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The Lamb waves propagating in an elastic plate in vacuo generate compressional (L) and 
shear type (T) plate vibrations which are coupled due to the boundary conditions. Without such 
coupling, their phase-velocity dispersion curves would form two intersecting families which at 
high frequency tend towards the elastic-wave speeds CL and CT, respectively. It is shown that the 
coupling causes a repulsion of the dispersion curves similar to that encountered in atomic 
physics for the energy levels of atoms combining into molecules, which prevents their 
intersection and at the same time exchanges the nature (L <-> T) of the underlying vibrations. 
However, in the repulsion regions a succession of dispersion curves combines to asymptotically 
approach the uncoupled L or T dispersion curves, respectively. 

1-INTRODUCTION 

One refers to the propagating modes of vibration of an elastic plate in vacuo as Lamb waves 1. Due 
to the symmetry of the problem about the median plane of the plate, there exists a family of symmetric 
Lamb modes denoted So, Si, S2 ..., and an antisymmetric family Arj, Ai, A2 ..., with well-known 
dispersion curves shown, e.g., for an aluminum plate in Fig. 1. The material parameters of Al were taken 
here as the longitudinal bulk velocity CL = 6.400 mm/|is, shear velocity CT = 3.100 mm/ps, and mass 
density p = 2,780 kg/m3. With the exception of the Ao and So waves which exist down to arbitrarily low 
frequencies, all Aj and S; propagating modes exist only above individual cutoff frequencies at the points 
where their phase velocities tend to infinity. In the limit of infinite frequency, the Ao and So curves tends 
towards the Rayleigh wave velocity CR on a half-space (}), while all other curves, after having lingered for 
a while around the value of CL, finally descend and approach the value of CT. There are, incidentally, 
some Si curves that intersect Aj curves ; this phenomenon was studied recently by Zhu and Mayer (2) who 
showed that around the crossover points, Lamb modes do not exist. We shall here be interested in the 
physical nature of the Lamb waves, and we ask whether a predominantly longitudinal or shear (flexural) 
character of a given Lamb mode can be established from the dispersion curves alone, without having to 
proceed to a calculation of displacements as was done in Ref. {}). 

2. THE PLATE IN VACUO : PERTURBATION BY THE COUPLING OF ELASTIC WAVES 

The characteristic equation for the vibrations of a plate in vacuo, which can be solved for the 
dispersion curves of the phase velocities Q of the Lamb modes A; and Si, is given in textbooks such as 
Refs. (1) or (9). For the more general case of two different fluids with sound speeds Cj and densities pj (j= 
1,2) bounding the plate on opposite sides and using a notation similar to that of Talmant, Ref. (5), it is 
given by : 
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sf = 4 k2 RT RL tanh (RL d 2 )  - (R: + k2y tanh (RT d12) 

- k; (pj RL/p Rj) tanh (RL dl2) tanh (RT d2) ,  
(2) 

and A: originates from S! by replacing every tanh by coth. For the case considered in the present section, 
J 

i.e. Pj = 0 (plate in vacuo) we introduce the notation S and A for the corresponding quantities. Further, 
R, = 2af (ci2 - ~ ; 2 ) ' ' ~  where m = T, L, 1 or 2, and Ci in the phase velocity of the i th plate mode, to be 
determined ; and k~ = ~ / C T  , o = 2 nf, while k is the propagation constant in the direction parallel to the 
plate. Solving Eq (1) with pj = 0 furnishes the curves of Fig. 1. In order to understand their features, which 
are marked by the coupling of co~npressional and shear waves through the boundary conditions of 
vanishing stresses at the interfaces, we may consider separately the limiting cases of (a) a fluid layer in 
vacuo (CT = O), and (b) an artificial layer in vacuo which only supports shear waves (CL = 0). The 
dispersion curves of the corresponding first few families of plate modes are shown in Fig. 2, marked by 
C T  = 0 or CL = 0. respectively (i.e. being correspondively of purely compressional of purely shear 
character). 

These two intersecting families of curves asyinptotically approach the values of CL or CT, 
respectively, in the limit of Id-+ -, which reveals their physical character as that of compressional or of 
shear waves, respectively. Although pl-esentcd together in Fig. 2, these two families are not simultaneously 
present since by e.g. setting CT = 0, we not only remove the coupling between L and T waves, but we 
remove the T waves altogether. In order to verily more directly the character of the dispersion curves, we 
carry out a perturbation treatment of Eq. (1) (with Pj = 0), starting out with the fluid layer (CT = 0) taken as 

the unperturbed case for which the phase velocity is designated as c;". This corresponds, of course, to the 
dispersion curve family denoted by C1. = 0 in Fig.2, i.e., having purely compressional character. 
Subsequently, we insert : 

C, = C;O' (1 + ti0) (4) 
in Eq. (1) (with Pj = O), where the correction is assured of first order in CT, and carry out a Taylor-series 
expansion in CT of Eq. (I), with details given in Ref. (10). This calculation shows that the correction to the 
Lamb speed in a fluid layer contains the dispersion equation of shear waves, and vice-versa. 

The resulting values for C. are shown in Fig. 3 plotted as solid curves. It is immediately apparent 
r' here that these "quasi-fluid", or 'quasi-compressional" dispersion curves reproduce closely the near-flat 

segments of the exact curves, revealing their compressional character. It is also seen that the steeply 
deviating portions of the exact as compared to the fluid-layer curves (following their repulsions), being 
initially reproduced by our first-order (in Cr) perturbation results, solid curves, are in fact due to the effect 
of the perturbation caused by the interaction of compressional and shear vibrations ; this reveals the 
increasing shear character of the steep portions of the dispersion curves, just as well as their eventual 

convergence at the value CT for fd -+ m, where they have turned 100 9% transverse (I). The corresponding 
change of physical character of the dispersion curves, after having passed through an episode of repulsion, 
corresponds exactly to the same phenomenon observed in the atomic case (3). 

For the case of a plate bounded by fluid on one side, and vacuum on the other, the dispersion curves 
of the fluid-borne (Stoneley-Scholte type) wave which is known from the studies of Grabowska (4) and 
Talmant (1) to be present. In such a case, a fluid-borne wave referred to as "A-wave" (5761, and often 
identified with the Scholte-Stoneley wave observed in related circumstances i 7 7 8 ) ,  is present which 
exhibits, jointly with the Ag Lamb wave, a similar repulsion phenomenon. This latter is caused by the 
presence of the fluid as a perturbation (10). Analogs of Ag and A waves, quite similar to those of the 
Grabowska plate case discussed in this aper, have also been found by calculations of circumferential- 8 wave dispersion curves on spherical (11, ) and cylindrical (12913) water-loaded, air-filled shells. 



3. CONCLUSIONS 

On the basis of perturbation considerations, we have clarified the physical character (L or T) of the 
Lamb waves on elastic plates in vacuo along separate portions of their dispersion curves. The coupling 
between L and T vibrations of the plate, which is caused by the boundary conditions, generates successive 
changes in character of a given Lamb wave along its dispersion curve, and also causes repulsions between 
neighboring dispersion curves of a given symmetry (symmetric or antisymmetric) that prevent then from 
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Fig. 2: Dispersion curves of a fluid plate in vacuo with soulld speed CL equal to that in aluminum (marked 
CT = O), and of an artificial plate supporting shear only, in vacuo, with shear speed CT equal to that in 
aluminum (marked CL = 0). 
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Fig. 1: Dispersion curves of phase velocity versus the freq~~ellcy-thickness product fd. 
: antisymmethc modes ; 0: symmetric modes. - - - : CL = 6.4 mm/ps ; - : CT = 3.1 mmlps. 
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Fig3 : Symmetric dispersion curve, and their approximation by first-order perturbation theory in CT, 
starting from the purely compressional case (solid cu~ves). 

intersecting. For decreasing perturbation (CT + O or CL -+ 0), segments of successive dispersion curves 
line up to approximate the uncoupled dispersion curves of purely L type (fluid layer) or of purely T type 
(artificial layer that supports shear only), respcctively. The character of a Lamb wave switches as the 
dispersion curve passes through a repulsion region, but the original character is carried over to the 
corresponding segment of the adjacent dispersion curve. 
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