
Beam Interactions 
with Materials 8 Atoms 

ELSEVIER Nuclear Instruments and Methods in Physics Research B 132 (1997) 45554 

Repulsive interatomic potentials calculated using Hartree-Fock 
and density-functional theory methods 

K. Nordlund a**. N. Runeberg b, D. Sundholm b 

’ Muterids Reseurcl~ Lahorutor~~. University of Illinois ut L~rhunu~C%unlI)ui~n. lfrhunrr. IL 61WI. (‘S.4 
’ Depurtment qf’ Clwmistry. P. 0. Boz 55. FIN-00014 Uniwrsity of’ Helsinki. Helsinki, Finland 

Received 11 April 1997; revised form received 26 June 1997 

Abstract 

The repulsive part of the interatomic potential affects the outcome of computer simulations of many irradiation pro- 
cesses of practical interest, like sputtering and ion irradiation range distributions. The accuracy of repulsive potentials is 
studied by comparing potentials calculated using commonly available density-functional theory (DFT) and Hartreee 

Fock (HF) methods to highly accurate fully numerical HF and Hartree-Fock-Slater (HFS) calculations. We find that 
DFT calculations utilizing numerical basis sets and HF calculations using deconrrncted standard basis sets provide re- 
pulsive potentials which are significantly improved compared to the standard universal ZBL potential. The accuracy of 
the calculated potentials is almost totally governed by the quality of the one-particle basis set. The use of reliable re- 

pulsive potentials open up new avenues for analysis of ion irradiation experiments. 0 1997 Elsevier Science B.V. 

1. Introduction 

The slowing down of energetic ions in materials 
is conventionally described by two different phe- 
nomena: elastic collisions of the energetic ion with 
atoms in the sample and collisions of the ion with 

electrons. The former process, also called nuclear 
slowing clown. dominates at low energies (Eki, s 1 

keV/amu), whereas the latter, electronic slowing 
down. dominates completely at high energies. 
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Nowadays, binary collision approximation 

(BCA) [1,2] or molecular dynamics (MD) [3,4] 
computer simulations can be used to describe the 
entire slowing down process of an energetic ion 
and the resulting collision cascade. The atomic col- 
lisions are in both methods described as a classical 
scattering process with an interatomic potential 

acting between the atoms. In treating processes 
where the atoms collide at kinetic energies of the 
order of 1 eV/amul keV/amu, it is particularly 

important to know the repulsive part of the intera- 
tomic potential accurately. 

Several previous studies have probed the effect 
of the repulsive potential on the outcome of simu- 
lations of collision processes. Calculation of ion 
depth distributions has shown that the strength 
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of the repulsive potential is directly reflected on the 
distribution of implanted ions and thus primary 
damage [5]. Sputtering yields [6] and lifetimes of 
excited nuclear energy levels obtained from simu- 
lations of slowing down of energetic nuclei [7] have 
also been found to be sensitive to the form of the 
atom-ion interaction. On the other hand, the num- 
ber of point defects produced in collision cascades 
in silicon has been shown to be largely indepen- 
dent of the choice of a repulsive potential [8]. Since 
local melting and crystal regeneration is even more 
pronounced in typical metals than in Si [9], one 
can expect the repulsive potential to have even less 
effect on damage production in them. It appears 
that in physical problems where the outcome is de- 
termined by energetic collisions between atoms, 
rather than the local melting in collision cascades, 
the exact form of the repulsive potential is signifi- 
cant. 

Depth distributions of implanted ions can be 
measured to a high accuracy using several different 
characterization techniques, like secondary ion 
mass spectroscopy (SIMS), nuclear resonance 
broadening (NRB) and elastic recoil detection 
analysis (ERDA) [l&12]. Provided that the repul- 
sive potential acting between atoms is known with 
an accuracy comparable to the experimental accu- 
racy of these methods, it is possible to analyze 
other parameters affecting the experiment - like 
the sample structure or electronic slowing down 
- using MD or BCA simulations of the range pro- 
files [13,14]. Therefore, there is a clear need to 
know the accuracy of repulsive potentials used in 
simulations. 

It is quite difficult to measure the repulsive in- 
teraction directly. Although numerous measure- 
ments have probed the repulsive part of the 
potential well [15], very few studies have attempted 
to measure the part between about 10 eV and 100 
keV of interest here. Kirchner et al. [ 161 studied the 
platinum-oxygen potential both experimentally 
and theoretically up to energies of 80 eV. Lane 
and Everhart [17] measured the repulsive poten- 
tials of several noble gas systems at kilo-electron- 
volt energies. 

Loftager, Hartung and co-workers have studied 
repulsive potentials by measuring scattering cross 
sections of several ions in noble-gas targets in the 

energy range 2.5400 keV [18-201, although they 
do not derive the actual repulsive potential from 
their data. They report that the experimental scat- 
tering cross sections can be fairly well reproduced 
by integrating a theoretical repulsive potential, 
even though inelastic energy loss also occurs during 
the collision process. This observation further em- 
phasizes the importance of the repulsive potential. 

Unfortunately the uncertainties of the experi- 
mental repulsive potentials mentioned above are 
of the order of 10% or more, and may contain sys- 
tematical errors of unknown magnitude due to 
electronic excitation effects. Hence they are not ac- 
curate enough for the purposes of the present 
study, where we will examine considerably smaller 
differences between calculated potentials. We did, 
however, compare theoretical potentials calculated 
with the density-functional theory (DFT)/DMol 
method (see below) with the HeeHe and He-Ne 
potentials of Ref. [17], and found the theoretical 
and experimental potentials to be in agreement 
within the experimental uncertainty of 20%. 

Many different theoretical methods have been 
used to determine repulsive interatomic potentials 
[2,6,15,16,20-221. A much used method has been 
an approximate quantum mechanical method first 
presented by Gombas [23,24]. Although potentials 
calculated with this method appear to provide a 
good approximation of the real potential over 
the whole repulsive interaction range, comparison 
with more realistic calculations have shown that 
they can be off by 20% for certain radial separa- 
tions [2,25]. 

Perhaps the most used potential is the universal 
repulsive potential by Ziegler, Biersack and Litt- 
mark (ZBL) [2], which is an analytical potential 
that can be easily evaluated for any atom pair. It 
has been constructed by fitting an analytical func- 
tion to a large number of repulsive potentials eval- 
uated with the Gombas approximate method for 
different pairs. The fit has a standard deviation 
of 18% from the Gombas-type potentials. 

The wide availability of both research and com- 
mercial quantum mechanical ab initio software has 
made it both easy and increasingly common to de- 
termine specific repulsive potentials for the ion 
pair of interest using ab initio methods (see e.g. 
Refs. [5,6,20,25-271). Most studies, however, have 
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calculated the potential using only one quantum 

mechanical method, which makes it hard to de- 

duce whether any systematic errors may be present 
in the results. Since almost all ab initio methods 

have been originally designed to describe chemical 
or solid-state processes near equilibrium, it is not 
clear whether they can be used for the specialized 
problem of calculating the energy of diatomics at 

very close separations. 
In the present work we want to study the accu- 

racy of repulsive potentials obtained with different 

quantum mechanical approaches. We are not 
aware of any previous study where such a metho- 

dological study of repulsive potentials obtained 
with modern calculation methods would have been 

made. 
The repulsive potentials are calculated using 

standard DFT and Hartree-Fock (HF) ab initio 
programs. These potentials, obtained with meth- 
ods relying on basis set expansions, are compared 

to results obtained using numerical HF and Har- 
treeeFock-Slater (HFS) methods. Since the nu- 

merical methods do not assume any global form 

for the basis functions, they provide a highly accu- 
rate standard for the energies to which the other 

potentials can be compared. Eckstein et al. [6] have 
previously used a fully numerical HFS method to 
obtain the repulsive potential for Si-Si. They did 

not, however, perform any comparison with po- 
tentials obtained using other ab initio methods. 
We also include the widely used ZBL universal re- 

pulsive potential in this study in order to examine 
its accuracy. The four diatomics C-C, H-Si, N-Si 
and SiiSi are chosen as model systems. Since an 

accurate treatment of heavy atoms would require 
the consideration of relativistic effects, no heavy 

atoms have been included. 
For Si-Si we performed a more detailed study 

on both the effects of electron correlation as well 
as basis set convergence. The Si-Si repulsive po- 
tential is also calibrated using a fully numerical 

HF method [28,29]. 

2. Potential calculations 

The interatomic potential V(R) acting between 
two atoms is here defined as the difference between 

the total energy at an interatomic distance R and 

the total energy of the isolated atoms 

V(R) = E(R) - E(x). (1) 

By the repulsive potential, we simply mean the 
part of the total potential at small internuclear se- 

parations R where V(R) > 0. 
In a crystal, a diatomic potential does of course 

not accurately describe the interatomic potential 

functions. In studies of H atoms surrounded by 
Cu atoms, however, the first author has found that 
the diatomic potential does not differ much from a 
bulk potential at energies 2 10 eV [30]. Further- 

more, in collision cascade calculations where the 
low-energy part of the potential is relevant, the re- 

pulsive potential is usually fitted to some many- 

body potential which describes the low-energy in- 
teractions [31], whence the low-energy part of the 

diatomic repulsive potential loses its significance. 
The repulsive potentials are here calculated 

using several computational approaches. The fully 
numerical two-dimensional (2D) HFS method 

[28,29] is used for providing accurate reference po- 
tentials for the DFT and the HF calculations. For 

Si-Si, the HF limit is determined by fully numeri- 

cal HF calculations. The effect of electron correla- 
tion has been studied at the second-order Moller- 
Plesset perturbation theory level (MP2) [32] and at 
the coupled-cluster singles and doubles level aug- 
mented by a perturbative correction for triple exci- 

tations (CCSD(T)) [33,34]. 
The interatomic potential V(R) is obtained by 

calculating the total energy of the diatomic system 

at different interatomic separations R. In the com- 

parison of the potentials, only a few distances R 
are used, while to obtain the potentials for actual 
simulations the potential is calculated at denser R 
intervals. 

For practical BCA and MD simulations, many 
authors fit the parameters to some analytical 

function (e.g. the ZBL potential) for the repulsive 
potential data [22,6]. However, even if a large 
number (eight for the ZBL potential) of free para- 
meters are used, we have found it very difficult to 

obtain a good fit to the strongly decreasing poten- 
tials over a large energy range (between 1 eV and 
100 keV). Typically, the fits result in errors in the 
potential energy or its derivative of the order of 
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5-10% in some part of the fitting regime. To pre- 

vent the introduction of unnecessary fitting errors 
in our simulations, we use spline interpolation 
[35] over dense R intervals (typically, AR - 
0.02 A) of the potential data to obtain V(R) at 
a given R. 

2.1. Density-functional theory calculations 

The DFT at the local-density approximation 
(LDA) level is widely used in the research commu- 

nity due to its relatively good accuracy and low 
computational cost for large numbers of atoms 
136381. In the DFT approach, the KohnSham 
(KS) equations 

[ 
$V’ + G(r) + K,(r)] d+(r) = &i4i(r), (2) 

d-) = ~ld+(r)12~ (3) 

are self-consistently solved. In (2) V, is the electro- 
static potential due to nuclei and the electron 
charge distribution, and V,, is the exchange and 
correlation term. 

The molecular orbitals 4 are expanded as a lin- 

ear combination of atomic orbitals, 

d4r) = C%&(r). (5) 

The standard basis sets (x,) used in the DMol [39] 
DFT/LDA package [37,40] consist of two numeri- 
cally tabulated atomic basis functions for each oc- 
cupied atomic orbital. These are generated by 
solving the atomic DFT equations once for the 

neutral atom and once for the doubly charged ca- 
tion. Delley [37] prefers to call them “double nu- 
merical basis sets” (DN) to be contrasted with 
double-zeta (DZ) basis, where the radial functions 
possess an analytical form. The DMol method is 
not fully numerical since the atomic orbitals are 
kept fixed during the calculation while all the inte- 
grals are computed numerically. In our DMol cal- 
culations, we used the Vosko-Wilk-Nusair 
Hamiltonian with no gradient corrections. Use of 

different exchange and correlation functionals, in- 

cluding gradient corrections, was not found to af- 
fect the results significantly. This level of theory 
has previously been used to determine repulsive 

potentials [5,41]. 
Since the integrals are computed numerically, 

DMol can use any type of normalizable function 
which satisfies regularity condition for molecular 

orbitals. Delley [37] uses two types of orbitals to 
improve on the accuracy of the standard DN basis 
sets; numerical orbitals of positive ions, and orbi- 

tals of hydrogenic atoms with a specified nuclear 

charge. We examined how both kinds of orbitals 
affected the atomic energies at close separations. 

Adding additional cationic basis functions was 
found to affect the energy convergence rather 
slowly. Adding hydrogenic orbitals, however, had 
a remarkably strong effect on the energies obtained 
at close separations. 

As an example case we discuss in detail results 

of two Si atoms at a separation of 0.0360795 A. 
Tests at other atomic separations and cases have 

been found to give similar results. Using just the 
standard Si and Si’+ orbitals gave V(R) = 63 281 
eV, to be compared with the value 58 829 eV ob- 
tained from 2D calculations. Adding cationic orbi- 
tals for Si” with the 3s electrons removed reduced 

the energy to 63 178 eV, and further adding orbi- 
tals for Si+ with a 3p electron removed reduced 

the energy only to 63 091 eV. On the other hand, 
adding Is, 2p, 3d and 4f hydrogenic orbitals for 
Z = 14 to the standard basis reduced the energy 

to 60 846 eV, and further adding the same hydro- 
genie orbitals for atoms with Z = 13, 11 and 15 re- 
duced the energy to 59 050 eV (since each orbital is 

orthogonalized against the previous ones, the or- 
der in which orbitals are added can affect the re- 
sults slightly). This result agrees much better with 

the 2D result than the value obtained with the un- 
modified DN-type basis set. 

In, practice, the addition of orbitals to the basis 
set is achieved by constructing a new basis set with 
the “DATOM" utility supplied with the DMol pro- 

gram package, and choosing the “user-defined” 
basis option for the DMol run. For elements with 
Z < 11 the standard basis sets provided with the 

program package are already augmented with 
hydrogenic orbitals. For the final C-C diatom 
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calculations we used this standard basis set. For 

the diatoms involving Si we used a basis set where 

the Si DN basis was extended with the hydrogenic 
orbitals for Z = 14, 13, 11 and 15, each containing 

the Is, 2p, 3d and 4f hydrogenic orbitals. 
Although these basis sets were found to give quite 

sufficient accuracy in the repulsive potential, tests 
of larger basis sets for C-C and SiiSi for a few 
R values gave even better agreement with the 2D 

results. 

2.2. Numerical Hurtree-Fock-Sluter Calculations 

The fully numerical 2D HFS method has re- 
cently been described in detail [28,29] and only a 

short description will be presented here. The 2D 
program is also available on the World Wide 

Web [29]. 
For diatomic molecules, the orbitals can be ex- 

pressed in elliptical coordinates as 

where rl, < and (/, are the prolate spheroidal coordi- 
nates defined as with the centers located at 

-_, = -R/2 and -1? = R/2 along the z-axis, R being 

the internuclear separation. The angular part (cp) 
can be treated analytically. A similar ansatz can 
also be written for the electron-interaction poten- 
tial which is obtained by solving the Poisson equa- 

tion. In the HFS approximation, the V,, potential 
in (3) consists of a local statistical exchange poten- 

tial [42] 

v\<(r) = -3a(3p(r)/8rr)“7. (7) 

where 1, is the total electron density and c( = 0.7 is 
a constant. 

The two-dimensional “radial” part of the orbi- 

tals and potentials are discretized and the HFS and 
Poisson equations are solved using a two-dimen- 
sional numerical approach. The discretization is 
performed using an eighth-order central difference 
stencil on a two-dimensional grid (or subgrids) and 

the resulting large and sparse system of linear 
equations is solved by the (multicolor) successive 
overrelaxation method [43]. Since the numerical 
HFS energies do not suffer from any significant ba- 
sis set truncation errors, they are used as reference 
potentials for the basis set calculations. 

2.3. Hartree-Fock culculations 

In the previously described methods the total 

density was chosen as the fundamental variable, 
which by applying the variational principle to the 
Schrbdinger equation leads to the KS equations. 

In order to solve these equations one has to as- 
sume the form of Q.. In the HF method the total 
wave function is described by a Slater determinant. 

By applying the variational principle, with this 

wave function as the fundamental variable, the 
HF equations are obtained. The HF equations 

are similar to (2) except that V,, is replaced by 
the HF exchange operator 

K,(lM,(l) = . 
.i[ 

(8) 

In practice the molecular orbitals, 4,. are ex- 

panded in Gaussian basis functions. As virtually 
all standard basis sets are developed for optimal 
performance in describing chemical phenomena, 

it is not obvious that their functionality can be ex- 
tended to describe the strongly repulsive part of 

the interaction potentials. In addition to basis set 
studies at HF level, we estimated the contribution 

from electron correlation by performing MP2 and 
CCSD(T) calculations on the SiiSi system. The 
HF and MP2 calculations were performed with 

the TURBOMOLE program package [44] and the 
CCSD(T) calculations with the ACES II program 
package [45] using decontracted valence-triple zeta 
basis sets [46]. To assess the basis set truncation er- 

rors of the HF calculations we performed numeri- 

cal HF calculations on Si-Si. 
All the HFS. DMol, and HF calculations on 

the different diatoms were done on the C-state with 
the lowest spin multiplicity. The numerical and 

Gaussian basis set calculations were performed 
with the equilibrium electron configuration for 
all internuclear distances. 

3. Results and discussion 

At short distances the interaction energy is 
dominated by the nuclear-nuclear repulsion po- 
tential. Since this dominant contribution is inde- 
pendent of the model, it makes it hard to 
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distinguish the differences between different meth- 
ods. In order to pronounce the differences in the 
studied methods, we present our results in terms 
of the screening function and the electronic inter- 
action energy. The screening function is defined by 

V(R) = q%-(R); 
where V(R) is the interatomic potential, Z1 and Z, 
are the nuclear charges, and R is the internuclear 
distance. At long distances Q(R) vanishes, and 
for very short distances there is almost no screen- 
ing of the nuclear-nuclear interaction and Q(R) 
approaches one. 

A transparent comparison of the different com- 
putational approaches is obtained by comparing 
the electronic contribution to the repulsion poten- 
tial. The electronic interaction energy is calculated 
as 

inter 
4, = e?“=’ - Eat,, I - &tom 2, (10) 

where Ep is the electronic contribution to the in- 
teraction energy, Ezliatom the electronic contribution 
to the energy of the diatom, and E,,,, , and Eat,, ? 
are the total energies of the two atoms. pp is re- 
lated to V(R) by 

At very small R values the nuclear interaction 
dominates and the Ek;‘e contribution to the total 
potential will not be significant. At somewhat lar- 
ger R values (smaller interaction energies), Ep 
and the nuclear potential will be of the same order 
of magnitude, but of opposite sign. Because of 
this, a difference in ET can in some cases be re- 
flected in a larger change in the repulsive potential. 

To give an idea of how deviations in Ep are 
reflected in Y(R), we give the maximum difference 
between the DFT, HF, and ZBL potentials and 
the HFS potential for interaction energies above 
1 keV. At lower interaction energies, comparing 
repulsive potentials with a ratio is not very instruc- 
tive because of the singularity at the potential zero- 
crossover. 

There are three major sources of discrepancies 
in the results obtained with the studied methods. 
These are the different treatment of exchange, the 

size of the one-particle space (basis set), and the ef- 
fect of electron correlation. 

In order to study the effects of the different ex- 
change terms in DFT and HF approaches, we 
compared the repulsive potential for Si-Si ob- 
tained from numerical HFS and HF calculations. 
These numerical calculations are free from basis 
set truncation errors. For interaction energies 
above 1 keV the maximum deviation in V(R) is 
only 0.25%, which clearly shows that the effects 
due to different exchange terms are negligible. 

The effect of the limited basis sets was studied 
by comparing results obtained from DMol and 
HF calculations to numerical HFS and HF results. 

The basis set truncation errors (BSTE) of the 
DMol calculations on Si-Si were estimated by 
combining numerical HFS and Gaussian basis 
set DFT calculations with the corresponding 
DMol DFT results. This comparison showed that 
the BSTE of the DMol calculations on Si-Si are 
less than 1.0% of the repulsive potential above 
1 keV. The BSTE grows monotonically as the dis- 
tance becomes shorter. Since the numerical HFS 
calculations are performed with fixed occupation 
numbers while in the DMol calculations they are 
optimized, the basis set truncation error of the 
DMol energies is somewhat compensated. For 
Si-Si, this relaxation contribution improves the 
agreement with the numerical results and corre- 
sponds to less than 1.3% of the repulsive potential. 

The HF method provided relatively accurate 
potentials already with standard DZ basis sets. 
For very short internuclear distances the heavy 
contraction of the “core-like” basis functions re- 
sulted in larger deviations. Additional flexibility 
was obtained by decontracting the DZ basis sets, 
which resulted in a much better agreement with 
2D HFS results over the whole distance range. 

For Si-Si, the basis set dependence was further 
investigated by performing numerical 2D HF cal- 
culations. The fully numerical HF and HFS poten- 
tials differ at most by 0.8 au (22 eV) which 
corresponds to 0.25% of the repulsive potential 
above 1 keV. For Si-Si, the BSTE of the basis 
set calculations using decontracted DZ quality ba- 
sis set are less than 7.5%. Calculations using de- 
contracted basis sets of valence-triple zeta quality 
augmented with one polarization function (TZVP) 
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provide potentials which possess BSTE of about 
5.5%. Since the HF energy for short internuclear 
distances converges slowly with the size of the 
atom-centered basis set it is necessary to add basis 
functions between the nuclei (bond functions) to 
obtain very accurate repulsion potentials. 

We compared also the LDA and HF results ob- 
tained with decontracted Gaussian basis sets of 
DZ and TZVP quality. For Si-Si interaction ener- 
gies above 1 keV the maximum deviations ob- 
tained with DZ basis sets are 5.5% and 7.4% for 
LDA and HF. respectively. For decontracted 
TZVP basis sets the corresponding deviations are 
5.0% and 5.5%. For both methods the BSTE is 
rather constant over the whole distance range, re- 
sulting only in a shift of the potential curve. This 
indicates that the derivative of the potential should 
be of much better quality. 

Thus we can conclude from these basis set stu- 
dies that for decontracted Gaussian DZ basis sets 
the LDA results are somewhat better than the HF 
results, but both methods suffer from the poor 
convergence of Gaussian basis sets towards the ba- 
sis set limit. We found also that the numerical ba- 
sis sets used in the DMol calculations are superior 
to Gaussian basis sets, except at very high energies. 

The effect of electron correlation was studied by 
performing MP2 and CCSD(T) calculations on Si- 
Si. The MP2 correction to the interaction energy 
was found to be only about 3-5 eV over the whole 
distance range and as judged from coupled-cluster 
results the correlation contribution is less than 
0.1% of the repulsive potential above 1 keV. 

Thus we can state that the accuracy of the cal- 
culated repulsive potential is almost totally gov- 
erned by the quality of the one-particle basis set, 
whereas the effects arising from the use of different 
computational methods are significantly smaller. 

The results of the electronic structure calcula- 
tions are illustrated in Figs. 1 and 2. In Fig. 1 
the potentials are compared by plotting the Ep 
ratios between the DFT, HF, and ZBL potentials 
to the 2D HFS potential. In Fig. 2, the screening 
functions Q(R) of the four diatoms are shown. 
The comparison of the Ezter values offers the best 
illustration of the differences between the electro- 
nic structure calculations, while the comparison 
of the screening functions Q(R) shows how these 

1.0+- .._ 
Y i__ __ --- L-c * -w- 4=-r-j _- -_- ____ - -_-. 

0.95 - I I - 
8 keV 40 ev 

1.05 - H-9 

I.0 $bd4eww ..L.., ,, /.,;.:*““‘* _ r.........-*-+-~i . . . “.._& 

0.95 ; & A , 
I I I I I 

0.1 0.3 0.5 0.7 0.9 

R (4 
Fig. 1. Ratios between the electronic contributions Ez”’ to the 

repulsive potentials. DFT denotes the DMol density-functional 

calculations, HF the Hartree-Fock method and ZBL the com- 

monly used ZBL universal repulsive potential. The 2D HFS po- 

tential is used as a standard to which the other potentials are 

compared. The energy values within the figure show the ap- 

proximate actual strength of the0 calculated total repulsive po- 

tential V(R) at R = 0.1 and 0.9 A for each diatom. 

differences will be reflected in practical calculations 
of radiation effects. 

For V(R) > 1 keV the agreement between the 
DMol DFT and 2D HFS electronic interaction en- 
ergies is within 2%, with the exception of C-C 
where the discrepancy grows to 9.5% for 
R < 0.02 A. However, since at these separations 
the nuclear part dominates completely, the devia- 
tions are not reflected in the final potential. This 
is evident in Fig. 2. where practically no difference 
between the DFT and HFS results can be seen. 
The difference in the potential energies above 1 
keV is less than 0.7% for all atom pairs. 

For E:‘,’ the agreement between 2D HFS re- 
sults and results obtained with HF using decon- 
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Fig. 2. Screening functions for the four diatoms. Labels are as 

in Fig. 1. The insets show the part of the screening function 

where the potential V(R) is larger than roughly 0.5 keV. 

tracted DZ basis sets is within 1.4% for all pairs. 
The deviations in the interaction potential V(R) 
are larger than for DMol, ranging from 0.2% to 
7.4%. 

In Fig. 1, particularly for C-C, the earlier men- 
tioned systematic shift of the HF curve can be 
seen. As a similar shift could be found for LDA re- 
sults using Gaussian functions, it must be due to 
the poor convergence of the Gaussian basis sets 
at short bond distances. 

Above 1 keV the maximum differences in the 
potential energies between DMol and 2D HFS re- 
sults are 0.6% for C-C and Si-Si, and 0.4% for H- 

Si and N-Si. The corresponding differences be- 

tween the HF and 2D HFS interaction potentials 
are 3.1% for C-C, 7.4% for Si-Si, 3.9% for N-Si 

and 0.2% for H-Si. 
Considering its nature as an average potential, 

it is not surprising that the ZBL universal repulsive 

potential differs in all cases from the HFS results. 
The maximum difference between the ZBL and 
HFS electronic interaction energies and interac- 

tion potentials is 14.7%. The difference emphasizes 
the fact that the ZBL potential is not suitable for 

applications in which high accuracy is desired in 
the description of atomic collisions. The deviations 
in Eiter are also visible as <D differences in Fig. 2. 

Several previous studies have found that differ- 
ences in repulsive potentials can result in signifi- 
cant changes in simulation results. A relative 
difference in repulsive potentials has been found 
to be reflected in a relative change of about the 
same magnitude in implantation range profiles 

[.5,12,14,47]. Eckstein et al. [6] have shown that 
the effect of the choice of the repulsive potential 

can be even greater on sputtering results. 

Since the previous studies already have dealt in 
detail with the effect of potentials on simulation re- 
sults, we only illustrate the differences with one ex- 

ample in the present context. We calculate the 
range distribution of 40 keV N implantation in 
Si using the MDRANGE program [47,48] for the 

DMol and ZBL interatomic potentials (the DMol 
DFT rather than the HFS 2D program was used 
because a potential calculated at dense intervals 

was available from a previous study [12]). To pre- 
vent channeling effects, an 8” tilt of the sample is 

used. The electronic slowing down, obtained from 
the SRIM96 computer code [49]. contributed 
about 50% to the slowing down. 

The mean ranges of the distributions differ by 

7%, which reflects well the 9% root-mean-square 
difference between the potentials in the 20 eV 

20 keV energy range (see Fig. 3). 
Recent studies have demonstrated that by as- 

suming that the repulsive potentials are accurate. 
one can deduce the electronic stopping power or 
make conclusions about the sample structure by 
comparing simulated and experimental range pro- 
files [l&14]. Such studies rely completely on the 
accuracy of the interatomic potential. For in- 
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3. Range distributions of 40 keV N implantation of Si cal- 

culated using the MD Range calculation method for the DMol 

DFT and ZBL interatomic repulsive potentials. 

stance. in stopping power studies in which the first 

author participated [12,14] use of the ZBL intera- 

tomic potential would have caused deduced elec- 
tronic stopping powers to differ roughly 5-10X 
from those obtained with DMol potentials. Studies 

of sample structure would not be meaningful with- 

out a repulsive potential of roughly 1% accuracy 

1131. 

4. Conclusions 

In this paper, fully numerical HFS and HF 
methods to calculate accurate repulsive potentials 

have been used to study the accuracy of the repul- 

sive potentials for H-Si, NPSi, Si-Si and C-C ob- 
tained using commonly available ab initio codes. 

We found that standard basis set methods can be 

used to calculate accurate repulsive potentials, 
provided that the basis sets have enoughflexibilit~ 
close to the core. In fact, the accuracy of the calcu- 
lated potentials is totally dependent on the quality 
of the basis sets, whereas the ab initio level of the- 

ory has an almost negligible effect. We also found 
that it is very difficult to reach the basis set limits 
by using Gaussian functions. This problem in the 
strongly repulsive region is independent of the 
methods used. To obtain very accurate potentials 

using Gaussian functions, bond functions have to 

be added to the basis sets. 

We found that the DMol DFT method utilizing 
numerical basis functions can be used to obtain re- 
pulsive interatomic potentials for HPSi, NPSi, Sip 
Si and C--C with an accuracy of the order of 1% 

provided that the numerical basis sets contain hy- 
drogenic basis functions. If new repulsive poten- 
tials are calculated by any of the standard basis 

set methods considered here, it is strongly advised 
to calculate a few reference points by a fully nu- 

merical approach. 
Finally, we discussed how the accurate intera- 

tomic potentials enable more extensive studies of 
less well-known parameters of irradiation experi- 

ments, like the electronic slowing down and sam- 
ple structure. 
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