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5 ABSTRACT: There have been more than 2.2 million confirmed cases and
6 over 120 000 deaths from the human coronavirus disease 2019 (COVID-
7 19) pandemic, caused by the novel severe acute respiratory syndrome
8 coronavirus (SARS-CoV-2), in the United States alone. However, there is
9 currently a lack of proven effective medications against COVID-19. Drug
10 repurposing offers a promising route for the development of prevention
11 and treatment strategies for COVID-19. This study reports an integrative,
12 network-based deep-learning methodology to identify repurposable drugs
13 for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive
14 knowledge graph that includes 15 million edges across 39 types of
15 relationships connecting drugs, diseases, proteins/genes, pathways, and
16 expression from a large scientific corpus of 24 million PubMed
17 publications. Using Amazon’s AWS computing resources and a network-
18 based, deep-learning framework, we identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosamide, and
19 toremifene) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics data in SARS-CoV-2-
20 infected human cells and data from ongoing clinical trials. Whereas this study by no means recommends specific drugs, it
21 demonstrates a powerful deep-learning methodology to prioritize existing drugs for further investigation, which holds the potential to
22 accelerate therapeutic development for COVID-19.
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24 ■ INTRODUCTION

25 As of June 22, 2020, in the United States alone, more than 2.2
26 million cases and over 120 000 deaths from Coronavirus
27 Disease 2019 (COVID-19), the disease caused by the virus
28 SARS-CoV-2, have been confirmed.1 However, there are
29 currently no proven effective antiviral medications against
30 COVID-19.2 There is an urgent need for the development of
31 effective treatment strategies for COVID-19. It was estimated
32 that in 2015, pharmaceutical companies spent $2.6 billion for
33 the development of an FDA-approved new chemical entity
34 drugs using traditional de novo drug discovery.3 Drug
35 repurposing, a drug-discovery strategy using existing drugs,
36 offers a promising route for the development of prevention and
37 treatment strategies for COVID-19.4

38 In a randomized, controlled, open-label trial,5 lopinavir and
39 ritonavir combination therapy did not show a clinical benefit
40 compared with standard care for hospitalized adult patients
41 with severe COVID-19, limiting the traditional antiviral
42 treatment for COVID-19. SARS-CoV-2 replication and
43 infection depend on the host cellular factors (including
44 angiotensin-converting enzyme 2 (ACE2)) for entry into
45 cells.6 The systematic identification of virus−host protein−
46 protein interactions (PPIs) offers an effective way toward the

47elucidation of the mechanisms of viral infection; furthermore,
48targeting the cellular virus−host interactome offers a promising
49strategy for the development of effective drug repurposing for
50COVID-19, as demonstrated in previous studies.7−9 We
51recently demonstrated that network-based methodologies
52leveraging the relationship between drug targets and diseases
53can serve as a useful tool for the efficient screening of
54potentially new indications of FDA-approved drugs with well-
55established pharmacokinetic/pharmacodynamic, safety, and
56tolerability profiles.10−12 Deep learning has also recently
57demonstrated its better performance than classic machine
58learning methods to assist drug repurposing,13−16 yet without
59foreknowledge of the complex networks connecting drugs,
60targets, SARS-CoV-2, and diseases, the development of
61affordable approaches for the effective treatment of COVID-
6219 is challenging.
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63 Prior knowledge of networks from the large scientific corpus
64 of publications offers a deep biological perspective for
65 capturing the relationships between drugs, genes, and diseases
66 (including COVID-19), yet extracting connections from a
67 large-scale repository of structured medical information is
68 challenging. In this study, we present the state-of-the-art
69 knowledge-graph-based, deep-learning methodologies for the
70 rapid discovery of drug candidates to treat COVID-19 from 24

f1 71 million PubMed publications (Figure 1). Via systematic
72 validation using transcriptomics and proteomics data generated

73from SARS-CoV-2-infected human cells and the ongoing
74clinical trial data, we successfully identified 41 drug candidates
75that can be further tested in large-scale randomized control
76trials for the potential treatment of COVID-19.

77■ METHODS AND MATERIALS

78Pipeline of CoV-KGE

79Here we present a knowledge-graph (KG)-based, deep-
80learning methodology for drug repurposing in COVID-19,

Figure 1. Diagram illustrating the workflow of a network-based, deep-learning methodology (termed CoV-KGE) for drug repurposing in COVID-
19. Specifically, a comprehensive knowledge graph that contains 15 million edges across 39 types of relationships connecting drugs, diseases, genes,
pathways, expressions, and others by incorporating data from 24 million PubMed publications and DrugBank (Table S2). Subsequently, a deep-
learning approach (RotatE in DGL-KE) was used to prioritize high-confidence candidate drugs for COVID-19 under Amazon supercomputing
resources (cf. Methods and Materials). Finally, all CoV-KGE predicted drug candidates were future-validated by three gene expression data sets in
SARS-CoV-1-infected human cells and one proteomics data set in SARS-CoV-2 infected human cells.
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81 termed CoV-KGE (Figure 1). Our method uses DGL-KE,
82 developed by our Amazon’s AWS AI Laboratory,17 to
83 efficiently learn embeddings of large KGs. Specifically, we
84 construct a KG from 24 million PubMed publications18 and
85 DrugBank,19 including 15 million edges across 39 types of
86 relationships connecting drugs, diseases, genes, anatomies,
87 pharmacologic classes, gene/protein expression, and others (cf.
88 Tables S1 and S2). In this KG, we represent the Coronaviruses
89 (CoVs) by assembling multiple types of known CoVs,
90 including SARS-CoV-1 and MERS-CoV, as described in our
91 recent study.9

92 We next utilized DGL-KE’s knowledge graph embedding
93 (KGE) model, RotatE,20 to learn representations of the entities
94 (e.g., drugs and targets) and relationships (e.g., inhibition
95 relation between drugs and targets) in an informative, low-
96 dimensional vector space. In this space, each relationship type
97 (e.g., antagonists or agonists) is defined as a rotation from the
98 source entity (e.g., hydroxychloroquine) to the target entity
99 (e.g., toll-like receptor 7/9 (TLR7/9)).

100 Constructing the Knowledge Graph

101 In this study, we constructed a comprehensive KG from Global
102 Network of Biomedical Relationships (GNBR)18 and
103 DrugBank.19 First, from GNBR, we included in the KG
104 relations corresponding to drug−gene interactions, gene−gene
105 interactions, drug−disease associations, and gene−disease
106 associations. Second, from the DrugBank database,19 we
107 selected the drugs whose molecular mass is >230 Da and
108 also exist in GNBR, resulting in 3481 FDA-approved and
109 clinically investigational drugs. For these drugs, we included in
110 the KG relationships corresponding to the drug−drug
111 interactions and the drug side-effects, drug anatomical
112 therapeutic chemical (ATC) codes, drug mechanisms of
113 action, drug pharmacodynamics, and drug-toxicity associations.
114 Third, we included the experimentally discovered CoV−gene
115 relationships from our recent work in the KG.9 Fourth, we
116 treated the COVID-19 context by assembling known genes/
117 proteins associated with CoVs (including SARS-CoV and
118 MERS-CoV) as a comprehensive node of CoVs and rewired
119 the connections (edges) from genes and drugs. The resulting
120 KG contains four types of entities (drug, gene, disease, and
121 drug side information), 39 types of relationships (Table S1),
122 145 179 nodes, and 15 018 067 edges (Table S2).

123 Knowledge Graph Embedding Model RotatE

124 Models for computing KGEs learn vectors for each of the
125 entities and each of the relation types so that they satisfy
126 certain properties. In our work, we learned these vectors using
127 the RotatE model.20 Given an edge in the KG represented by
128 the triplet (head entity, relation type, and tail entity), RotatE
129 defines each relation type as a rotation from the head entity to
130 the tail entity in the complex vector space. Specifically, if h and
131 t are the vectors corresponding to the head and tail entities,
132 respectively, and r is the vector corresponding to the relation
133 type, then RotatE tries to minimize the distance

= ∥ ⊗ − ∥d h t h r t( , )r134 (1)

135 where ⊗ denotes the Hadamard (element-wise) product.
136 To minimize the distance between the head and the tail
137 entities of the existing triplets (positive examples) and
138 maximize the distance among the nonexisting triplets (negative
139 examples), we use the loss function
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141where σ is sigmoid function, γ is a margin hyperparameter with
142γ > 0, (hi, r, ti) is a negative triplet, and p(hi, r, ti) is the
143probability of occurrence of the corresponding negative
144sample.

145Details of DGL-KE Package

146DGL-KE17 is a high-performance, easy-to-use, and scalable
147package for learning large-scale KGEs with a set of popular
148models including TransE, DistMult, ComplEx, and RotatE. It
149includes various optimizations that accelerate training on KGs
150with millions of nodes and billions of edges using multi-
151processing, multi-GPU (graphics processor unit), and dis-
152tributed parallelism. DGL-KE is able to compute the RotatE-
153based embeddings of our KG in ∼40 min on an EC2 instance
154with 8 GPUs under Amazon’s AWS computing resources.

155Experimental Settings

156We divide the triplets (e.g., a relationship among drug,
157treatment, and disease) into a training set, validation set, and
158test set in a 7:1:2 manner. We selected the embedding
159dimensionality of dim = 200 for nodes and relations. The
160RotatE is trained for 16 000 epochs with a batch size 1024 and
1610.1 as the learning rate. We choose γ = 12 as the margin of the
162optimization function.

163Gene-Set Enrichment Analysis

164Gene set enrichment analysis was performed to further validate
165the predicted drug candidates from CoV-KGE. The goal of the
166gene set enrichment analysis was to identify drugs that can
167reverse the cellular changes (transcriptome or proteome levels)
168that result from virus infection. Four differential expression
169data sets were collected, including two transcriptome data sets
170from SARS-CoV patients’ peripheral blood21 (GSE1739) and
171Calu-3 cells22 (GSE33267), one transcriptome data set of
172Calu-3 cells infected by MERS-CoV23 (GSE122876), and one
173proteome data set of human Caco-2 cells infected with SARS-
174CoV-2.24 These four data sets were used as the gene signatures
175for the viral infections. For the drugs, we retrieved the
176Connectivity Map (CMap) database25 containing the gene
177expression in cells treated with various drugs. An enrichment
178score (ES) for each CoV signature data set was calculated
179using a previously described method26
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181ESup and ESdown indicate the ES values for the up- and down-
182regulated genes from the CoV gene signature data set. To
183compute ESup/down, we first calculated aup/down and bup/down as
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186where j = 1, 2, ..., s are the genes from the CoV signature data
187set sorted in ascending order using the gene profiles of the
188drug being computed. V(j) denotes the rank of j, where 1 ≤

189V(j) ≤ r, with r being the total number of genes (12 849) from
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190 the CMap database. Next, ESup/down is set to aup/down if aup/down
191 > bup/down and is set to −bup/down if bup/down > aup/down.
192 Permutation tests are repeated 100 times to quantify the
193 significance of the ES score. In each repeat, the same number
194 of up- and down- expressed genes as the CoV signature data
195 set was randomly generated. ES > 0 and P < 0.05 are
196 considered significantly enriched. The number of significantly
197 enriched data sets is used as the final result for a certain drug.

198 Performance Evaluation

199 We introduced the area under the receiver operating
200 characteristic (ROC) curve (AUROC) and several evaluation
201 metrics for evaluating the performance of drug−target
202 interaction prediction. The AUROC27 is the global prediction
203 performance. The ROC curve is obtained by calculating the
204 true-positive rate (TPR) and the false-positive rate (FPR) via
205 varying cutoffs.

206 ■ RESULTS

207 High Performance of CoV-KGE

208 After mapping drugs, CoVs, and the treatment relationships to
209 a complex vector space using RotatE, the top 100 most
210 relevant drugs were selected as candidates for CoVs in the
211 treatment relation space (Figure S1). Using the ongoing
212 COVID-19 trial data (https://covid19-trials.com/) as a
213 validation set, CoV-KGE has a larger AUROC (AUROC =

f2 214 0.85, Figure 2) for identifying repurposable drugs for COVID-
215 19.

216 We next employ t-SNE (t-distributed stochastic neighbor
217 embedding algorithm28) to further investigate the low-
218 dimensional node representation learned by CoV-KGE.
219 Specifically, we projected drugs grouped by the first level of
220 the Anatomical Therapeutic Chemical (ATC) classification

f3 221 systems code onto a 2D space. Figure 3A indicates that CoV-
222 KGE is able to distinguish 14 types of drugs grouped by ATC
223 codes, which is consistent with a high AUROC value of 0.85
224 (Figure 2).
225 We further validated the top candidate drugs using an
226 enrichment analysis of drug−gene signatures and SARS-CoV-
227 induced transcriptomics and proteomics data in human cell

228lines (cf. Methods and Materials). Specifically, we analyzed
229three transcriptomic data sets in SARS-CoV-1-infected human
230cell lines and one proteomics data set in SARS-CoV-2-infected
231human cell lines. In total, we obtained 41 repositioned drug
232 t1candidates (Table 1) using subject-matter expertise based on a
233combination of factors: (i) the strength of the CoV-KGE
234predicted score, (ii) the availability of clinical evidence from
235ongoing COVID-19 trials, and (iii) the availability and strength
236of enrichment analyses from SARS-CoV-1/2-affected human
237cell lines. Among the 41 candidate drugs, 9 drugs are or have
238been under clinical trials for COVID-19, including thalido-
239mide, methylprednisolone, ribavirin, umifenovir, tetrandrine,
240suramin, dexamethasone, lopinavir, and azithromycin (Figure
2413A and Table 1). We excluded chloroquine and hydroxy-
242chloroquine from our ongoing clinical trial list based on
243recently controversial reports.29,30

244Discovery of Drug Candidates for COVID-19 Using
245CoV-KGE

246We next turned to highlight three types of predicted drugs for
247COVID-19, including anti-inflammatory agents (dexametha-
248sone, indomethacin, and melatonin), selective estrogen
249receptor modulators (SERMs), and antiparasitics (Figure 3).
250Anti-Inflammatory Agents. Given the well-described
251lung pathophysiological characteristics and immune responses
252(cytokine storms) of severe COVID-19 patients, drugs that
253dampen the immune responses may offer effective treatment
254approaches for COVID-19.31,32 As shown in Figure 3A, we
255computationally identified multiple anti-inflammatory agents
256for COVID-19, including dexamethasone, indomethacin, and
257melatonin. Indomethacin, an approved cyclooxygenase (COX)
258inhibitor, has been widely used for its potent anti-inflammatory
259and analgesic properties.33 Indomethacin has been reported to
260have antiviral properties, including SARS-CoV-133 and SARS-
261CoV-2.34 Importantly, a preliminary in vivo observation
262showed that oral indomethacin (1 mg/kg body weight daily)
263reduced the recovery time of SARS-CoV-2-infected dogs.34

264Melatonin plays a key role in the regulation of the human
265circadian rhythm that alters the translation of thousands of
266genes, including melatonin-mediated anti-inflammatory and
267immune-related effects for COVID-19. Melatonin has various
268antiviral activities by suppressing multiple inflammatory
269pathways35,36 (i.e., IL6 and IL-1β); these inflammatory effects
270are directly relevant given the well-described lung pathophy-
271siological characteristics of severe COVID-19 patients.
272Melatonin’s mechanism of action may also help to explain
273the epidemiologic observation that children, who have
274naturally high melatonin levels, are relatively resistant to
275COVID-19 disease manifestations, whereas older individuals,
276who have decreasing melatonin levels with age, are a very high-
277risk population.37 In addition, exogenous melatonin admin-
278istration may be of particular benefit to older patients given the
279aging-related reduction of endogenous melatonin levels and
280the vulnerability of older individuals to the lethality of SARS-
281CoV-2.37

282Dexamethasone is a U.S. FDA-approved glucocorticoid
283receptor (GR) agonist for a variety of inflammatory and
284autoimmune conditions, including rheumatoid arthritis, severe
285allergies, asthma, chronic obstructive lung disease, and
286others.38 Glucocorticoid medications have been used in
287patients with MERS-CoV and SARS-CoV-1 infections.39 As
288shown in Figure 3A, dexamethasone is the fourth predicted
289drug among 41 candidates. The Randomized Evaluation of

Figure 2. Performance of CoV-KGE in the prediction of drug
candidates for COVID-19. Drugs in the ongoing COVID-19 trial data
(https://covid19-trials.com/) were used as the validation set.
AUROC, area under the ROC curve.
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290 COVID-19 therapy (RECOVERY, ClinicalTrials.gov Identi-
291 fier: NCT04381936) trial showed that dexamethasone reduced
292 mortality by one-third in patients requiring ventilation and by
293 one-fifth in individuals requiring oxygen,40 yet dexamethasone
294 did not reduce death in COVID-19 patients not receiving
295 respiratory support.40

296 Selective Estrogen Receptor Modulators. An over-
297 expression of the estrogen receptor has played a crucial role in
298 inhibiting viral replication and infection.41 Several SERMs,
299 including clomifene, bazedoxifene, and toremifene, are
300 identified as promising candidate drugs for COVID-19 (Figure
301 3A and Table 1). Toremifene, the first generation of the
302 nonsteroidal SERM, was reported to block various viral
303 infections at low micromolar concentration, including Ebola
304 virus,42,43 MRES-CoV,44 SARS-CoV-1,45 and SARS-CoV-246

305 (Figure 3B). Toremifene prevents fusion between the viral and
306 endosomal membranes by interacting with and destabilizing
307 the virus glycoprotein and eventually blocking replications of
308 the Ebola virus.42 The underlying antiviral mechanisms of
309 SARS-CoV-1 and SARS-CoV-2 for toremifene remain unclear
310 and are currently being investigated. Toremifene has been
311 approved for the treatment of advanced breast cancer47 and
312 has also been studied in men with prostate cancer (∼1500
313 subjects) with reasonable tolerability.48 Toremifene is 99%
314 bound to plasma protein with good bioavailability and typically

315orally administered at a dosage of 60 mg.49 In summary,
316toremifene is a promising candidate drug with ideal
317pharmacokinetics properties to be directly tested in COVID-
31819 clinical trials.
319Antiparasitics. Despite the lack of strong clinical evidence,
320hydroxychloroquine and chloroquine phosphate, two approved
321antimalarial drugs, were authorized by the U.S. FDA for the
322treatment of COVID-19 patients using emergency use
323authorizations (EUAs).2 In this study, we identified that
324both hydroxychloroquine and chloroquine are among the
325predicted candidates for COVID-19 (Figure 3A and Table 1).
326Between the two, hydroxychloroquine’s in vitro antiviral
327activity against SARS-CoV-2 is stronger than that of
328chloroquine (hydroxychloroquine: 50% effective concentration
329(EC50) = 6.14 μM, whereas for chloroquine: EC50 = 23.90
330μM).50 Hydroxychloroquine and chloroquine are known to
331increase the pH of endosomes, which inhibits membrane
332fusion, a required mechanism for viral entry (including SARS-
333CoV-2) into the cell.19 Although chloroquine and hydroxy-
334chloroquine are relatively well tolerated, several adverse effects
335(including QT prolongation) limit their clinical use for
336COVID-19 patients, especially for patients with pre-existing
337cardiovascular disease or diabetes.10,51−53 A recent observa-
338tional study reported that hydroxychloroquine administration
339was not associated with either a greatly lowered or an increased

Figure 3. Diagram illustrating the landscape of CoV-KGE-predicted repurposable drugs for COVID-19. (A) Visualization of the drug vector
learned by the knowledge graph embedding using t-SNE (t-distributed stochastic neighbor embedding algorithm28). 2D representation of the
learned vectors for 14 types of drugs grouped by the first level of the Anatomical Therapeutic Chemical (ATC) classification system codes.
Semantically similar ATC drugs are mapped to nearby representations. We highlighted 11 drugs that are under clinical trials for COVID-19. (B)
Three highlighted drugs (toremifine, niclosamide, and indomethasin) having striking in vitro antiviral activities across Ebola virus,42,43 MRES-
CoV,44 SARS-CoV-1,45 and SARS-CoV-2.46
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Table 1. Lists of the Selected 41 Top Drugs with the Potential to Treat COVID-19a
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Table 1. continued
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Table 1. continued
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340 risk of the composite end point of intubation or death for

341 patients with COVID-19 who had been admitted to the

342 hospital.
35 As June 15, 2020, the U.S. FDA revoked the EUAs

343 for hydroxychloroquine and chloroquine for the treatment of

344 COVID-19 patients.29 As June 20, 2020, the National

345Institutes of Health halted the clinical trial of hydroxychlor-

346oquine owing to the lack of clinical benefits.30 Thus further

347functional observations are urgently needed to investigate the

348inconsistent results between in vitro antiviral activities and

349clinical efficiency in the near future.

Table 1. continued

aNote: Drugs marked with * are in clinical trials. All predicted drugs are freely available at https://github.com/ChengF-Lab/CoV-KGE.
Enrichment scores (ESs) indicate the number of significantly enriched data sets for the drug.

Figure 4. Proposed mechanism-of-action model that combines antiviral and anti-inflammatory agents for the potential treatment of COVID-19.
Toremifene, a selective estrogen receptor modulator approved by the U.S. FDA for the treatment of advanced breast cancer, has shown various
antiviral activities across Ebola virus,42,43 MRES-CoV,44 SARS-CoV-1,45 and SARS-CoV-2.46 Melatonin is a synthesized hormone with ∼2.5 billion
years history. Given the well-described lung injury characteristics of severe COVID-19 by multiple inflammatory pathways,35,36 dexamethasone,
indomethacin, and melatonin are candidate anti-inflammatory agents for the treatment of patients with COVID-19 (Figure 3A). Thus combining
antiviral (toremifene or hydroxychloroquine) and anti-inflammatory agents (dexamethasone, indomethacin, or melatonin) may provide an effective
treatment for COVID-19, as demonstrated in onging COVID-19 trials (remdesivir plus baricitinib, clinicalTrials.gov Identifier: NCT04373044).
ACE2, Angiotensin-converting enzyme 2; TMPRSS2, Transmembrane Serine Protease 2.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00316
J. Proteome Res. XXXX, XXX, XXX−XXX

I



350 Niclosamide, an FDA-approved drug for the treatment of
351 tapeworm infestation, was recently identified to have a stronger
352 inhibitory activity on SARS-CoV-2 at the submicromolar level
353 (IC50 = 0.28 μM). Gassen et al. showed that niclosamide
354 inhibited SKP2 activity by enhancing autophagy and reducing
355 MERS-CoV replication as well.54 Altogether, niclosamide may
356 be another drug candidate for COVID-19, which is warranted
357 to be investigated experimentally and further tested in
358 randomized controlled trials.
359 Given the up-regulation of systemic inflammationin some
360 cases, culminating to a cytokine storm observed in severe
361 COVID-19 patients31combination therapy with an agent
362 targeting inflammation (melatonin, dexamethasone, or in-
363 domethacin) and with direct antiviral effects (toremifene and
364 niclosamide) has the potential to lead to successful treatments

f4 365 (Figure 4). Because of the aging-related reduction of
366 endogenous melatonin levels and the vulnerability of older
367 individuals to the lethality of SARS-CoV-2,37 combining
368 exogenous melatonin administration and antiviral agents
369 (such as toremifene or niclosamide) may be of particular
370 benefit to older patients with COVID-19. Yet all computa-
371 tionally predicted drug candidates (Table 1) and proposed
372 drug combinations (Figure 4) must be validated experimen-
373 tally and be tested in randomized controlled trials. Several
374 combination antiviral and anti-inflammatory treatment trials
375 (remdesivir plus baricitinib) are underway for patients with
376 COVID-19 (clinicalTrials.gov Identifier: NCT04373044),
377 indicating the proof-of-concept of this combination therapy
378 for COVID-19.

379 ■ DISCUSSION

380 As COVID-19 patients flood hospitals worldwide, physicians
381 are trying to search for effective antiviral therapies to save lives.
382 Multiple COVID-19 vaccine trials are underway, yet it might
383 not be physically possible to make enough vaccines for
384 everyone in a short period of time. Furthermore, SARS-CoV-2
385 replicates poorly in multiple animals, including dogs, pigs,
386 chickens, and ducks, which limits preclinical animal studies.55

387 To fight the emerging COVID-19 pandemic, we introduced
388 an integrative, network-based, deep-learning methodology to
389 discover candidate drugs for COVID-19, named CoV-KGE.
390 Via CoV-KGE, we built a comprehensive KG that includes 15
391 million edges across 39 types of relationships connecting drugs,
392 diseases, proteins/genes, pathways, and expressions from a
393 large scientific corpus of 24 million PubMed publications.
394 Using the ongoing COVID-19 trial data as a validation set, we
395 demonstrated that CoV-KGE had high performance in
396 identifying repurposable drugs for COVID-19, indicated by
397 the larger AUROC (AUROC = 0.85). Using Amazon’s AWS
398 computing resources, we identified 41 high-confidence
399 repurposed drug candidates (including dexamethasone, in-
400 domethacin, niclosamide, and toremifene) for COVID-19,
401 which were validated by an enrichment analysis of gene
402 expression and proteomics data in SARS-CoV-2 infected
403 human cells. Altogether, this study offers a powerful, integrated
404 deep-learning methodology for the rapid identification of
405 repurposable drugs for the potential treatment of COVID-19.
406 We acknowledge several potential limitations in the current
407 study. Potential data noises generated from different
408 experimental approaches in large-scale publications may
409 influence the performance of the current CoV-KGE models.
410 The original data of GNBR contain the confidence values of
411 the relations between entities. However, we ignored the

412weights so that we could directly apply the RotatE algorithm
413because we tried to obtain the prediction result in a cheap
414computing-cost way. In our future work, we will take these
415confidence values into account and try to design a knowledge-
416graph-embedding algorithm that can be used for a KG with
417weighted relationships. The lack of dose-dependent profiles
418and the biological perturbation of SARS-CoV-2 virus−host
419interactions may generate a coupled interplay between adverse
420and therapeutic effects. The integration of pharmacokinetics
421data from animal models and clinical trials into our CoV-KGE
422methodology could establish the causal mechanism and patient
423evidence through which predicted drugs would have high
424clinical benefits for COVID-19 patients without obvious
425adverse effects in a specific dosage.
426In summary, we presented CoV-KGE, a powerful, integrated
427AI methodology that can be used to quickly identify drugs that
428can be repurposed for the potential treatment of COVID-19.
429Our approach can minimize the translational gap between
430preclinical testing results and clinical outcomes, which is a
431significant problem in the rapid development of efficient
432treatment strategies for the COVID-19 pandemic. From a
433translational perspective, if broadly applied, the network tools
434developed here could help develop effective treatment
435strategies for other emerging infectious diseases and other
436emerging complex diseases as well. However, all predicted
437drugs not used in clinical trials must be tested in randomized
438clinical trials before being used in patients.
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