based Consensus Safety and Liveness

Unlike PoW-based systems, when wusing proof-of-
reputation, an attacker cannot break the system by
merely relying on its mining ability, i.e., its computing
power. An attacker rather needs to gain reputation and
hence contribute to the blockchain, by yielding pinned
keyblocks. We recall that the reputation of a miner with
correct behavior, in RepuCoin, builds essentially on its
continued and regular contribution to the entire blockchain
in addition to its external source of reputation Fxt.

To study the worst case scenario, we do not consider
any miner to have established an agreed upon trust, i.e.
external reputation Ext = 0 for all miners. For presentation
simplicity we assume that every miner behaves honestly
for some period of time that allows the attacker to have
a sufficient reputation when intending to attack the system.

Let X = {x1,..., 7%} be the consensus group. We note
R; the reputation score of miner x;, which gives it decision
power. RepuCoin can rely on any underlying secure consen-
sus algorithm, that can be adapted according to Section 4.4,
to guarantee safety and liveness.

RepuCoin guarantees consensus safety, if: (i) the attacker
controls no more than f miners in the consensus group;

or (ii) the consensus group members compromised by the
attacker have a total reputation R 4 such that

< Zﬁl R
3

where R; is calculated according to Algorithm 2. In other
words, an attacker cannot break the safety unless both (i)
and (ii) do not hold.

In addition, if any of the above two conditions does not
hold, then an attacker can break the liveness of the system,
i.e., an agreement may not be made on any block.

Ry

6.2 Bounded Proof-of-Reputation Function Growth

We hook the stochastic equations governing the evolution of
our system to ‘physics”: it remains impossible to gain power
faster than some upper bound derived from the need to
perform a number of continued honest contributions to the
network — what we called ‘integrated power’, to differ-
entiate from ‘instantaneous power’, haunting all previous
works by leading to flash attacks.

Our Theorem 1 (proven in [20]) shows that the proof-of-
reputation function growth rate is bounded. In consequence,
the rate of change of the decision power mentioned in the
previous section is, at any time, limited.

Theorem 1. In RepuCoin, if the mining power of each partic-
ipant remains the same, then at any time of the system,
the rate of reputation increase of any node is bounded
by i, and the corresponding increase of the decision
power of any consensus group member ¢ is bounded by
%Ameank,iAL.

Thus, with RepuCoin, the rate of increase of decision
power in the entire system is limited regardless of the
newly joined computing power. This makes RepuCoin se-
cure against flash attacks launched by a late joiner, even
when the attacker has a large amount of computing power.
We refer readers to [20] for the full analysis and proofs.

6.3 Proof-of-Reputation Attack Resilience

So far, we have shown analytically that: RepuCoin is safe
and live (Section 6.1) as long as decision power of attackers
is below a defined threshold; then, we showed (Section 6.2)
that it takes a known and bounded effort for attackers to
reach that threshold and to control the consensus group.
This section analyses how much would the attack effort be
to reach the above-mentioned control.

Figure 3 and Table 2 show the requirements both in terms
of the computing power and the time that should be spent
doing honest work in the system, in order for an attacker to
successfully launch any attack. In other words, they present
the minimum effort to attack the liveness of RepuCoin.

Figure 3 indicates that the system is most secure when
the consensus group X controls 90% computing power (with
13 nodes, ie., f 4), and is most vulnerable when it
controls 98.1% computing power. In fact, we can observe
that the system (when X controls less than 90% comput-
ing power) becomes more secure as the consensus group
controls more computing power of the network. After that

10

Ll
TR
RN
RN
M
n an 40
Adversary combuting

(a) Attack after 3 months

w
]
&
in
=
z
E

0

=

n an 40
Adversary combuting

(b) Attack after 12 months

N an k) ar
bower %] bower %]

Fig. 3: Minimum effort to break the liveness of RepuCoin.
We consider cases where an attacker joins after the system
has operated for 3 months and a year, and where the
consensus group controls mining power ranging from 44.7%
(i.e., £=1, |X| = 4) to 98.1% (i.e., f=6, |X| = 19). The x-axis
shows the needed computing power and the y-axis shows
the required time to attack the system.

increase the group size begins to depreciate the system
security. These results can be explained by the fact that
when the consensus group size grows beyond some point,
the distribution of the computing power and reputation in
the enlarged group could highly vary. For example, when
X controls about 100% computing power of the system,
more miners with relatively low reputation might become
part of the consensus group; hence an attacker needs less
time (and reputation) to infiltrate the consensus group and
launch attacks. Our results, in Figure 3, show that if the
consensus group controls 90% initial computing power, then
an attacker joining after 3 months of system operation with
26%, 34%, and 51% computing power of the entire network
would need to work honestly for 22 months, 6 months, and
2.4 months respectively, to break the liveness of the system.
If an attacker joins after 1 year, then it is infeasible for
this attacker to break the system’s liveness (and thus the
system’s safety) with a computing power < 26%; and the
attacker would need 2 years (resp. 10 months) when pos-
sessing 34% (resp. 51%) of the system’s computing power.
We say that it is infeasible for an attacker with < 26% to
successfully launch attacks, as our analysis shows that the
attacker would have to contribute to the system honestly
for 108 years before being able to do so. It is worth noting
that an attacker with computing power p, joining a system
whose computing power is p; would have p;:‘jps % 100% of
the system’s computing power.

In Table 2, we provide a different view on the attackers
ability of successfully attacking the system’s liveness. Break-
ing RepuCoin’s safety is even harder than, at best as difficult
as, breaking its liveness. It shows that an attacker who wants
to break the system within one month after joining, i.e., by
making the system lose liveness, would need to control at
least 90% of the system’s computing power, if that attacker
joins after 3 months of the system being in operation. An
attacker joining the system at a later time, e.g. 1 year (resp.
1.5 years) after the system operation, would never succeed
in breaking the system’s liveness nor safety within a period
of 3 months after joining, and would require at least 68%
(resp. 91%) of the system’s computing power to launch at
attack within 6 months after joining.

TABLE 2: The minimum computing power (CP) and cost
required to break the liveness of RepuCoin within a targeted
time period, when an attacker joins the system at different
times. sys : */N means that the cost of attacking RepuCoin
is at least IV times as high as the cost of attacking sys, where
sys is either Bitcoin (BTC) or ByzCoin (BYZ).

Joining time\ 1 week 1 month 3 months 6 months
Target

1 month infeasible CP: 45%; CP: 30%; CP: 27%,;
BTC: *635; BTC: *1271; BTC: *2287;

BYZ: *6 BYZ: *11 BYZ: *20

3 months infeasible CP: 90%; CP: 45%; CP: 33%;
BTC: *1270; BTC: *1906; BTC: *2795;

BYZ: *11 BYZ: *17 BYZ: *25

6 months infeasible infeasible CP: 68%; CP: 45%;
BTC: *2880; BTC: *3812;

BYZ: *26 BYZ: *34

9 months infeasible infeasible CP: 90%; CP: 54%;
BTC: *3812; BTC: *4574;

BYZ: *34 BYZ: *41

12 months infeasible infeasible infeasible CP: 68%;
BTC: *5760;

BYZ: *51

18 months infeasible infeasible infeasible CP: 91%;
BTC: *7708;

BYZ: *69

20 months infeasible infeasible infeasible infeasible

6.4 Non-Rationality of Infiltration Attacks

We hook heuristics to well-founded ‘rationality”: there is ba-
sically no rational economic model in RepuCoin that makes
it worth to attack the network, i.e. it always costs much more
than what would be gained, due to the following reasons.

First, attacks can only be successful after gaining enough
reputation, by means of a lot of past investment and time
spent (unlike all previous works, based on instantaneous
power, a.k.a. computing power, which can be harnessed in
several expeditious ways). Second, reputation goes to zero
after the first detected attack (unlike all previous works,
which essentially don’t have memory and allow repeated
attacks). Last but not least, the bribery attack by buying rep-
utation is also made ineffective. More precisely, an adaptive
adversary may try to acquire one or more nodes with high
reputation, in order to trigger a ‘flash reputation” attack.
However, buying that reputation based power should cost
at least as much as the investment previously made by the
sellers, and the gain upon first use (and last, since reputation
goes to zero), would never match the expense. So, it always
costs much more than what would be gained.

To better illustrate the cost in different systems, Table
2 shows the cost of successfully attacking RepuCoin in
comparison to the cost of attacking Bitcoin and ByzCoin,
where the former is the most impactful system to date,
and the latter is the only existing system where the voting
power is also accumulated using mining power. For the
analysis, we make use of the Bitcoin real-world mining
power distribution, as presented in Section 5.1.

To successfully attack Bitcoin, in the best case (not
considering the selfish mining attack), an attacker needs
to have 51% of the computing power, and is required to
maintain this computing power only for about an hour if
6 confirmations are required, to mine its own private chain
on the side. Let « be the computing power (in unit) of the
entire network, then the cost for each successful attack on

11

TABLE 3: Summary comparison of attack resilience

Attacks | Bitcoin | Bitcoin-NG | ByzCoin | RepuCoin

Flash attack X X X Vv
Selfish mining attack X X X V4
Attack on consistency X X v Vv
Attack on liveness 4 4 X Vv
Double spending attacks X X 4 Vv
Eclipse attacks X X e a

/ — The system is secure against this attack.
X — The system is vulnerable to this attack.

! The system is secure against eclipse attacks for double spending purpose,
however, if an attacker is able to partition the network, then it can
temporally delay the consensus process and reduce the throughput.

Bitcoin is about 0.51ar, where r is the price of maintaining
1 unit of computing power per hour.

With ByzCoin, in the best case (not considering the self-
ish mining attack), an attacker needs to have 34% computing
power, and to maintain this power for the entire window
(i.e. 1008 blocks), which is about a week. Thus, the cost is
about 168 - 0.34ar, which is 57.12ar. The cost of repeating
this attack is the same, i.e., 57.12ar.

With RepuCoin, in the worst case, where an attacker joins
at the beginning of the system, RepuCoin does no better
than Bitcoin and ByzCoin upon the first attack. However, to
repeat the same attack, the attack would cost much more,
as the reputation of the attacker would go to zero, and the
attacker would be considered a late joiner.

For a later joined attacker, the minimum cost can also
be calculated based on the required computing power, as
shown in Table 2. For example, for a 6-month late joined
attacker, to successfully attack the system within 3 months,
the cost of attack is about 2160 - 0.68ar, which is about
1469ar. That is, the cost is 26 times as high as the cost
of attacking ByzCoin, and 2880 times as high as the cost
of attacking Bitcoin. Taking another example scenario, for
a l-year late joined attacker, it is infeasible to successfully
attack the system within 3 months, even with the comput-
ing power of the entire network. However, the attacker is
able to attack the system within 6 months with a cost of
4320 - 0.68ar, which is about 2938ar. In this case, the cost is
51 times as high as the cost of attacking ByzCoin, and 5760
times of the cost of attacking Bitcoin.

6.5 Defense Against Specific Attacks

This section discusses defences of existing protocols against
known attacks. Table 3 summarizes a comparison between
Bitcoin, Bitcoin-NG, ByzCoin, and RepuCoin. More detailed
discussions can be found in our report [20].

Flash attacks. In flash attacks [8], an attacker is able to
obtain a temporary majority of computing power by renting
enough mining capacity. This would break the security
assumption of classic proof-of-work based systems.

RepuCoin, however, is resilient to flash attacks. As
shown in §6, even an attacker with high computing power,
depending on when that attacker joins, might require a
very long period of time before being able to gain enough
reputation to harm the system.

Selfish mining attack. In a selfish mining attack [6], an
attacker keeps its mined blocks private, and publishes them
according to some strategy that would allow the attacker

to claim all rewards (with >25% computing power).We
refer readers to [6, 7, 16] for more details on the attack, its
generalization and its optimization.

RepuCoin pins each created keyblock, and new key-
blocks can only be created based on the pinned keyblock.
Given that RepuCoin relies on a reputation-based consensus
and a secure signature scheme, no attacker can predict the
hash value of a pinned block without controlling at least
2f+1 consensus group members that collectively have more
than % of the reputation of the entire consensus group. So,
a selfish miner cannot gain any advantage in RepuCoin by
hiding its created blocks.

Blockchain consistency and system liveness. Although
Bitcoin-NG provides a high transaction throughput, it does
not solve or address the consistency issues of Bitcoin.
Namely, all transactions are only probabilistically valid.
ByzCoin addresses these consistency issues providing de-
terministic transaction guarantees while achieving a high
throughput. However, ByzCoin can permanently lose live-
ness during reconfiguration [17, 27], and a malicious miner
can repeatedly make ByzCoin lose liveness temporarily [15].

RepuCoin provides strong transaction consistency and
better liveness guarantees, as RepuCoin relies on a
reputation-based Byzantine fault-tolerant consensus. Specif-
ically, the consensus protocol in RepuCoin is deterministic
for both keyblocks and microblocks.

Double spending attacks. RepuCoin addresses the dou-
ble spending attack by speeding up the confirmation process
to less than a few seconds, even when a block size is as large
as 4MB. In addition, RepuCoin provides a deterministic
consistency guarantee rather than a probabilistic one. Deter-
minism is achieved by pinning microblocks and keyblocks
through a consensus scheme using a reputation-based vot-
ing mechanism. Pinned microblocks and keyblocks are non-
reversible, a guarantee provided by our use of consensus.

Eclipse attacks and isolated leaders. In partial (or full)
eclipse attacks [4, 5], an attacker capable of delaying infor-
mation that a victim expects to receive is able to launch
double spending attacks and selfish-mining attacks.

RepuCoin does not prevent an attacker from fully iso-
lating a victim or delaying messages from a victim. How-
ever, given that blocks are pinned, the attacker cannot
successfully launch double spending attacks, as previously
explained. In the extreme case, some group members may be
isolated temporally due to attacks on the network, e.g. those
creating partitions. Such network attacks may delay the
block pinning process and prevent RepuCoin from making
progress. However, RepuCoin would recover as soon as the
messages are delivered, and the attacker can neither create
a fork of the blockchain, nor double spend any coin.

7 CONCLUSION

RepuCoin provides proof-of-reputation as an alternative
way to provide a strong deterministic consensus, and
be robust against attacks, in a permission-less distributed
blockchain system. All BFT-based blockchain systems (e.g.
[15, 17, 38-40]) are bound to the coverage of the assumption
on the maximum number of faulty players, f, or their de-
cision power quota thereof. RepuCoin, although belonging
to that generation of systems, is the first to deploy effective

12

mitigation measures that reduce brittleness in the face of
overwhelming adversary power, where other systems give
in. Namely, it provides security guarantees against an at-
tacker who can control a majority of the overall computing
power for a duration that increases with the joining time of
the attacker.

Based on the strong deterministic guarantee derived
from reputation-based weighted voting, the robustness of
RepuCoin grows with legitimate operation time: the later
the attacker joins, the more secure the system is. For ex-
ample, an attacker that joins the system after it has been
operating for a year, would need at least 51% of the overall
computing power and would need to behave correctly in
the system for 10 months before being able to successfully
make RepuCoin lose liveness. Breaking RepuCoin’s safety
is at least as difficult as breaking its liveness. Further dis-
cussions on secure bootstrapping, formal security analysis,
and applying our PoR to other virtual mining systems (e.g.
proof of stake) can be found in our technological report [20].

ACKNOWLEDGMENT

This work is partially supported by the Fonds National
de la Recherche Luxembourg (FNR) through PEARL grant
FNR/P14/8149128.

REFERENCES
[1]

(2]

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic
Cash System. 2009.

Ghassan O. Karame, Elli Androulaki, and Srdjan Cap-
kun. “Double-spending Fast Payments in Bitcoin”. In:
CCs. 2012.

Maria Apostolaki, Aviv Zohar, and Laurent Vanbever.
“Hijacking Bitcoin: Routing Attacks on Cryptocurren-
cies”. In: IEEE S&P. 2017, pp. 375-392.

Arthur Gervais et al. “Tampering with the Delivery of
Blocks and Transactions in Bitcoin”. In: CCS. 2015.
Ethan Heilman et al. “Eclipse Attacks on Bitcoin’s
Peer-to-Peer Network”. In: USENIX Security. 2015.
Ittay Eyal and Emin Giin Sirer. “Majority Is Not
Enough: Bitcoin Mining Is Vulnerable”. In: FC. 2014.
Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv
Zohar. “Optimal selfish mining strategies in Bitcoin”.
In: FC. 2016.

Joseph Bonneau. “Why Buy When You Can Rent? -
Bribery Attacks on Bitcoin-Style Consensus”. In: FC.
2016.

Lightning Network. 2017. URL: https: / / lightning .
network/.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments. 2015. URL:
tinyurl.com/y9xoa42u.

Kyle Croman et al. “On scaling decentralized
blockchains”. In: FC. 2016.

Yonatan Sompolinsky and Aviv Zohar. “Secure high-
rate transaction processing in bitcoin”. In: FC. 2015.
Ittay Eyal et al. “Bitcoin-NG: A Scalable Blockchain
Protocol”. In: NSDI. 2016.

J. Liu et al. “Scalable Byzantine Consensus via
Hardware-assisted Secret Sharing”. In: IEEE Transac-
tions on Computers (2018).

3]

(4]
[5]
6]
(7]

8]

[9]

(10]

(11]
(12]
[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]
(27]

(28]

[29]

(30]

(31]

(32]

(33]
[34]

(35]

Eleftherios Kokoris-Kogias et al. “Enhancing Bitcoin
Security and Performance with Strong Consistency
via Collective Signing”. In: USENIX Security. 2016.
Kartik Nayak et al. “Stubborn Mining: Generalizing
Selfish Mining and Combining with an Eclipse At-
tack”. In: IEEE S&P. 2016.

Ittai Abraham et al. “Solidus: An Incentive-compatible
Cryptocurrency Based on Permissionless Byzantine
Consensus”. In: CoRR abs/1612.02916 (2016).

Rafael Pass and Elaine Shi. “Hybrid Consensus: Ef-
ficient Consensus in the Permissionless Model”. In:
DISC. 2017, 39:1-39:16.

Jan Vermeulen. VisaNet handling 100,000 transactions
per minute. MyBroadband. https:/ /mybroadband.co.
za /news /security /190348- visanet-handling-100000-
transactions-per-minute.html. 2016.

Jiangshan Yu et al. RepuCoin: Your Reputation is Your
Power. Cryptology ePrint Archive, Report 2018/239.
https:/ /eprint.iacr.org /2018 /239. 2018.
QuantumMechanic. Bitcoin Forum - Proof of Stake in-
stead of Proof of Work. 2011. URL: https:/ /bitcointalk.
org/index.php?topic=27787.0.

Andrew Miller et al. “Permacoin: Repurposing Bitcoin
Work for Data Preservation”. In: S&P. 2014.

Sunoo Park et al. “Spacemint: A Cryptocurrency
Based on Proofs of Space”. In: IACR Cryptology ePrint
Archive (2015).

Sunny King and Scott Nadal. “Ppcoin: Peer-to-peer
crypto-currency with proof-of-stake”. In: self-published
paper, August 19 (2012).

Iddo Bentov et al. “Proof of Activity: Extending Bit-
coin’s Proof of Work via Proof of Stake”. In: ACM SIG-
METRICS Performance Evaluation Review 42.3 (2014),

pp- 34-37.
Intel. Proof of elapsed time (PoET). 2016.
Philipp Jovanovic. ByzCoin: Securely Scaling

Blockchains. 2016.

Miguel Castro and Barbara Liskov. “Practical byzan-
tine fault tolerance and proactive recovery”. In: ACM
Trans. Comput. Syst. 20.4 (2002), pp. 398—-461.

Giuliana Santos Veronese et al. “Efficient Byzantine
Fault-Tolerance”. In: IEEE Trans. Computers 62.1 (2013),
pp- 16-30.

T. Distler, C. Cachin, and R. Kapitza. “Resource-
Efficient Byzantine Fault Tolerance”. In: IEEE Trans-
actions on Computers 65.9 (2016), pp. 2807-2819.
Dahlia Malkhi and Michael K. Reiter. “Byzantine Quo-
rum Systems”. In: Theory of Computing. 1997.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
“Consensus in the presence of partial synchrony”. In:
JLACM. 1985.

David K. Gifford. “Weighted Voting for Replicated
Data”. In: SOSP. 1979.

Adam Back et al. Enabling blockchain innovations with
pegged sidechains. 2014. URL: tinyurl.com/mj656p7.
Jodo Sousa, Alysson Bessani, and Marko Vukolic. “A
Byzantine Fault-Tolerant Ordering Service for the Hy-
perledger Fabric Blockchain Platform”. In: 48th An-
nual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg City,
Luxembourg, June 25-28, 2018. 2018, pp. 51-58.

13

[36]

(371

(38]

(39]

[40]

Alysson Neves Bessani, Jodo Sousa, and Eduardo
Adilio Pelinson Alchieri. “State Machine Replication
for the Masses with BFT-SMART”. In: DSN. 2014.
Shehar Bano et al. “Consensus in the age of
blockchains”. In: arXiv preprint arXiv:1711.03936
(2017).

Andrew Miller et al. “The Honey Badger of BFT
Protocols”. In: CCS. 2016.

Yossi Gilad et al. “Algorand: Scaling Byzantine Agree-
ments for Cryptocurrencies”. In: SOSP 2017. 2017,
pp- 51-68.

Eleftherios Kokoris-Kogias et al. “OmniLedger: A Se-
cure, Scale-Out, Decentralized Ledger”. In: IEEE Sym-
posium on Security and Privacy (2018).

Jiangshan Yu is currently a lecturer (equivalent
to U.S. assistant professor) at Monash Unvier-
sity, Australia, and an honorary research fellow
at the University of Birmingham, where he re-
ceived his Ph.D in computer science in 2016.
Previously, he was a research associate at SnT,
University of Luxembourg (2017). The focus of
his research has been on design and analysis of
cryptographic protocols, cryptographic key man-
agement, blockchain consensus, and ledger-
based applications.

David Kozhaya is a Research Scientist at ABB
Corporate Research, Switzerland. He received
his PhD in Computer Science in 2016 from
EPFL, Switzerland. His research interests in-
clude reliable distributed computing, real-time
distributed systems, and fault- and intrusion-
tolerant distributed algorithms. His past work ex-
periences span across interdisciplinary domains
ranging from research, teaching, financial and
market analysis, in addition to the management
of various non-profit organizations.

Jeremie Decouchant is currently a research
associate at SnT, University of Luxembourg. He
received his Ph.D in computer science from
the University of Grenoble-Alpes, France. Before
that he obtained an engineering degree (MSc)
from the Ensimag engineering school, in Greno-
ble. His research focused on the design and
analysis of mechanisms to protect distributed
systems against selfish or Byzantine faults. More
recently, he studied how to rely on distributed
systems and privacy principles to improve the

genomics workflows.

Paulo Esteves-Verissimo (Fellow, IEEE; Fel-
low, ACM) is currently a Professor and FNR
PEARL Chair at the SnT and FSTC, University of
Luxembourg (UL), and head of the CritiX group
(http://wwwen.uni.lu/snt). He interests span se-
cure and dependable distributed architectures,
middleware and algorithms. Verssimo is Chair
of the IFIP Working Group 10.4 on Dependable
Computing and Fault-Tolerance and Vice-Chair
of the Steering Committee of the IEEE/IFIP De-
pendable Systems and Networks (DSN) Confer-

ence. He is an Associate Editor of the IEEE Transactions on Computers.
He is the author of over 180 peer-refereed publications and co-author of
five books.

