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Many jammed particulate systems, such as granular and colloidal materials, interact via repulsive

contact forces. We find that these systems possess no harmonic regime in the large system limit (N ! 1)

for all compressions !! studied, and at jamming onset !! ! 0 for all N. We perform fixed energy

simulations following perturbations with amplitude " along eigendirections of the dynamical matrix. The

fluctuations abruptly spread to all modes for " ! "c (where a single contact breaks) in contrast to linear

and weakly nonlinear behavior. For "> "c, all discrete modes disappear into a continuous frequency

band. h"ci scales with 1=N and!!, which limits harmonic behavior to only overcompressed systems. The

density of vibrational modes deviates strongly from that predicted from the dynamical matrix when the

system enters the nonharmonic regime, which significantly affects its mechanical and transport properties.

DOI: 10.1103/PhysRevLett.107.078301 PACS numbers: 83.80.Fg, 61.43."j, 62.30.+d, 63.50."x

Introduction.—Granular materials, which are collections

of macroscopic grains that interact via contact forces, such

as sand, powders, pharmaceutical, and consumer products,

display strongly nonlinear spatio-temporal dynamics even

when they are weakly driven. In stark contrast to conven-

tional solids [1,2], granular solids display dispersive, atte-

nuated, and noisy acoustic response [3,4] for micro-strains.

However, we lack a fundamental understanding of the

relative contributions to the nonharmonic response that

arise from the distinct sources of nonlinearity in granular

media, i.e., from nonlinear, dissipative, and frictional

particle interactions [5], inhomogeneous force propaga-

tion [6,7], and the breaking and forming of intergrain

contacts [3].

In this Letter, we disentangle two sources of nonhar-

monic behavior in vibrated particulate media-the breaking

and forming of contacts between grains and the nonlinear

force law between interacting grains. To do this, we study

nearly isostatic jammed systems (in which the number of

contacts is the minimum required for mechanical stability)

so that even breaking a single contact has dramatic effects

on the vibrational response. Further, we assume that con-

tacting grains interact only via purely repulsive linear

spring forces, so that the power law of the interaction force

does not cause nonharmonic behavior.

In contrast, a number of studies of the vibrational re-

sponse of granular media [8] have focused on hyperstatic

packings that contain many more contacts than the mini-

mum required for mechanical stability. In hyperstatic

systems, low-energy vibrations can break contacts among

particles that belong to the ‘‘weak’’ force network [9], but

these packings remain rigid. In contrast, when isostatic

systems lose even a single contact, they become fluidized,

which leads to a qualitatively different vibrational response

than that for hyperstatic systems.

In addition, recent experimental studies of soft particle

packings [10] have compared the vibrational response from

the displacement matrix [11] to that inferred from the

dynamical matrix in the harmonic approximation [12].

However, we find that one-sided repulsive interactions

make jammed particulate materials nonharmonic even in

the limit of vanishing perturbation amplitude. Thus, one

cannot infer the vibrational response of jammed packings

from the dynamical matrix.

Specifically, we calculate the eigenmodes of the dy-

namical matrix for mechanically stable (MS) frictionless

packings, subject the packings to vibrations along the

harmonic eigenmodes, and compare the frequency content

of the true vibrational response to that obtained from the

eigenvalue spectrum of the dynamical matrix. We find that

systems become nonharmonic (i.e., the response is not

confined to the original mode of excitation) when only a

single contact is broken (or gained) at a critical perturba-

tion amplitude "c that depends on the original mode of

excitation. We show that h"ci averaged over the modes of

excitation tends to zero in the large system limit even for

compressed systems, and tends to zero in the limit of zero

compression at all system sizes. Thus, jammed particulate

systems possess no harmonic regime in the large system

limit and at jamming onset for any system size. Further, we

show that in the nonharmonic regime, the density of vibra-

tional modes deviates strongly from that obtained using the

dynamical matrix.

Model and Simulations.—We focus on frictionless MS

packings of bidisperse disks in 2D with system sizes in the

range N ¼ 12 to 1920 particles using periodic boundaries
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in square simulation cells (2N=3 disks with diameter# and

N=3 disks diameter 1:4#). The disks interact via the linear
repulsive spring potential

VðrijÞ ¼
$

2

!

1"
rij

#ij

"

2

"

!

1"
rij

#ij

"

; (1)

where rij is the center-to-center separation between disks i

and j, $ is the characteristic energy scale, "ðxÞ is the

Heaviside function, and #ij ¼ ð#i þ #jÞ=2 is the average

diameter. Energy, length, and time scales are measured in

units of $, #, and
ffiffiffiffiffiffiffiffiffiffi

m=$
p

#, respectively.

The MS packings were generated using the compression

and energy minimization protocol described in Ref. [13].

Each MS packing is characterized by a packing fraction!J

above which the potential energy V and pressure p of the

system begin to increase from zero. The distance in pack-

ing fraction from!J is tuned from!! ¼ 10"8 to 10"2 and

the positions of the particles are accurate to 10"16 at

each !!. We calculate the eigenfrequencies !d
i and

eigenmodes êi¼f ~e1i ; ~e2i ;...; ~eNi g¼fe1xi;e1yi;e2xi;e2yi;...;eNxi;eNyig
(with ê2i ¼ 1) in the harmonic approximation from the

dynamical matrix evaluated at the MS packing. Since the

systems are mechanically stable, theN ¼ 2N0 " 2 eigen-

frequencies !d
i > 0 [14], where N0 ¼ N " Nr and Nr is

the number of rattler particles with less than three contacts

per particle. We index the eigenfrequencies from smallest

to largest, i ¼ 1 toN , removing the two trivial eigenfre-

quencies corresponding to uniform translations.

To test whether the packings possess a harmonic regime,

we apply displacements to individual particles and then

evolve the system at constant total energy E. Specifically,
at time t ¼ 0, we apply the displacement

~R" ~R0 ¼
ffiffiffiffi

N
p

"êi; (2)

where the new configuration ~R ¼ f ~R1; ~R2 . . . ; ~RNg ¼
fx1; y1; . . . ; xN ; yNg, and ~R0 is the original MS packing.

We remove rattlers from the MS packings prior to applying

the perturbations. A sample perturbation for N ¼ 12 along

the 6th mode is shown in Fig. 1(a). For t > 0, we solve

Newton’s equations of motion at constant E, and measure

the particle displacements and number of contacts as a

function of the number of oscillations n for perturbations

along each mode k.
We also calculate the density of vibrational frequencies

Dð!cÞ using the displacement matrix [11] versus the per-

turbation amplitude, where !c
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=mci
p

and ci are the

eigenvalues ofCkl ¼ hð ~Rk " ~R0
kÞð ~Rl " ~R0

l Þi. The average is
taken over N random orthogonal modes of perturbation

and time scales greater than 100 times tc ¼ 2%=!d
1 . Data

were only included for packings that did not rearrange over

the measurement time scale.

Results.—In Fig. 1(b), we show the logarithm of the

power spectrum j ~Rð!Þj2, where ~Rð!Þ ¼
RnT6

0 dtei!t ~RðtÞ,
n ¼ 170 oscillations, and T6 ¼ 2%=!d

6 , as an intensity

plot versus the perturbation amplitude " (along the 6th

mode) and ! for the system in Fig. 1(a). This plot dem-

onstrates several key features. (i) There is an extremely

sharp onset of nonharmonicity at log10"
a
c=# ’ "6:8. For

"< "a
c , the system vibrates with ! ¼ !d

6 . Although "a
c

depends on the excitation mode, the transition for each
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FIG. 1 (color online). (a) Mechanically stable (MS) packing of

frictionless disks for N ¼ 12 at !! ¼ 10"5 (black solid) and a

packing perturbed along the 6th eigenmode of the dynamical

matrix by " ¼ 0:1# (red dashed). The vector lengths are pro-

portional to the displacements. (b) An intensity plot of the

logarithm of the power spectrum j ~Rð!Þj2 as a function of

frequency ! and perturbation " along the 6th eigenmode of

the system in (a) after 170 oscillations. The solid horizontal lines

indicate the 22 harmonic eigenfrequencies for (a). The inset

shows the same calculation except for a two-sided linear spring

potential. (c) Same as (b) except for N ¼ 58 at !! ¼ 10"5 with

perturbation in mode 40 after 150 oscillations. The inset shows a

close-up of the transition.
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mode is sharp. (ii) For " * "a
c , the response spreads to

include other harmonic eigenfrequencies [solid horizontal

lines in Fig. 1(b)] and j ~Rð!Þj2 '!"2 similar to equiparti-

tion in thermal equilibrium. (iii) For larger perturbations,

the power spectrum develops a continuous frequency band

in which the harmonic eigenfrequencies are completely

lost. At sufficiently large amplitudes, the dominant contri-

bution to the broad power spectrum approaches ! ¼ 0.

For larger systems the transition to nonharmonic behav-

ior is similar [Fig. 1(c)]. The inset to Fig. 1(c) shows that

large systems display an intermediate nonharmonic regime

in which a subset of harmonic modes is populated at onset

of nonharmonicity, " ¼ "a
c . To put the effects of one-sided

potentials into perspective, we compare these results with

those from two-sided spring potentials [i.e., Eq. (1) with

the argument of " replaced by 1" Rij=#ij]. For N ¼ 12,

the transition for systems with one-sided repulsive spring

interactions occurs at perturbations more than 104 times

smaller than those with double-sided spring potentials [14]

and the transition occurs slowly over a decade in " [inset to

Fig. 1(b)].

To quantify the harmonic to nonharmonic transition, we

calculate the number of particle contacts hNcit averaged
over time and define a harmonicity parameter Ak

k that

measures the spectral content of the particle displacements

in the eigenmode direction k at eigenfrequency !d
k follow-

ing a perturbation along eigenmode k:

Ak
k ¼

$

$

$

$

$

$

$

$

RnTk

0 ! ~RðtÞ ( êk cosð!
d
ktÞdt

"
RnTk

0 cos2ð!d
ktÞdt

$

$

$

$

$

$

$

$

; (3)

where ! ~RðtÞ ¼ ~RðtÞ " h ~RðtÞit. Ak
k ¼ 1 for harmonic sys-

tems and Ak
k ! 0 for nonharmonic systems that do not

oscillate in mode k at !d
k . We also calculate hAk

ki averaged
over all individually perturbed modes k.

In Fig. 2(a), we plot Ak
k and the deviation in the time-

averaged number of contacts !Nc ¼ N0
c " hNcit relative

to the unperturbed valueN0
c versus " along several modes k

for the system in Fig. 1(c). We find that Ak
k for each mode k

begins to decrease from 1 at the same "a
cðkÞ where the

average number of contacts hNcit begins to deviate from

N0
c . For perturbations along each mode k, the transition

from harmonic to nonharmonic behavior occurs when a

single existing contact breaks. To verify this, we plot in

Fig. 2(b) "a
cðkÞ versus the predicted amplitude "cðkÞ at

which the first contact breaks. The predicted value "cðkÞ
is obtained by solving R2

ij ¼ #2
ij for all contacting pairs of

particles i and j for a given MS packing and perturbation

along mode k, and identifying the minimum "cðkÞ ¼

minijj"ijðkÞj, where

"ijðkÞ ¼
j ~eijk ( ~R0

ijj
j ~eijk j2

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ð#2

ij " j ~R0
ijj2Þj ~eijk j2

j ~eijk ( ~R0
ijj2

v

u

u

u

t " 1

1

C

A: (4)

We find that " where Ak
k begins to decrease matches the

perturbation at which a single contact breaks [Fig. 2(b)]

over a wide range of !! and N with a relative error less

than 10"3 over 4 orders of magnitude in "cðkÞ. For larger
system sizes, it is possible that new contacts can form

before existing contacts break, but this does not occur for

the system sizes and compressions studied.

The rate at which energy input via a perturbation along

eigenmode k is transferred out of that mode and into other

displacement modes determines the shape of the decay of

Ak
k. In Fig. 2(c), we show Ak

k and hAk
ki versus "" "cðkÞ for

n ¼ 1, 102, and 104 oscillations for perturbations along

each mode k individually. For small n, even though Ak
k

begins to decrease from 1 at "cðkÞ, the shape of the decay
depends on k and the sharp decrease from 1 to 0 occurs at

small but finite "" "cðkÞ. In the inset to Fig. 2(b), we

measure the amplitude ") " "cðkÞ at which hAk
ki decays to

a small value (0.2), and find ") " "cðkÞ ' 1=n. For all n
and perturbations " studied in Fig. 2, there is no detectable

FIG. 2 (color online). (a) Amplitude Ak
k (solid) and deviation of the number of contacts !Nc ¼ N0

c " hNcit relative to the

unperturbed number N0
c (dashed) versus perturbation amplitude " along four eigenmodes (labeled by mode number) for the system

in Fig. 1(c) after n ¼ 104 oscillations. The vertical dot-dashed line indicates " ¼ "a
c for k ¼ 114. (b) The measured "a

cðkÞ at which A
k
k

begins to deviate from 1 for perturbations along all eigenmodes at n ¼ 104, N ¼ 58, and !! ¼ 10"5 versus the calculated

deformation amplitude "cðkÞ in Eq. (4) at which the first contact breaks. The inset shows ") " "cðkÞ at which hAk
ki decays to 0.2

versus n. The solid line has slope "1. (c) Ak
k versus "" "cðkÞ for each k (open symbols) and hAk

ki averaged over k (lines) for n ¼ 1

(circles, solid line), 102 (squares, dashed line), and 104 (triangles, dot-dashed line) oscillations after the perturbation.
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nonharmonicity from the smooth nonlinearities in the

potential [14] in Eq. (1).

Thus, "cðkÞ is the critical amplitude above which MS

packings are nonharmonic, and "cðkÞ can be calculated

exactly using Eq. (4) for each packing and mode k. In
Fig. 3(a) we show the distribution Pð"cðkÞ=#Þ with the

vertical and horizontal axes scaled by !!=N to achieve

approximate collapse. Pð"cðkÞ=#Þ scales roughly as a

power-law ð"cðkÞ=#Þ
& for large "c with & ! 2 (1.5) for

large (small) !!. The distribution is cut-off and remains

nearly constant for "cðkÞ=#< !!=N. In the inset to

Fig. 3(a), we plot h"cðkÞi averaged over k versus N over

a range of !!. As expected from the power-law distribu-

tion in the main plot, h"cðkÞi' N&"1. For all !!, the

critical amplitude scales to zero in the large-N limit.

The potential energy of a MS packing at !! is V=N ¼
Bð!!Þ2, where B is a Oð1Þ constant. We find that the

average energy E) ! hð!k"cðkÞÞ
2i at the critical amplitude

scales as E) ' Að!!Þð!!Þ2=N', where Að!!Þ is only

weakly dependent on !! and ' ! 1:7. For E> E)

[labeled A in Fig. 3(b)], MS packings are strongly anhar-

monic. MS packings are only harmonic for E< E), where

E) ! 0 in the large-N limit for all !! studied [15]. In

Fig. 3(c), we compare the density of vibrational modes

Dð!Þ obtained from the dynamical and displacement ma-

trices versus deformation energy. In the harmonic regime,

the eigenvalues of the dynamical matrix are inversely pro-

portional to those of the displacement matrix ek ¼ kbT=ck,
!d

k ¼ !c
k, and the corresponding Dð!Þ are identical as

shown in Fig. 3(c) for small E=N. However, as the

energy increases into the anharmonic regime [Fig. 3(b)],

Dð!Þ obtained from the displacement matrix begins to

deviate from that for the dynamical matrix, and develops

a large peak near ! ¼ 0 that is not found in the harmonic

limit.

Conclusion.—One-sided repulsive interactions in

jammed particulate systems make them inherently non-

harmonic. In the N ! 1 limit over a wide range of com-

pression and in the !! ! 0 limit at any N, infinitesimal

perturbations will cause them to become strongly nonhar-

monic. Further, in the nonharmonic regime the density of

vibrational modes cannot be described using the dynamical

matrix and develops a peak near ! ¼ 0, which dramati-

cally affects mechanical response, specific heat, and en-

ergy diffusivity [16].
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