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Abstract

Background

The outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus

has spread rapidly around the globe during the past 3 months. As the virus infected cases and

mortality rate of this disease is increasing exponentially, scientists and researchers all over the

world are relentlessly working to understand this new virus along with possible treatment regi-

mens by discovering active therapeutic agents and vaccines. So, there is an urgent require-

ment of new and effective medications that can treat the disease caused by SARS-CoV-2.

Methods and findings

We perform the study of drugs that are already available in the market and being used for

other diseases to accelerate clinical recovery, in other words repurposing of existing drugs.

The vast complexity in drug design and protocols regarding clinical trials often prohibit devel-

oping various new drug combinations for this epidemic disease in a limited time. Recently,

remarkable improvements in computational power coupled with advancements in Machine

Learning (ML) technology have been utilized to revolutionize the drug development process.

Consequently, a detailed study using ML for the repurposing of therapeutic agents is

urgently required. Here, we report the ML model based on the Naive Bayes algorithm, which

has an accuracy of around 73% to predict the drugs that could be used for the treatment of

COVID-19. Our study predicts around ten FDA approved commercial drugs that can be

used for repurposing. Among all, we found that 3 of the drugs fulfils the criterions well

among which the antiretroviral drug Amprenavir (DrugBank ID–DB00701) would probably

be the most effective drug based on the selected criterions.

Conclusions

Our study can help clinical scientists in being more selective in identifying and testing

the therapeutic agents for COVID-19 treatment. The ML based approach for drug
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discovery as reported here can be a futuristic smart drug designing strategy for commu-

nity applications.

Introduction

The recent outbreak of novel Coronavirus disease (COVID-19) is now considered to be a pan-

demic threat to the global population [1–3]. Coronaviruses belong to a family of viruses mainly

found in animals but with the recent outbreak, they have transmitted to humans. The new

Coronavirus, 2019-nCoV is termed as severe acute respiratory syndrome-related Coronavirus

SARS-CoV-2 [4–9] which has now affected more than 200 countries with over 25,326,924

cases confirmed and 8,49,060 deaths reported all over the world [as on 30th August 2020]. This

could potentially bring major challenges to global healthcare and disastrous effect on the global

economy if the virus is not contained within a few months [10]. The common symptoms

include cough, fever, shortness of breath, fatigue etc which makes it confusing for the patients

to differentiate the symptoms with that of the typical cold and flu [10–13]. Reports suggest that

the virus is transmitted through body fluids of the infected patients, especially when in contact

and while sneezing even though exact reasons are not known. Unfortunately, no drugs have

been approved by regulatory agencies to treat SARS-CoV-2 infection until now. Efforts are

ongoing on war footing to find the effective drug and vaccine to treat this pandemic.

Coronaviruses are classified into four classes designated as alpha, beta, gamma, and delta

[14]. The beta Coronavirus class includes severe acute respiratory syndrome virus (SARS--

CoV), Middle East respiratory syndrome virus (MERS-CoV), and the COVID-19 virus

(SARS-CoV-2). Coronaviruses are found to be considerably large viruses with a single-

stranded positive-sense RNA genome encapsulated inside a membrane envelope having pro-

teins appearing like spikes protruding from their surface. These spikes adheres onto human

cells, through certain receptors on target cells, after which undergoes a structural change that

lets the viral membrane fuse with the cell membrane. The viral genes then enter the host cell,

producing more viruses. Recent studies show that, like the virus responsible for 2002 SARS

outbreak, SARS-CoV-2 spikes also bind to receptors on the human cell surface called angio-

tensin-converting enzyme 2 (ACE2) [15]. Like SARS-CoV and MERS-CoV, SARS-CoV-2 also

attacks the lower respiratory system causing viral pneumonia. However, there are also reports

that it could affect the gastrointestinal system, heart, kidney, liver, and central nervous system

resulting in multiple organ failure [16]. Compiling the medical reports and data available from

the patients, SARSCoV-2 is found to be more transmissible/contagious than SARS-CoV [17].

Rapid development of computer aided technology like ML based on Artificial Intelligence

(AI) can help accelerate the drug development process for different diseases [18–20]. The

advantage of AI approaches like ML is that they can be applied to learn from examples and

build predictive models even when our understanding of the underlying biological processes is

limited, or when computational simulations based on fundamental physical models are too

expensive to be carried away. Another advantage of ML is to automatically learn to identify

complex patterns that categorize sets from input data and thereby make intelligent decisions

based on independent datasets [21]. ML can accurately predict drug-target interactions as an

enormous amount of complex information by studying hydrophobic interactions, ionic inter-

actions, hydrogen bonding, van der Waals forces, etc. between molecules. Bioactivity datasets

which are available from the numerous high throughput screens deliver useful means for

machine learning classifiers as they contain binary information (active/inactive) as well as

numerical values to classify different compounds under consideration [22, 23]. Such a huge
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number of datasets available on biological activities of molecules, derived from high through-

put screens now allows to create predictive computational models.

In this study, we have applied a machine learning approach to predict several new potential

drugs for the treatment of SARS-CoV-2 and validated the predicted drugs. Initially, we have

trained our model with the inhibitors of the SARS Coronavirus 3C-like Protease. The FDA

approved drugs are only taken from the Drug bank as a test model to predict the new drugs.

These new drugs are again validated using a docking method to ensure that the drugs match

with the same active site on the protein. A ranked list of drugs based on energy value is given

that can be tested experimentally. Our study hypothesizes that the commercial FDA approved

antiretroviral drug Amprenavir may be a potential candidate requiring to limit viral recogni-

tion of host cells or disrupt host-virus interactions thus requiring further clinical trial.

Recently, several computational studies have reported the potential of FDA approved drugs

for Covid-19. Rodriques et al reported a study on potential drugs for Covid-19, which showed

that Atazanavir could dock in to the active site of SARS-CoV-2 Mpro with greater strength

compared to Lopinavir which is also a HIV protease inhibitor [24]. Beck et al. published a

study based on deep learning model predicted Atazanavir having high inhibitory potency

against SARS-CoV-2 among other FDA approved drugs [25]. Ekin et al. also reported on

repurposing of drugs for covid-19 based on polypharmacology using ‘molecular and biological

signature’ which is guided by artificial intelligence reported several potential drugs including

Atazanavir which can be repurposed for covid-19 [26]. They have compared several FDA

approved drugs with matching scores which could further accelerate studies on SARS-CoV-2

drug discovery [26]. Another latest study published by Arshad et al. predicted some of the

FDA approved drugs after evaluating existing in vitro anti-SARS-CoV-2 data, compiling all

reports available [27]. In the present study, we have used a computationally less involved

Naive Bayes algorithm to successfully train and predict some FDA approved drugs. We found

10 such drugs and Amprenavir has lowest global energy value which can a potential candidate

for further clinical study.

Methods

Preparation of dataset

In the present study, the compounds of the dataset are tested in the cell based system using

plate readers and then their results are stored as Bioassay Dataset in the Pub chem. This dataset

of PubChem Bioassay assigned AID 1706 contains around 290893 compounds as one activity

set and they are the inhibitors of SARS Coronavirus 3C-like Protease in the cells. This dataset is

stored in the section Bioassay of PubChem database of National Centre for Biotechnology

Information (NCBI), and they have the identification AID number as AID 1706 [23]. This cor-

responding bioassay belongs to the Scripps Research Institute Molecular Screening Center of

replication in SARS Coronavirus 3C-like Protease in the cells. The compounds are classified

under three distinct categories as actives, inactives and inconclusive. Compounds that inhibit

luminescence activity may kill SARS Coronavirus, inhibit SARS Coronavirus invasion or inhibit

development of the parasite within the host cell and hence these are classified under the active

section and the compounds which do not show effectiveness are classified under inactive sec-

tion. These complete datasets were downloaded in the form of SDF (Structure Data File) from

the PubChem Database.

The Drug Bank is an online database which contains detailed data about various medica-

tions [24]. Today, it is being widely used to facilitate in silico drug target discovery, drug

design, drug docking or screening, drug metabolism prediction, drug interaction prediction

and for general pharmaceutical education. This database of more than 4900 Drugs is
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categorized into many different types as Trial stages Drugs, Approved Drugs andWithdrawn

Drugs. In this database, more than 45% of drugs are approved for various medication purposes

[28]. In this research, we have focused only on the FDA approved drugs for repurposing pur-

pose which are around 2388 with the intention that it will minimize clinical trial in the present

situation. These drugs were downloaded in the form of SDFs and after processing, the descrip-

tions generated were taken as the test model for developing the train model which was made

on the basis of a database containing the inhibitors of the SARS Coronavirus. The developed

model has predicted few of the potential drugs. Fig 1 represents the variation in the molecular

weights of the considered active and inactive pharmacophore fingerprints.

Processing dataset

Since the datasets are present in the form of SDFs, we have generated the attributes present in

the SDFs. First, the information present in the SDFs are generated as CSV files which are used

as the training dataset and test dataset for preparing the ML models. These CSV files contain-

ing both the actives and inactive points are split into 80% as training dataset and 20% as test

dataset. This entire splitting process was random. This process is done by self-written python

code to split as per the conditions.

Classification algorithm

We have used Machine learning (ML) model to the selected dataset from the PubChem which

was considered as inhibitors and tested against the drugs from the Drug Bank to find more

suitable drugs for the Covid-19 [29]. Using ML, we have implemented the classification algo-

rithms as described below.

The classification is a type of supervised learning in which the computer system can learn

from the dataset which contains the detail and practical results. The algorithmic procedure of

the classification is to assign an input value according to the description in the datasets [30].

Fig 1. Representation of the variation in the molecular weights of the considered active and inactive

pharmacophore fingerprints.

https://doi.org/10.1371/journal.pone.0241543.g001
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So, for this, it requires a mathematical classifier that can assign specific class (active and inac-

tive) labels to instances defined by the attributes. In this process, the training model is made to

learn using dataset where the classification is already assigned and on the basis of which it is

able to run on different datasets to classify them according to the present instances. In this

study, we have compared the results from the classifier that is Naive Bayes classification

algorithm.

Naive Bayesian classification algorithm is a simple and elegant approach by assuming that

its classification attributes are independent and they don’t have any correlation with each

other [31]. It is a type of classifier that depends on Bayes’ hypothesis. Naive Bayes does work

best in two cases: complete independent feature (as expected) and functionally dependent fea-

tures (as expected) and is a widely tested method for probabilistic induction.

This algorithm is more useful than any other induction algorithms because of its computation

speed and reliability [29]. Also, when the analysis of several other algorithms were done, it was

found that the classification algorithms like Randome Forest, SMO, etc were getting overfit on

the provided dataset. It is based on the analysis of several other algorithms which when used,

showed that they overfit on the dataset. The reason of overfitting can be various but the most sig-

nificant one is related to the dataset which contains binary codes and few other required informa-

tion only. Hence, it can be useful for both the binary classification as well as multi-classification.

Training model

The training model is based on the collected pharmacophore fingerprints that the dataset con-

tains and to divide it into the testing and training model, we have used 80% of the entire data-

set as the training model whereas the rest 20% is taken as the test model or set. The dataset is

completely classified from where the computer learns and finds the relations among various

attributes. The cross-validation is used along with the algorithm to train the model. In this

case, we have used 10-fold and it is chosen as per the size of the dataset [32, 33].

Generally, the datasets containing binary classification based on several attributes are

imbalanced. We observe the similar trend here. These imbalanced datasets are not possible to

be handled by the normal classifiers since they give importance to each of the attributes equally

which could lead to misclassification errors. This can decrease the accuracy of the dataset for

the trained model [34, 35]. Therefore, we have used the misclassification cost where the trained

model becomes cost sensitive and able to find the lowest expected cost. This approach is actu-

ally much randomized because it neither depends upon the number of attributes nor on the

minority class ration; rather it depends on the base classifier [36, 37].

Here, we had two methods to introduce the misclassification cost with the imbalance data-

set. The first method is to classify the algorithm into the cost-sensitive one and proceed with

the rest settings [38]. The other is the use of a wrapper, which helps in the base classifiers into

cost sensitive ones.

We have used Naive Bayes classifier which uses the cost insensitive algorithm to predict the

probability estimations of the test instances and then using this it predicts class labels for the

examples of the test dataset. In our report, we have classified our datasets into two classes i.e.

active and inactive. So, we used the 2X2 matrix which is generally used for the binary classifica-

tion. In the matrix sections, we can find True Positives (active classified as active), False Posi-

tives (Inactive classified as active), False Negatives (active classified as inactive) and True

Negatives (inactive classified as inactive). In this case, the percent of False Negatives are more

important than the percent of False Positives and the upper limit for False Positives were set to

20% [34, 38]. In this process, we increase the misclassification up to the set percent which also

helps in the increasing of the True Positives.
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Since, the actives are very less in number, we have replicated them to around 100–110 times

to match it with the inactives and make the model less biased.

Independent validation

There are various methods for the validation of the binary classifiers. The True Positive Rate is

the ratio of the actual actives to the predicted positives and this can be obtained as (TP/TP

+FN). The False Positive Rate is the ratio of the predicted false actives to actual inactives and

this can be obtained as (FP/TN+FP). Accuracy shows the model’s performance relative to the

real values and this can be calculated as (TN+TP/TN+TP+FP+FN). The Sensitivity shows the

model’s ability to identify the positive results and this is calculated as (TP/FN+TP) and the

Specificity shows the model’s ability to identify the negative results and this is calculated as

(TN/TN+FP). A model with high specificity and sensitivity has a low error rate. The Balanced

Classification Rate (BCR) is the mean of the sensitivity and specificity, which provides the

accuracy of the model applied on the imbalanced dataset. This BCR can be calculated as 0.5�

(specificity+sensitivity).

Apart from the BCR, the Mathews Correlation Coefficient (MCC) is also used whose range

varies from -1 to 1. We have also found the F Score which gives a better idea about the model.

The Receiver Operating Characteristic (ROC) curve is the visualization of the ratio of FPR to

TPR. In this case, the FPR and TPR are placed on the x- and y-axis respectively. The Area

under curve shows the probability prediction of the classifier and its ability to classify the ran-

domly chosen instance into the correct class.

After the preparation of the training model, then the rest 20% of the dataset that was kept

from the original dataset was run against the training model. Finally, this gave the test perfor-

mance with an accuracy of around 72.999% or 73%.

Docking of the predicted drugs

Around 178 drugs were predicted by our ML model which can be effective for the treatment of

diseases caused by SARS-Cov-2. The docking of the drugs was done with SARS-Cov 3C-like

protease. The PDB structure of SARS-CoV 3C-like protease was retrieved from Protein data

bank (PDB ID: 3VB7). For preparation of the optimized protein structure for docking, all the

water bodies as well as previously attached ligands were removed. However, the drugs were

not being prepared; instead, we used the already available drugs from the DrugBank. All the

docking experiments were carried out using the patchdock server (https://bioinfo3d.cs.tau.ac.

il/PatchDock/). While providing the input parameters in the patchdock server, the active sites

were provided as inputs for targeted docking. Information on the active sites were collected

from Chuck et. al., 2013 [39]. There are no available drugs as of now, since the epidemic has

just recently accelerated to over 25,326,924 cases [As of 30th August, 2020].

The predicted compounds with above 95% of confidence were docked using patchdock

web server.

Results

Here, we have at first taken the inhibitors of SARS-CoV-2, which doesn’t allow them to repli-

cate in the host. These are screened and collected in the bioassay AID 1706 which were used as

the main component for the modeling of the training model using ML. The 914 attributes

were taken under consideration for more than 200,000 compounds. We have not used unsu-

pervised learning to filter out the dataset, because it would have made the dataset much

weaker. As mentioned in the method section, we have used a classifying algorithm to train the
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model and the best among them was further used for the testing and predicting the drugs from

the Drug Bank. The schematic of the process is shown in Fig 2.

We have used the Naive Bayes against the dataset. The test performance has shown accu-

racy of approximately 72.999% whereas the training model had an accuracy of 72.67% Along

with that, the model has a True Positive accuracy rate of 73% and False Positive Accuracy of

50.7%. With this model, we have used the drugs from the Drug Bank to get predicted for the

identification of the potential drugs which can be used for the treatment of disease caused by

SARS Coronavirus. Along with that the model has predicted 34754 True Positives and 3904

True Negatives.

The Naive Bayes has 0.194 MCC and BCR i.e., 76.69%. The AUC-ROC value of the ML

model is 0.666 or 0.67 Along with the other results, the F Score is 0.768, which presents that

the model is fairly good to predict the potential drugs for COVID-19. As per the independent

validation, the algorithm with the lowest possible False Positives and highest possible True

Positives can be considered to be the most effective model for the prediction of the drugs from

the Drug Bank. In all the cases, the compounds for the False Positives were set to 20%. The

comparison of the False Positive Rate and True Positive Rate for all algorithms used in the case

of preparation of ML models are shown in Fig 3A. When these results are compared with the

rest of the dataset, it is found to be way better because it has satisfied both criteria and the rest

of the algorithms has not reached the mark that has been achieved by Naive Bayes.

The model created with Naive Bayes algorithm predicted around 471 drugs out of all the

2388 approved drugs. These 471 drugs contain all the drugs which may be effective for the

treatment of disease caused by SARS-Cov-2. The selection of these drugs is based on the confi-

dence level of the model. The model has predicted the 471 drugs over a range of confidence

Fig 2. Flowchart of the machine learning based approach to predict FDA approved drugs for COVID-19.

https://doi.org/10.1371/journal.pone.0241543.g002
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levels starting from 51% - 98%. However, we have used the drugs for the processing to the

docking stages which had a confidence level of more than 90%. After this step, we were left

with around 28 drugs which were again docked with the potential protein molecule. Hence,

we have suggested the top 10 of them considering both the ML accuracy and the docking

result. The docking results have been used for binding energy prediction and its effectiveness

to bind with the compound. The results are shown in Table 1.

Based on the docking study, we identified 10 possible drugs namely Amprenavir (DrugBank

ID–DB00701), Fosamprenavir (Drug Bank ID: DB01319), Indinavir (Drug Bank ID: DB00224),

Saquinavir (Drug Bank ID: DB01232), Darunavir (Drug Bank ID: DB01264), Ritonavir (Drug

Bank ID: DB00503), Paritaprevir (Drug Bank ID: DB09297), Lopinavir (Drug Bank ID:

DB01601), Atazanavir (Drug Bank ID: DB01072) and Tipranavir (Drug Bank ID: DB00932) for

the treatment of novel SARS Coronavirus. The chemical structure of Amprenavir is shown in Fig

3B. Chemical structures of remaining 9 drugs are provided (S4–S12 Figs in S1 File).

In order to evaluate the similarity between the protein selected i.e. SARS COV 3C like pro-

tease and SARS COV2 protease, we evaluated a protein BLAST using NCBI’s server (https://

blast.ncbi.nlm.nih.gov/Blast.cgi). The blast was done between FASTA sequence of PDB:

Fig 3. (a) The comparison of the false positive rate and true positive rate for all algorithms used in case of preparation of machine learning
models (b) Chemical structure of the Atazanavir.

https://doi.org/10.1371/journal.pone.0241543.g003

Table 1. Global energy value for predicted drugs.

Drug Bank ID Name of Drugs Global Energy Attractive VdW Repulsive VdW ACE

DB00701 Amprenavir -58.20 -23.71 10.20 -19.77

DB01319 Fosamprenavir -56.52 -24.16 9.99 -18.25

DB00224 Indinavir -54.80 -23.28 3.63 -16.7

DB01232 Saquinavir -54.49 -25.41 11.86 -18.20

DB01264 Darunavir -54.31 -24.72 5.92 -15.99

DB00503 Ritonavir -52.39 -22.04 11.48 -20.31

DB09297 Paritaprevir -48.47 -22.87 7.59 -14.76

DB01601 Lopinavir -46.04 -21.26 3.58 -13.13

DB01072 Atazanavir -45.19 -22.02 15.61 -17.63

DB00932 Tipranavir -36.68 -16.99 7.46 -12.64

https://doi.org/10.1371/journal.pone.0241543.t001
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3VB7_B and PDB: 6M0K_A. It was observed that there was a 96% similarity in both the struc-

tures (S1 and S2 Figs in S1 File). Initially, the structure was optimized by removing water mole-

cules and other ligands. Structure of all the ligands were retrieved from PubChem (https://

pubchem.ncbi.nlm.nih.gov/). The docking experiment was done with the patchdock server

(https://bioinfo3d.cs.tau.ac.il/PatchDock/). The results refinement and energy calculation was

performed as per the algorithm used in the Firedock server. In server, the final ranking was

performed to identify the near-native refined solution. The ranking was based on various

binding energy functions that includes a variety of energy terms: van der Waals interactions,

partial electrostatics, desolvation energy (atomic contact energy, ACE), hydrogen and disulfide

bonds, p-stacking and aliphatic interactions and rotamer’s probabilities [40]. The result having

minimum global energy was taken into consideration. Out of all 10 drugs predicted, Amprena-

vir (DrugBank ID–DB00701) (Fig 4A and 4B) has shown the minimum global energy. To

access the ligplots and detailed protein interactions, the solution were further analysed with

PDBsum (http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?

pdbcode=index.html). The active sites of the selected protein was analysed from the source

information i.e. from which the protein structure was experimentally obtained [39]. In the

original study (where the authors obtained the enzyme-inhibitor complexes crystal), the bind-

ing pocket involved with the M4Z (ligand) are- Cys145 (covalent interaction); with His163,

His164, Glu166, Thr190 and Phe140 via H-bond interactions; and with Gln189 and His41 via

hydrophobic interactions. The same study also claims that the protein catalytic site (His41 and

Cys145) and the protease inhibitors may probably bind with two of the any of these residues.

In order to support this fact, we also predicted the binding pocket of the protein (PDB ID:

3VB7) by using CLASTp web server (http://sts.bioe.uic.edu/castp/index.html?3vb7). The web

server follows the analysis of binding pockets and cavities based on the recent theorectical and

algorithmic results of computational geometry [41]. The information on the binding pocket

positions and amino acids sequence in the protein are provided in the S3a and S3b Fig in S1

File. In brief, as per the binding pocket prediction of the CLASTp, the important residues of

the binding pocket are–A:41, A:145, A:189 and A:248. Fig 4B shows the ligplot analysis of our

best result i.e interaction of SARS-CoV 3C- like Protease with Amprenavir. The result shows

three conventional H-bonding between ligand and protein. One H-bond was observed

Fig 4. (a) Docking pose of SARS-CoV 3C- like Protease complexed with Amprenavir, (b) ligplot analysis showing possible bonds between
protein and ligand.

https://doi.org/10.1371/journal.pone.0241543.g004
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between Thr (24) A of the protein & O 169 of the ligand. Similarly, the second one was

between His (41) A & NE2 312. The third H- bond was observed betwwen Gly (143) A and N

1105. These H-bonds favoured a strong bonding between the two moieties. The bond lengths

of the above three H-bonds are 2.43Å, 2.73Å and 3.12Å respectively. However, the binding

pocket in this case involved- His (41) A, Thr (24) A, Gly (143) A via H-bonding and Thr (25)

A, Thr (26) A, Cys (145) A, Met (165) A, Gln (189) A via non-bonded contacts. The protein

structure (PDB ID 3VB7), has two catalytic sites and His (41) A is one among them. Interest-

ingly, the binding of the drug Amprenavir to the the protein at His (41) A proves the capability

of the drug to inhibit the protease and can be declared as a potent inhibitor.

Discussion

In our study, we have taken only those drugs for docking purpose which showed protease inhi-

bition activity. The docking of SARS protein with the approved drug Amprenavir (DrugBank

ID–DB00701), has a minimum global energy of around -59.90 Kcal/mol among all the com-

pounds. Inspite of the steric interactions at Ser121(B) and Pro122(B), the global energy of

-59.90 Kcal/mol was quite favourable due to negative free energy and suitable bond lengths.

These factors highlight its potential to inhibit novel SARS Coronavirus. Amprenavir is a small

molecule antiretroviral drug (Fig 3B), usually sold under the brand names Invirase and Forto-

vase, used together with other medications to treat or prevent HIV/AIDS. It is an HIV protease

inhibitor which acts as an analog of an HIV protease cleavage site. It is a highly specific inhibi-

tor of HIV-1 and HIV-2 proteases. Fosamprenavir and Indinavir are also found to have quite

favourable global energy and thereby they are also having potential to be effectively used to

inhibit SARS coronavirus. Fosamprenavir is an antiretroviral drug commonly used for the

treatment of HIV infection. It is quickly activated to amprenavir which is a potential HIV pro-

tease inhibitor. Ritonavir similarly used for the treatment of HIV infection as a combinational

therapy and act as a pro-drug for HIV protease inhibitor. In this study, we highlight the best

one out of the FDA approved drugs after the docking mechanism which is Amprenavir.

In addition to the docking of the above drug, we have also docked several other approved

drugs available in the Drug Bank, which are predicted by our ML model with a confidence

level of above 95% and also shows the activity of protease inhibition (S13–S17 Figs in S1 File).

With reference to that, we have found that the other drugs predicted by the model with the

inclusion of all the parameters taken under consideration can also be quite effective.

The rapid identification of active therapeutic agents against SARS-CoV-2 is a major chal-

lenge. Analyzing the available knowledge on their safety profiles, and in some cases, efficacy

against other Coronaviruses and repurposing existing antiviral drugs is a potentially crucial

short-term strategy to tackle COVID-19.

Under the current scenario, it takes more than 15 years to bring a drug from the investiga-

tional stages to market availability. It is because of the trial and error process or the so-called

Edisonian Approach, where one keeps on analyzing several compounds to find the best possi-

ble one. These days, with the inclusion of digital medicine, this time span has been reduced to

a great extent and studies are more approachable in a rational manner for the drug discovery

process. Here, we have targeted the repurposed drugs towards the development of effective

treatment of COVID-19 to speed up clinical trial. Recently, several work has been carried out

to repurpose various FDA (Food and Drugs Administration) approved drugs against COVID-

19. FDA already has approved various direct acting drugs against several other viruses. The

structural similarilty of the SARS-CoV-2 with various other forms of viruses from the same

family provided a hint for the further repurposing. In case of Hepatitis C Virus (HCV), drugs

like Sofosfubir and Ribavirin are nucleotide derivatives and compete with physiological
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nucleotide for RdRp active site [42, 43] Additionally, as per the recent studies, if we compare

the IC50 of Ribavirin in Dengue and Covid-19, the value is slightly higher for COVID-19

(109.5μM) than Dengue (8 μM) [44, 45]. Hence, the drugs can be repurposed but with certain

higher concentrations. Since the pandemic grasped the whole wolrd, clinical trials of repurpos-

ing dirrent anti-HIV drugs and anti-malarial drugs were carried out. Interstingly, some of

them have shown promising effect in the management of COVID-19 patients. Chloroquine

has been used worldwide for more than 70 years, and is well kown for its anti-malarial activity.

Recent evidences shows the apparent efficacy of the drugs in the management of COVID-19

patients [46, 47]. We have found that ML model created on the basis of the Naive Bayes algo-

rithm is the most effective one with the accuracy of almost equal to 73%. The drugs predicted

by this model is further verified by the docking process. We speculate that our predicted drugs

show immense potential for treatment of the COVID-19.

Considering the ongoing efforts to prevent the spread of COVID-19 all over the world, we

are optimistic that the outbreak may subside in a few months like SARS and MERS. However,

the outbreak has stressed the urgent need for renewed efforts towards the development of

broad-spectrum therapeutic agents to combat Coronaviruses which are repeatedly found to be

a realistic threat of this century till now. Our this finding will provide a base for further

enhanced drug discovery programs.
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