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Abstract: Although there are existing vaccines against severe acute respiratory syndrome coronavirus-
2 (SARS-CoV-2), new COVID-19 cases are increasing due to low immunization coverage and the
emergence of new variants. For this reason, new drugs to treat and prevent severe COVID-19
are needed. Here, we provide four different FDA-approved drugs against SARS-CoV-2 proteins
involved in the entry and replication process, aiming to identify potential drugs to treat COVID-19.
We use the main protease (Mpro), the spike glycoprotein (S protein), and RNA-dependent RNA
polymerase (RdRp) as protein targets for anti- SARS-CoV-2 drugs. In our constructed database, we
selected different drugs against each target (Mpro, S protein, and RdRp) based on their common
interactions with relevant residues involved in viral entry at the host cell and replication. Furthermore,
their stability inside the binding pocket, as well as their predicted binding-free energy, allow us to
provide new insight into the possible drug repurposing of viomycin (interacting with Mpro) due
to its interactions with key residues, such as Asn 143, Glu 166, and Gln 189 at the same time as
hesperidin (interacting with the S protein) is interacting with residues Tyr 449, Ser 494, and Thr 500,
keeping inside the predicted binding pocket, as well as interacting with residues in different variants
of concern. Finally, we also suggest nystatin and elvitegravir (interacting with RdRp) as possible
drugs due to their stability within the predicted pocket along the simulation and their interaction
with key residues, such as Asp 760, Asp 761, and Asp 618. Altogether our results provide new
knowledge about the possible mechanism of the inhibition of viomycin, hesperidin, elvitegravir,
and nystatin to inhibit the viral life cycle of SARS-CoV-2 and some of its variants of concern (VOC).
Additionally, some iodide-based contrast agents were also found to bind the S protein strongly, i.e.,
iohexol (−58.99 Kcal/mol), iotrolan (−76.19 Kcal/mol), and ioxilan (−62.37 Kcal/mol). Despite the
information we report here as the possible strong interaction between these contrast agents and the
SARS-CoV-2′s S protein, Mpro, and RdRp, we believe that further investigation, including chemical
modifications in their structures, are needed for COVID-19 treatment.

Keywords: repurposing drugs; COVID; SARS-CoV-2; molecular docking

1. Introduction

The coronavirus disease of 2019—COVID-19 is caused by a severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) [1]. Within coronaviruses, SARS-CoV-2, SARS-
CoV-1, and MERS-CoV belong to the genus betacoronavirus, characterized by a highly
contagious rate and causing a wide variety of illnesses with neurological, respiratory,
enteric, and hepatic manifestations [2–4].
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Betacoronaviruses are enveloped positive-sense single-stranded RNA viruses with
a symmetrical nucleocapsid [5]. Mainly, SARS-CoV-2’s genetic organization comprises
27 proteins encoded by 14 open-reading frames (ORFs), where ORF1 and ORFb encode four
polyproteins after proteolytic processes produce 16 non-structural proteins (NSP) directly
involved in RNA replication and transcription [5,6]. Furthermore, structural proteins, such
as the spike, envelope, membrane, and nucleocapsid, are encoded in the adjacent region to
3′-end and some accessory proteins [1,7].

Within these proteins, the main protease (Mpro), viral the spike glycoprotein (S protein),
and RNA-dependent RNA polymerase (RdRp), and others are identified as potential
drug targets to prevent infection with and act as a treatment for COVID-19 [8,9]. Mpro is
responsible for viral polyprotein cleavage to functional units, playing a pivotal role in viral
replication, transcription, and packaging within the host cell [10,11].

In this sense, the drug design strategy against the SARS-CoV-2 virus can be divided
into two different strategies: the pre-fusion stage, where targeting the spike glycoprotein of
SARS-CoV-2, including its domains S1 and S2 and its consequence membrane fusion, is
one of the leading options in vaccines and antiviral drug compounds [12,13]. On the other
hand, in the second strategy, the post-fusion stage involves targeting the viral proteins after
replication within the host cell where targeting the SARS-CoV-2 main protease (Mpro) is
included, but also, RNA-dependent RNA polymerase has arisen as an essential target in
drug development against coronaviruses [8,14].

Since Mpro is unique to the virus, targeting and successfully inhibiting its protease
activity makes Mpro an interesting druggable target [15].

Mpro is a cysteine protease and structurally comprises 306 amino acids organized into
three different domains, distributed as follows [8,16]: domain I (residues 8–101), domain II
(residues 102–184), and domain III (residues 201–303). Additionally, a long loop required
for dimerization is located between residues 185–200, connecting the domains II and III [17],
and its catalytic site is on the interface of domains I and II, forming a cleft with residues His
41 and Cys 145 as a catalytic dyad [17,18]. Moreover, some authors have subdivided this
active site into S1′, S1, S2, and S4 (Figure S1), where more of the Mpro covalent inhibitors
form a covalent bond with the thiol group of Cys 145 located at S1 [18–20]. The subsite S1
is formed by Phe 140, Leu 141, Asn 142, His 163, Glu 166, and His 172. Then, in a small
cavity separated by Asn 142 residue is located the subsite S1′, comprised of the residues
Thr 25, Thr 26, and Leu 127. A hydrophobic S2 site is formed by the residues His 41, Met
49, Tyr 54, and Met 165. Finally, the subsite S4 is comprised of Met 165, Leu 167, Phe 185,
Gln 189, and Gln 194 amino acid residues [8].

Transmembrane the spike (S) glycoprotein provides a cellular mechanistic for coro-
navirus infections because it is pivotal in the entry of the virus into host cells by using
the specific receptor ACE-2 [5,21]. The viral load and replication are correlated with the
affinity binding of the S protein ACE2 receptor and TMPRSS2 protease activity in the host
cell [10,22–24].

Moreover, the S protein is essential for SARS-CoV-2 entry into the host cells, forming
a homotrimer at the viral surface [21]. The S protein has two different domains (herein
called S1 and S2), where the S1 domain has a direct role in the direct interaction with the
ACE2 receptor at the host cell while the S2 domain is responsible for the viral and receptor
membrane fusion [13,24].

Furthermore, RdRp is an essential target since RNA polymerase is a vital enzyme
for viral replication/transcription [25]. The coronaviruses’ replication is mediated by a
replication-and-transcription complex comprised of viral non-structural proteins (nsps),
wherein the principal component of this complex is the non-structural protein nsp12 [26,27].
By itself, nsps12 has biological activity, but its function also requires nsps7 and nsp8 to
complete the overall arrangement observed in the SARS-CoV structure [14,28,29]. Recently,
Yi. et al., 2021, elucidated a crystal structure of SARS-CoV-2 RdRp, where nsp12 also
contains an N-terminal domain (residues 30 to 50), with a finger configuration (residues
397 to 581 and 621 to 679), really closely forming a small circle with the thumb subdomain
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(residues 819 to 920) [14,30]. In this way, the closed conformation of nsp12 is stabilized
by the nsp7–nsp8 dimer. Two zinc ions were found at metal-binding motifs (consisting of
His295-Cys301-Cys306-Cys310 and Cys487-His642-Cys645-C646); its function is likely to
maintain the structural RdRp architecture [29].

Furthermore, the RdRp crystal structure contains 14-base RNA in the template strand
and the inhibitor remdesivir monophosphate (RMP), which is covalently joined to the
primer strand and two magnesium ions near the active site that may enhance the catalytic
function [14,31]. Remdesivir as an adenosine monophosphate analog inhibits the RdRp,
making a solid interaction with the primer strand and two hydrogen bonds with the uridine
base. Additionally, RMP interacts with the side chain of residues Lys 545 and Arg 555,
finding magnesium ions and pyrophosphate groups near the protein’s active site [14]. In
addition to RMP, antivirals or nucleotides analog drugs, such as galidesivir, favipiravir,
and ribavirin, have been reported as SARS-CoV-2 inhibitors because they inhibit RdRp and
viral replication in cell-based assays [32,33].

COVID-19 is highly infectious, and since its onset in December 2019, more than
266 million cases have been reported according to the World Health Organization (WHO).
Despite the newly developed vaccines and the continued decrease in the new COVID-19
cases, low immunization coverage and the emergence of new variants are changing this
situation [34,35]. In the continued search for new treatments against COVID-19, focus not
only on vaccines is needed. This study aims to identify and report potential candidate
drugs using a computational approach, such as molecular docking and molecular dynamics
simulations using an FDA-approved drug library, to evaluate their potential for repurposing
against SARS-CoV-2 and its relevant variants.

2. Materials and Methods
2.1. Drug Database Construction and Ligand Preparation

A total of 14,347 compounds was retrieved from the ChEMBL and DrugBank databases.
All compounds were visualized and prepared using Maestro and LigPrep [36] to generate
the three-dimensional conformation, calculate the partial atomic charges, and adjust the
protonation states at pH 7.4 using the force field OPLS4 [37].

2.2. Protein Preparation and Molecular Docking

The protein preparation and docking calculations were performed using the
Schrödinger Drug Discovery Suite for molecular modeling (version 2021–1). The crystal
structure of SARS-CoV-2 Mpro (PDB ID: 6LU7, resolution 2.16 Å [18]); the spike glycopro-
tein (PDB ID: 6M0J, resolution 2.45 Å [38]); and RNA-dependent RNA polymerase from
SARS-CoV-2 (PDB ID: 7BV2, resolution 2.5 Å [14]) were obtained from the Protein Data
Bank (PDB, www.rcsb.org), and prepared using the Protein Preparation Wizard [39] to
fix the protonated states of amino acids residues, adding polar hydrogens and missing
side-chain atoms using Prime [40].

Molecular docking studies were performed with the prepared ligands using Glide
(v8.9) with three precision settings. For this, Glide offers a full range of accurate docking
options from the HTVS (high-throughput virtual screening) mode to the SP (standard
precision) mode and, finally, the XP (extra precision) mode [41,42]. For Mpro, the spike
glycoprotein, and RNA-dependent RNA polymerase, ligands were docked in a grid box
of 25 Å as follows. For the main protease (Mpro), the receptor grid was generated by
indicating the coordinates of active site amino acid residues, centered at x = 7.974, y = 3.29,
and z = 19.645. The receptor grid for the spike glycoprotein (S protein) was generated
according to Unni et al., 2020 [13], where three different sites were previously identified
at the interface between the spike glycoprotein and the ACE2 receptor. For this, the grid
receptor at site 1 was centered in residues Gln 498, Thr 500, and Asn 501, while the grid
receptor at site 2 was centered in residues Lys 417 and Tyr 453. Finally, at site 3, the grid
box was settled in residues Gln 474 and Phe 486. RNA-dependent RNA polymerase was
also prepared, and all ions, except the magnesium from the active site, and non-relevant

www.rcsb.org
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crystallographic materials were removed. The docking box of 12 Å was centered at the same
place as the co-crystallized ligand Remdesivir (RMP) according to Ahmad et al., 2020 [43].
Docking poses were selected by visual inspection based on their common interactions with
relevant residues for each target.

2.3. Free Energy Binding Calculations (MM-GBSA)

Molecular mechanics, the Generalized Born model, and solvent-accessibility (MM-
GBSA) analysis were performed to predict the binding-free energy of selected ligand-
protein complexes [44,45]. For this, the Prime module of the Schrödinger Drug Discovery
Suite was used to calculate the binding energy of selected ligands in complex with the
protein target. For the analysis, Prime MM-GBSA calculates the energy of optimized free
receptors, free ligands, and protein–ligand complexes. It also calculates the ligand strain
energy by placing ligands in a solution generated by the VSGB 2.0 Suite and OPLS3e force
field [46].

2.4. Molecular Dynamics Simulation

In this work, overall, twenty-one MD simulations of 100 ns each were performed,
where selected poses from the docking for each target were validated by molecular dynam-
ics simulation, and ligand stability within the proposed pocket and its interactions were
evaluated. MD simulations were performed using Desmond [47] with the OPLS4 force
field [37,48], which led to improved performance in predicting protein–ligand binding
affinities. Protein–ligand systems were placed in a cubic box with 7 Å from the edges to any
atoms of the system using the System Builder. Additionally, the cubic box was filled with
TIP3P [49] water, and the systems were neutralized by adding Na+ or Cl− ions according
to the system charge, and PBC conditions were used. For all systems, the NPT ensemble
class was chosen, and short simulations equilibrated systems for 5 ns implementing the
Berendsen thermostat and Barostat methods were used. From the beginning to the end of
the simulations, a constant temperature of 310 K and 1 atm of pressure were kept using the
Nose–Hoover thermostat algorithm and the Martyna–Tobias–Klein Barostat algorithm. Af-
ter minimization and relaxing steps, we proceeded with the production step of 100 ns, and
all MD simulations were performed with at least three independent runs with randomly
generated seeds.

Protein–ligand interactions, along with the simulations and protein conformational
changes, were analyzed using the Simulation Interaction Diagram (SID) available in Mae-
stro. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of
the protein and ligand were used to check the MD simulation stability along the 100 ns.

2.5. Visualization

Docking images were generated using PyMOL 2.4.1 [50], and graphs were plotted
using GraphPad version 8.1 for Windows, GraphPad Software (San Diego, CA, USA,
www.graphpad.com).

3. Results and Discussion

SARS-CoV-2 has infected more than 442 million people and caused more than 6 million
deaths worldwide, and the emergence of new variants has led to concerns regarding vaccine
effectiveness. At the time of writing, alpha, beta, gamma, delta were the SARS-CoV-2
variants of concern (VOC) [35,51,52]. Additionally, the new VOC omicron is spreading
rapidly, making it the predominant strain of SARS-CoV-2 in some countries [53]. Based
on the above, the introduction of a new variant may decrease vaccine effectiveness, and a
continued search for treatments is needed. We used computational approaches, such as
docking and molecular dynamics simulation, to test FDA-approved drugs and identify
potential candidates to treat COVID-19 by inhibiting the main proteins involved in the
entry and replication process as shown in Table 1.

www.graphpad.com
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Table 1. Docking scores and binding-free energy calculations of the 15 best-ranked FDA-approved
drugs against SARS-CoV-2 main protease (Mpro).

Compound ID Traditional Name FDA Status Docking Score ∆G(bind)
Kcal/mol Biological Activity

DB00290 Bleomycin Approved −12.119 −96.63 Anticancer, antibiotic [54–57]

DB09487 Iotrolan Approved −13.411 −78.80 Radiocontrast agent [8]

DB01698 Troxerutin Approved −11.707 −83.08
Antioxidant,

vasoprotective agent [58]
SARS-CoV-2 Mpro [10]

DB06791 Lanreotide Approved −9.932 −65.15 Anticancer [59–61]

DB00803 Colistin Approved −11.315 −94.83 Antibiotic [62,63]

CHEMBL3989823 Viomycin Sulfate Approved −10.319 −74.63 Anti-tuberculosis,
antibiotic [64]

DB01249 Iodixanol Approved −9.88 −91.33 Radiocontrast agent [8,65,66]

DB11672 Curcumin Approved −9.831 −70.24
Anti-inflammatory,

hypoglycemic, antioxidant,
and antimicrobial [54,67,68]

DB09134 Ioversol Approved −9.149 −44.95 Radiocontrast agent [66,69]

DB02638 Terlipressin Approved −8.513 −89.37

Hepatorenal syndrome,
vasoactive drug in the

management of
hypotension [70]

DB00104 Octreotide Approved −8.21 −82.34 Anticancer [59,61]

DB01232 Saquinavir Approved −7.978 −64.49
HIV-1 protease

inhibitor, inhibitor
SARS-CoV-2 Mpro [71,72]

DB06240 Tariquidar Approved −7.224 −79.24 P-gp transporter inhibitor [73]

DB00007 Leuprolide Approved −6.406 125.56 Anticancer [74]

3.1. Drug Candidates May Inhibit the Viral Protein Translation

Different drugs have been previously predicted as Mpro inhibitors (Figure S2), where
valrubicin, aprepitant, perphenazine, remdesivir, lopinavir, nelfinavir, bepotastine, and
aloxistatin are included [5,75–77]. As shown in Table 1, our molecular docking suggests
additional drugs that may inhibit the viral entry and inhibit the activity of SARS-CoV-2
main protease Mpro; within these drugs, biological actors, such as anticancer, antibiotic, anti-
inflammatory, antioxidant, antiviral, and radiocontrast agents, are included. Our suggested
Mpro’s inhibitor, viomycin, includes docking scores −10.319 and −74.63 Kcal/mol binding
energy (Table 1). Additionally, molecular docking suggests a binding comprised of amino
acid residues Thr 25—Leu 27, Phe 140—Cys 145, and His 163—Pro 168, with hydrogen
bond interactions with relevant residues, such as Thr 25, Thr 26, Asn 142, Gly 143, Cys 145,
and Glu 166 (Figure 1).

Even though the possible inhibitory effect of viomycin on Mpro was previously re-
ported by Mahanta et al., 2022 [78], our docking results suggest an additional stronger
interaction with residues Glu 166, Arg 188, and Gln 189, similar to those shown by N3
derivatives, which have higher inhibitory activity than N3 [18]. Its stability within the pro-
posed binding pocket was further evaluated along the 100 ns of simulation by inspection of
the root mean square deviation (RMSD) (Figure 2D). Molecular dynamics suggest stability
within the proposed binding pocket along the simulation (Figure 2E), with protein–ligand
interactions with relevant amino acid residues previously described by Jin et al., 2020 [18].
In this sense, viomycin is kept inside the binding pocket by having H-bond interactions
with residues such as Glu 166 (almost 100% of simulation), Gln 189 (76% of the simulation),
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Asn 142 (46% of the simulation), Ser46, and Glu 47, with 20% of interactions along the 100 ns
(Figure 2A), where Gln 189 and Glu 186 are involved in substrate affinity [78]. Additionally,
hydrogen bonds mediated by water (water bridges) are also present with residues Glu 166
(80% frequency), Gln 189 (60% of simulation), Asn 142 (40% of simulation), Thr 26, His 41,
Glu 47, and Pro 168 (less than 40% frequency) along the 100 ns of simulation (Figure 2B).
Finally, hydrophobic interactions with amino acid residue Pro 168 for 10% of the simulation
are also included (Figure 2C).
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Figure 1. A representative snapshot of the docking pose of viomycin. Mpro’s residues are colored
according to the atom type of the interacting amino acid residues (protein’s carbon, light grey;
oxygen, red; nitrogen, blue). The protein–ligand interactions are represented by dash lines as follows:
hydrogen bond interactions are colored in yellow.

On the other hand, bleomycin (docking score of −12.119 and binding-free energy
of −96.63 Kcal/mol), and lanreotide (a −9.932 docking score and binding-free energy
−65.15 Kcal/mol) are also suggested as potential Mpro inhibitors (Table 1). Both are in a
binding pocket consisting of residues Thr 24, Thr 26, His 41, and Glu 47 (Figure S3), with
hydrogen bond interaction with the residues Thr 24, Thr 26, Asn 142, Gly 143, Gln 189,
and Thr 190 also suggested by molecular docking (Figure S3). Bleomycin and lanreotide
are anticancer compounds; some authors, such as Mafucci et al., 2020, and Chakraborti
et al., 2020, have also reported bleomycin as a potential Mpro, and S protein inhibitor,
suggesting the strong urges for experimental testing of this peptidomimetic against SARS-
CoV-2 [10,59,79]. However, the application in clinics of bleomycin has been limited due to
its side effects, of which pulmonary fibrosis is considered the most severe [57,80].

Aside from the drugs mentioned above, inhibitors of HIV-protease, such as saquinavir,
indinavir, and lopinavir, are also predicted as Mpro inhibitors (Table 1). These antiviral
drugs have been tested to alleviate the mild-to-moderate SARS-CoV-2 symptoms in com-
bination with ritonavir [34,81]. Additionally, radiocontrast agents, such as iodixanol and
iotrolan, have been predicted as dual inhibitors by inhibiting Mpro and S protein activi-
ties (Tables 1 and 2). In this sense, iotrolan, one of the best-ranked Mpro inhibitors with
a −13.411 docking score (Table 1), is in a pocket made up of amino acid residues Leu
141—Asp 187, His 164—Gly 170, and His 41—Met 49 (Figure S3E). Furthermore, the iodine
substituents in the chemical structure of iotrolan are found by interacting with residues,
such as His 41, Gln 189, and Leu 164. Authors have also reported radiocontrast agents, such
as iotrolan and iodixanol, as potential Mpro inhibitors; however, these iodine-containing
drugs carry significant limitations for their use in clinics due to their side effects; hyper-
tensive reactions; and cardiovascular, ocular, and gastrointestinal complications [65,66].
Nevertheless, structural modifications in iotrolan and iodixanol could lead to safer antiviral
agents, where modification in iodide groups with hydrogens could make them stable and
safer as antivirals, although their affinity for Mpro could be compromised [8].
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Figure 2. Viomycin protein–ligand interaction along the 100 ns simulation. Frequency of hydro-
gen bonding interactions (A); water-mediated hydrogen bonding interactions (B); hydrophobic
interactions (C); representative picture of root mean square deviation (RMSD) values of protein
backbone for the protein–viomycin complexes (D); ligand RMSD variation along the simulation time
for viomycin (E).

Table 2. Docking scores and binding-free energy calculations of the 15 best-ranked FDA-approved
drugs against SARS-CoV-2’s the spike glycoprotein (S protein).

Compound ID Traditional Name FDA Status Docking Score ∆G(bind)
Kcal/mol Activity

Site 1

DB01362 Iohexol Approved −9.175 −58.99 Contrast agent [65]

DB04703 Hesperidin Approved −8.947 −66.09 Neuroprotective
agent [82]

DB09487 Iotrolan Approved −8.313 −76.17 Radiocontrast agent [8]
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Table 2. Cont.

Compound ID Traditional Name FDA Status Docking Score ∆G(bind)
Kcal/mol Activity

DB09135 Ioxilan Approved −8.082 −62.37 Contrast agent [8]

DB14126 Tenofovir Approved −4.658 −46.10
Used to treat constipation

24, anti-ribonuclease H
activity in HIV [83]

DB00811 Ribavirin Approved −5.117 −35.21 Antiviral agent [34]

DB00787 Acyclovir Approved −5.088 −46.10
Nucleotide analog

antiviral used to treat
herpes simplex [84]

Site 2

DB15617 Ferric
derisomaltose Approved −10.192 −30.76

Used to treat
iron-deficiency

anemia [85]

DB09487 Iotrolan Approved −10.047 −60.03 Radiocontrast agent [8]

DB01362 Iohexol Approved −8.431 −57.64 Contrast agent [8]

DB12301 Doravirine Approved −8.199 −49.40 Used to treat HIV-1
infection [86]

CHEMBL2368547 Senosside A Approved −8.677 −39.58
Used to treat constipation
[87], anti-ribonuclease H

activity in HIV [88]

CHEMBL1534 Riboflavin Approved −8.027 −59.09 Used to treat vitamin B2
deficiency [89]

CHEMBL1200455 Iohexol Approved −7.997 −43.54 Contrast agent [66]

Site 3

DB01249 Iodixanol Approved −10.49 −61.92 Radiocontrast agent [66]

DB15617 Ferric
derisomaltosa Approved −9.852 −55.90 Used to treat iron

deficiency anemia [85]

At the same time, antioxidant and anti-inflammatory drugs, such as troxerutin and
curcumin, are also predicted as potential Mpro inhibitors by our molecular docking (Table 1).
Troxerutin (−11.707 docking score and −83.08 Kcal/mol binding energy) and curcumin
(−9.831 docking score and −70.24 Kcal/mol binding energy) (Table 1) are in a bind-
ing pocket consisting of amino acid residues Thr 25—Leu 27, His 163—His 172, and
Arg 188—Gln 192 (Figure S3). Authors Islam et al., 2021, and Manoharan et al., 2020, have
reported curcumin as a phytochemical with a potential inhibitory effect against SARS-
CoV-2 Mpro and preventive measures against COVID-19 [67,90]. Furthermore, curcumin
could exhibit a protective effect mediated by angiotensin II receptors (AT1R and AT2R).
In this sense, upregulation of AT2R induces AT1R suppression, leading to angiotensin
II-AT2R-mediated anti-inflammatory effects involved the inhibition of NF-κB activity and
oxidative stress [67].

In the same way, molecular dynamics simulations suggest a strong interaction between
viomycin and relevant residues located at the active site of SARS-CoV-2 Mpro. Authors
have reported an active site made up of amino acid residues Thr 24, Thr 26, Leu 27, His 41,
Cys 44, Met 49, Pro 52, Ser 139, Phe 140, Leu 141, Asn 142, Gly 143, His 164, Glu 166, His
172, Phe 181, Gln 189, Thr 190, Gln 192, and Glu 168 involved in the S4 subpocket formed
at Mpro [16,91]. Mihiretie et al., 2021, report Gly 143 as the most attractive residue to form
an H-bond with ligand and Glu 166, Cys 145, and His 163 [92]. Interestingly, molecular
dynamics and docking results suggest an H-bond interaction and water bridges between
viomycin with some of these relevant residues, such as Glu 166 (Figure 2A,B). Moreover,
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some reported Mpro inhibitors interact with similar residues to viomycin. First, one widely
reported inhibitor, the Michael acceptor inhibitor (known as N3) reported by Jin et al.,
2020, is located inside the Mpro active site where the Sγ atom of Cys 145 forms a covalent
bond with the Cβ atom of its vinyl group [18]. In their study, Jin et al., 2020, found the P1
fragment of N3 in the S1 sub-pocket having an H-bond with amino acid His 163, whereas
the P3 fragment is solvent-exposed, while the P5 fragment is in contact with Pro 168, as
well as residues 190–191. In this sense, viomycin could be a potent inhibitory activity since
modifications of P3 fragments on N3 inhibitors looking to have a larger side chain are
an excellent option to find an inhibitor of the main protease where new inhibitors N27
and H16, which have a larger side chain at P3 position with stronger interactions with
residues Glu 166, Arg 188, and Gln 189, have higher inhibitory activity compared to N3 [92].
As with viomycin, different drugs have been reported as potential Mpro inhibitors with
similar protein–ligand interactions, where the neuromuscular blocking agent metocurine
was reported in the substrate-binding pocket of the protease, having interactions with the
amino acid residues Phe 140, Leu 141, Cys 145, His 163, His 164, Met 165, Glu 166, Leu 167,
and Pro 168 [93].

Similarly, protease inhibitors boceprevir, narlaprevir, and telaprevir showed a specific
binding against the main protease of SARS-CoV-2 where boceprevir through molecular
docking showed H-bond interactions, as well as hydrophobic interactions, with critical
residues His 41, Leu 141, His 164, Met 165, Glu 166, and Asp 187 [92]. In addition to the
previously reported inhibitors, the protease inhibitors used to treat HIV nelfinavir, lopinavir,
and ritonavir have effectively suppressed SARS-CoV through the inactivation of the Mpro

where Thr 24, Thr 26, and Asn 119 are the critical residues for binding [92,94]. Altogether,
docking results and molecular dynamics simulations against the main protease of SARS-
CoV-2 suggest a potential inhibitory effect on Mpro since protein–ligand interactions with
relevant residues involved in protease activity are present along the 100 ns. H-bond
interactions, as well as hydrophobic interactions between viomycin and key amino acid
residues such as Glu 166, Gln 189, Thr 24, and Thr 26, are also present within suggested
drugs, such as remdesivir, narlaprevir, boceprevir, and nelfinavir, among others.

3.2. Drug Candidates May Inhibit SARS-CoV-2 Entry into the Host Cells

Like Mpro, the spike glycoprotein (S protein) is essential for viral entry into a host cell
and is one of the main targets for drug design to fight COVID-19. As mentioned before, the
subunit S1 of the functional subunits of S protein comprises the receptor-binding domain
(RBD) and interacts directly with the host cell receptor. For this, the RBD region was used to
evaluate the potential affinity between FDA-approved drugs and the S protein. As shown
in Figure 3, three different grids were evaluated between the viral S protein and ACE2
receptor interface. The hydrophilic region (grid 1) is comprised of the key amino acid
residues Gln 498, Thr 500, and Asn 501, while grid 2 is comprised of Lys 417 and Tyr 453.
Finally, grid 3 is comprised of Gln 474, Phe 486, and Asn 487.

Our docking analysis suggests hesperidin within the top-ranked FDA-approved drugs
against the S protein (Table 2). Hesperidin (docking score: −8.947; −66.09 Kcal/mol
Table 2) is located near residues Gln 493—Tyr 505, making hydrogen bond interactions
with residues Arg 403, Tyr 453, Ser 494, Gly 496, Gln 498, and Thr 500, as well as a π-π
interaction with residue Tyr 505 (Figure 4).
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Due to hesperidin interacting with relevant residues involved in SARS-CoV-2 in-
fection mediated by interaction with the ACE2 and TMPRSS2 receptors, as shown by
Cheng et al., 2021 [95], we evaluated the hesperidin stability in the proposed pocket by
molecular dynamics simulation. Molecular dynamics simulation results show protein–
ligand stability along the simulation time (Figure 5E,F), with a ligand fluctuation within the
proposed pocket suggesting a possible conformation or ligand states (Figure 5F) without
leaving the pocket.

Regarding interactions along the simulation, hesperidin makes H-bond interactions
with residues such as Ser 494, Tyr 453, Gly 496, Asn 501, and Gly 502 with almost 40%,
35%, 36%, 35%, and 30% frequency, respectively (Figure 5A). In addition, water bridges
are included between hesperidin and residues Asn 501 (35% frequency) and Arg 403 (20%
frequency) (Figure 5B). Finally, hydrophobic interaction and π-π interaction with the amino
acid residue are included with 15% and 35% frequency, respectively (Figure 5C,D).
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Figure 5. Hesperidin protein–ligand interaction along the 100 ns simulation. Frequency of hydrogen
bonding interactions (A); water-mediated hydrogen bonding interactions (B); hydrophobic interac-
tions (C); π-π interactions (D); representative picture of root mean square deviation (RMSD) values
of protein backbone for the protein–hesperidin complexes (E); Ligand RMSD variation along the
simulation time for viomycin (F).

As shown in Table 2, molecular docking suggests additional FDA-approved drugs that
may inhibit SARS-CoV-2 entry into the host cell by interacting with relevant residues in the
RDB of the S protein. Radiocontrast agents such as iohexol (Docking score,−9.175), iotrolan
(Docking score, −8.313), and ioxilan (Docking score, −8.082) are included (Figure S4).
However, as mentioned above, chemical modifications are needed to enhance their stability
and safety and decrease their possible side effects [8]. Docking poses suggest a possible
interruption between the S protein and ACE2 receptor by the abovementioned contrast
agents, since Unni et al., 2020, hypothesized that H-bond interaction with residue Gly
496 and hydrophobic interaction with residue Tyr 505 may be able to break the site 1
interactions with the ACE2 receptor, specifically the interaction with residue Lys 343 [13].

Our docking results coincide with some authors, suggesting acyclovir as a potential
drug against SARS-CoV-2 [96]. Acyclovir is in the hydrophobic cleft and the hook region of
site 2, making interactions with residues such as Tyr 453, Arg 403, and near residue Glu 406
(Figure S4A). Additionally, π-π stacking with residue Tyr 495 and hydrophobic interaction
with residue Tyr 505 may disrupt the S protein interaction with the ACE2 receptor [13].
Peters et al., 2015, demonstrated that acyclovir and its nucleoside analogs based on its
acyclic sugar scaffold showed potential antiviral effects against MERS with EC50 and CC50
of 23 and 71 µM, respectively [97]. However, no suggested mechanisms, by which these
analogs and their precursor, acyclovir, impair viral replication [96].
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Moreover, antivirals ribavirin and tenofovir are also predicted by molecular docking
(Table 2). H-bond interactions with residues Asn 501, Gly 496, Ser 494, and Glu 406 are
included, as well as π-π interaction with Tyr 505 (Figure S4E,F). In this sense, as with
previous reports, our docking results suggest potential S protein inhibition by ribavirin
and tenofovir. Moreover, ribavirin downregulates the TMPR22 and decreases the ACE2
expression in infected Vero E6 cells after 48 h of treatment at 25 µM with no changes in Caco-
2 cells [98]. Furthermore, some reports suggest that tenofovir or tenofovir/emtricitabine
may reduce the SARS-CoV-2 viral load after day 7 compared to standard care. In this
case, PrEP users who tested positive for SARS-CoV-2 showed twice as much asymptomatic
infection as non-PrEP users [98,99]. However, there are also risks of HIV resistance if
tenofovir becomes an experimental therapy for COVID-19. For that, the use of tenofovir
outside of trials is not recommended but rather should be considered for inclusion in other
generic antiviral therapies in multiarmed therapeutic trials.

Despite vaccination programs, COVID-19 infections are increasing due to different
SARS-CoV-2 variants, such as B.1.617.2 (Delta). Delta lineage was identified in October 2020
in India with a high infection rate, which, according to the Centers for Disease Control and
Prevention (CDC), caused between 80% and 87% of all U.S. COVID-19 cases in the last two
weeks of July 2021 [35]. Therefore, it is necessary to continue searching for drugs and alter-
natives in the fight against these new variants. For that reason, we screened our database
against the SARS-CoV-2 variants B.1.1.7 (Alpha) and its mutations within RBD in the S
protein (Asn501Tyr) [100]; B.1.351 (Beta) Lys417Asn, Glu484Lys, Asn501Tyr; P.1 (Gamma)
Lys417Thr, Glu484Lys, Asn501Tyr; and B.1.617.2 (Delta) Leu452Arg, Thr478Lys [101,102].
We aimed to identify the possible binding affinity of hesperidin as our previously selected
drug in RBD in the S protein, as well as potential drugs against these new variants.

Our docking results in the B.1.1.7 (Alpha) variant show that hesperidin (docking score
−6.284, −66.44 Kcal/mol, Table S1) is located in a pocket made up of residues Gly 498—Tyr
505. Additionally, H-bond interactions with residues Gln 498, Gly 502, and Tyr 505 are
present, as well as π-π interactions with residues Tyr 501 and Tyr 505 (Figure 6). As with
hesperidin, different FDA-approved drugs are included within the best-ranked compounds
in the Alpha variant (Table S1). The oxytocin receptor agonist atosiban (docking score
−5.204; −66.43 Kcal/mol Table S1), a gastrin-like molecule; pentagastrin (docking score
−6.680; −62.36 Kcal/mol Table S1); protokylol (docking score −5.577; −57.85 Kcal/mol),
a β-adrenergic receptor agonist; and iopamidol are also included in top-ranked FDA-
approved drugs against the Alpha variant (Figure S5).
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Similarly, hesperidin (docking score −6.516; −65.70 Kcal/mol Table S2) in the B.1.351
(Beta) variant is located in a pocket comprised of residues Gln 498—Gly 502, making
H-bond interactions with the residues Thr 500, Gln 498, and Gly 502 and π-π interactions
with residues Tyr 501 and Tyr 505, as well as π- cation interactions with the residue Arg 403
(Figure 7). Different FDA-approved drugs with a wide range of biological activities, such
as the HIV-inhibitor ritonavir; the contrast agents iotrolan, ioversol; and the prostaglandin
reductase activity rutin, are included among the best-ranked drugs against this variant
(Figure S6, Table S2). Regarding the B.1.617.2 (Delta) variant, our docking results suggest
that hesperidin makes an H-bond interaction with residues Tyr 505, Gly 502, Tyr 501, Gln
498, and Thr 500 (Figure 8). Likewise, the anticancer drug goserelin, the antibiotic colistin,
the anticancer lanreotide, and the contrast agents iodixanol and ioproline are included
among the best-ranked compounds against this SARS-CoV-2 variant (Table S3).
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In this sense, hesperidin interactions with Asn 501 might decrease the interaction be-
tween SARS-CoV-2 and ACE2. At the same time, the Asn 501 mutation found in the 
B.1.617.2, B.1.1.7, and B.1.351 (Beta) variants with Tyr 501 could stabilize its interaction by 

Figure 8. A representative snapshot of the docking pose of hesperidin with the Delta variant.
B.1.617.2 (Delta’s) residues are colored according to the atom type of the interacting amino acid
residues (protein’s carbon, pale green; oxygen, red; nitrogen, blue). Dash lines represent the protein–
ligand interactions: hydrogen bond interactions are colored in yellow; π-π interactions are colored in
blue; π-cation interactions are colored in green.

It is well known that the interaction between the RBD region of the S protein and
ACE2 plays a crucial role in their binding affinity following the viral infection [38]. In
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this sense, our docking result, as well as our molecular dynamics simulations, suggest a
possible decrease in the S protein/ACE2 interactions mediated by hesperidin due to H-
bond interactions with key residues involved in a viral entry within the host cell (Figure 4).
Relevant residues included within the receptor-binding motif (RBM)Leu 455 and Gln 493
are reported to have favorable interactions with the ACE2 residues Lys 31 and Glu 35,
respectively [103]. Furthermore, hesperidin interaction with the critical residue Gln 498
(Figures 4 and 5A,B) might decrease the H-bond interactions between the S protein and
residue Tyr 41 of ACE2, where molecular docking shows that the substitution of SARS-CoV-
2 Gln 498 with Tyr 484 forms π-π interactions with the same ACE2 residue, which explains
the enhanced ACE2 binding [103,104]. Moreover, hesperidin also makes an H-bond interac-
tion and water bridge with relevant residue Asn 501 (Figure 9A,C). Structural data suggest
that Asn 501 has a strong interaction with the ACE2 residue Lys 353, and its mutation with
Thr 501 can stabilize the overall RBD structure through hydrophilic interactions enhancing
its binding with ACE2 [35,38]. Additionally, the present study highlights the potential use
of hesperidin against SARS-CoV-2 variants of concern (VOC) since these variants have been
demonstrated to increase transmissibility, increase disease severity, and have a significant
impact on treatments, as they decrease the neutralization activity of antibodies produced
by vaccines [105,106]. These variants have several mutations within the receptor-binding
domain (RBD) in the spike glycoprotein that may enhance the affinity of the S protein for
ACE2. Mutations such as L452R, E484K, and N501Y included in some VOCs are located
within the receptor-binding motif and directly comprise the interaction with the ACE2
receptor [107]. Our docking results suggest that hesperidin may disrupt the interaction
between the S protein and ACE2 receptor through its π-π interactions between its aromatic
ring and the N501Y mutation included in the Alpha, Beta, and Delta variants (Figures 6–8).
These results are interesting since the N501Y mutation increases the ACE2 binding affin-
ity, and this enhancement was preserved in combination with the mutations D614G and
E484K [107]. These results are in concordance with the results obtained by Cheng et al.,
2021, where hesperidin decreases SARS-CoV-2 infection by inhibiting the ACE2 receptor
and TMPRS2 [95]. These results show that hesperidin may modulate the affinity between
the S protein and ACE2 receptor since increased ACE2 affinity is mainly driven by the
N501Y mutation.

In this sense, hesperidin interactions with Asn 501 might decrease the interaction
between SARS-CoV-2 and ACE2. At the same time, the Asn 501 mutation found in the
B.1.617.2, B.1.1.7, and B.1.351 (Beta) variants with Tyr 501 could stabilize its interaction
by making π-π stacking interactions with hesperidin (Figures 6–8). Overall, hesperidin
may decrease SARS-CoV-2 infection by diminishing the interactions between the S protein
and ACE2 due to its interactions with relevant residues, such as Asn 439, Leu 452, Thr
470, Glu 484, Gln 498, and Asn 501. These residues are reported as critical for SARS-CoV-
2 binding to ACE2 and can increase the infectibility of natural RBD mutations during
virus transmission.

3.3. FDA-Approved Drug Candidates May Inhibit SARS-CoV-2 Replication

The third evaluated target in this work, the RdRp complex, is used for the SARS-CoV-2
virus for the replication of its genome and the transcription of its genes [108]. As shown
in Table 3, we identified several interactions between FDA-approved drugs and RdRp
that seem relevant for effective binding. Six antiviral drugs hit the top of our ranking:
inarigivir, cidofovir, zanamivir, faldaprevir, elvitegravir, and ribavirin. Four antibiotics
were identified as potential RdRp inhibitors: demeclocycline, nystatin, ticarcillin, and
latamoxef. Additionally, radiocontrast agents mangafodipir and iotrolan were also found
to be potential RdRp inhibitors (Table 3).
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Table 3. Docking scores and binding-free energy calculations of the best-ranked FDA-approved
drugs against RNA-dependent RNA polymerase (RdRp).

Compound ID Traditional Name FDA Status Docking Score ∆G(bind)
Kcal/mol Activity

DB00618 Demeclocycline Approved −14.225 −2.73 Antibiotic, also is used to
treat hyponatremia [109]

DB11365 Sennoside Research −14.040 −47.94 Used to treat
constipation 24

DB06796 Mangafodipir Approved −13.433 −31.72 Contrast agent

DB00650 Leucovorin Approved −13.424 −0.07
Used to prevent toxic
effects after high-dose
methotrexate therapy

DB11596 Levoleucovorin Approved −13.322 −7.54
Used to prevent toxic
effects after high-dose
methotrexate therapy

DB00923 Ceforanide Approved −12.969 63.36 Antibacterial activity

DB09487 Iotrolan Approved −12.951 6.25 Radiocontrast agent 5

DB15062 Inarigivir Research −11.882 −1.37 Used to treat
hepatitis B virus

DB00646 Nystatin Approved −11.669 −60.13 Antifungal activity

DB01076 Atorvastatin Approved −11.117 39.19 Antilipemic agent

DB01607 Ticarcillin Approved −11.095 −34.52 Antibiotic

DB00369 Cidofovir Approved −10.972 32.78 Antiviral activity against
human cytomegalovirus

DB06794 Lodoxamide Approved −10.967 7.96 Ophthalmic agent

DB00558 Zanamivir Approved −10.869 90.24 Used to treat influenza
viruses A and B

DB04570 Latamoxef Approved −10.843 24.25
Antibiotic used against

Gram-positive and
Gram-negative bacteria

DB11808 Faldaprevir Research −10.750 45.70 Antiviral agent against
hepatitis C virus

DB09292 Sacubitril Approved −10.650 7.38 Used to treat
cardiovascular diseases

DB09101 Elvitegravir Approved −10.432 −34.56 HIV-1 treatment

DB14663 Ribavirin
monophosphate Approved −9.075 −19.72 Antiviral agent against

hepatitis C virus

The antifungal nystatin, used to treat mycotic infections, particularly those caused
by the Candida species (docking score, −11.669; −60.13 Kcal/mol, Table 3), is located in
a pocket formed by residues Ser 682—Asn 691 and Lys 551—Lys 545, making hydrogen
bond interactions with residues Asn 496, Lys 545, Ser 549, Ser 814, Ser 759, Ala 688, and
Ala 685 (Figure 10). Molecular dynamics simulation was used to evaluate the nystatin
stability within the proposed binding pocket, suggesting nystatin stability inside the pocket
(Figure S7) mediated by strong H-bond interactions with residues Ala 688 and Ser 814 with
40 and 80% frequency, respectively (Figure 9A). Hydrogen bond interactions mediated by
water are also included with Asp 623 and Ser 759 with almost 40% frequency (Figure 9C).
Finally, ionic interactions generated by the Mg ions at the RdRp catalytic site and charged
residues are present along the 100 ns simulation between nystatin and Asp 618, Asp 760,
Asp 761, and Asp Glu 811 (Figure 9D).
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Figure 9. Nystatin and elvitegravir protein–ligand interaction along the 100 ns simulation. Frequency
of hydrogen bonding interactions (A); hydrophobic interactions (B); water-mediated hydrogen
bonding interactions (C); ionic interactions (D).
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At the same time, the stability inside the predicted pocket of antiretroviral elvitegravir
(docking score−10.432; −34.56 Kcal/mol, Table 3) used for the treatment of HIV-1 infection
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was also simulated (Figure 11). Elvitegravir remains stable inside the pocket mediated
by ionic interactions between elvitegravir, Mg ions, and residues Asp 623, Asp 760, and
Asp761 with 100%, 100%, and 40% frequency (Figure 11). Additionally, water bridges with
key residues, such as Asp 623, Asp 760, and Asp 761 (50%, 40%, and 40%, respectively
Figure 9C) are also included, as well as H-bond interaction with Arg 555 (20% frequency,
Figure 9A).
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Besides nystatin and elvitegravir, our docking results suggest as potential RdRp
inhibitors demeclocycline (docking score, −14.225; −2.73 Kcal/mol, Table 3); leucov-
orin (docking score, −13.424; −0.07 Kcal/mol, Table 3); and levoleucovorin (docking
score −13.322; −7.54 Kcal/mol, Table 3), located in a pocket comprised of residues
Lys 551—Ala 558, Arg 624—Tyr 619, and Ser 682—Thr 680 (Figure S8). Additionally, radio-
contrast agents mangafodipir and iotrolan are also suggested as potential RdRp inhibitors
(Table 3). Mangafodipir (docking score, −13.433; −31.72 Kcal/mol, Table 3) and iotrolan
(docking score, −12.959; 6.25 Kcal/mol, Table 3) are in a pocket formed by residues Ser
549—Arg 555, and Asp 618—Lys 621, making H-bond interactions with residues Lys 545,
Arg 555, Lys 621, Ser 549, and Arg 836 (Figure S8). Additionally, halogen interactions
between iodide atoms and residues Ser 814 and Tyr 689 stabilize their position within the
predicted binding site.

Docking results and molecular dynamics simulations suggest that nystatin and elvite-
gravir may inhibit the SARS-CoV-2 RdRp polymerase due to their stability within the
proposed binding pocket (Figure S7), which is characterized by strong binding pocket ionic
interactions with key residues (Figure 9D). In the search for drugs for COVID-19 treatment,
different antiviral drugs have been identified by targeting key proteins involved in different
life cycle stages of SARS-CoV-2, and some of them are now in the clinical trial stage [43].
The antiviral drug remdesivir is one of the main RdRp inhibitors, positioned at the center
of the catalytic site, forming stacking interactions and two hydrogen bonds with the purine
base from the RNA template. Additionally, remdesivir makes hydrogen bond interactions
with the side chain residues Lys 545 and Arg 555 [14]. Furthermore, key residues involved
in remdesivir binding include Arg 553, Val 557, Asp 618, Ser 623, Thr 680, Asp 682, Gln
691, Asp 760, and Asp 761 [110]. Recently, Kabinger et al., 2021, showed that molnupiravir
induces RNA mutagenesis since RdRp uses the active form of molnupiravir as a substrate
instead of cytidine or uridine triphosphate [111,112]. Therefore, our results suggest that
nystatin and elvitegravir may inhibit SARS-CoV-2 RdRp mediated by their interactions
with relevant residues and their position within the protein-active site (Figures 10 and 11).
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In this sense, nystatin and elvitegravir have ionic interactions with Asp 760 and Asp 761
(Figure 9D) involved in the Mg coordination, including in the RdRp palm subdomain,
forming the catalytic site [113]. Additionally, elvitegravir makes H-bond interaction with
residue Arg 555 (included in the motif F), an important residue involved in the interaction
with the primer strand RNA, stabilizing the incoming nucleotide in the correct position for
catalysis [14]. In this sense, since Arg 555 and Lys 545 make an H-bond interaction with the
primer strand, the interaction between elvitegravir and Arg 555 may explain the possible
elvitegravir inhibitory effect.

4. Conclusions

Our docking and molecular dynamics simulations provide new insights about the
possible drug repurposing of viomycin (interacting with Mpro) and its interactions with
key residues, such as Asn 143, Glu 166, and Gln 189, elvitegravir, and nystatin (interacting
with RdRp). Their interactions with residues Asp 760, Asp 761, and Asp 618 may be able to
inhibit the viral life cycle of SARS-CoV-2. Here, we also show hesperidin interaction with
residue Tyr 501, a conserved amino acid in the S protein of different SARS-CoV-2 variants,
decreasing the affinity between the S protein and ACE2 receptor, suggesting it as a good
candidate to block the infection from the Alpha, Beta, and Delta VOCs.

Aside from the above-mentioned drugs, several iodide-based contrast agents (i.e.,
iohexol (−58.99 Kcal/mol), iotrolan (−76.19 Kcal/mol), and ioxilan (−62.37 Kcal/mol))
were also found to bind the defined binding sites of the S protein strongly (Table 2).
Although the information we report here is the possible strong interaction between these
contrast agents and SARS-CoV-2′s S protein, Mpro, and RdRp, we believe that further
investigation including chemical modifications in their structures might bring relevant
advances in COVID-19 treatment.
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inhibitors; Figure S3: Representative snapshots of the docking pose of best ranked FDA-approved
drugs in-teracting in Mpro; Figure S4: Representative snapshots of the docking poses of best ranked
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