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1 Normalization of Bank and Buyer Payoffs

Suppose buyers offer contracts of the form
(
x, t̂
)
. If a bank accepts such a contract, the

bank’s payoffs are given by

t̂+ (1− x) (πv̄ + (1− π)v − c) .
Buyers’ profits from

(
x, t̂
)

if a bank of type π accepts are given by

x (πv̄ + (1− π)v)− t̂.
Letting t = t̂− xv and v = v̄ − v, these payoffs can be expressed as

t+ (1− x) (πv − c) + v

and
xπv − t.

It is then immediate that we may normalize v and analyze the effect of changes in the
collateral value, v, by analyzing changes in the loan spread, v.

Q.E.D.

2 General Properties of Static Equilibrium

Here we show that any symmetric monotone equilibrium of the static model has the prop-
erties described in the text.

1. Suppose by way of contradiction that xl < 1. Consider a deviation to the contract
(xh, th, xl + ε, tl + (πv − c) ε). This deviation keeps the low-quality bank indifferent, whereas
the profit per low type is higher and hence profitable.

2. Suppose that the following incentive constraint holds with strict inequality:

tl + (1− xl) (πv − c) ≥ th + (1− xh) (πv − c)
Then, combining the two incentive constraints, we must have xh < 1. A deviation to
a contract z′ = (xh + ε, t′h + ε (π̄v − c) , xl, tl) leaves the utility of the high-quality bank
unchanged and increases the profits per high-quality bank.

3. To prove that buyers make zero profits on each point in the support of z, first note
that in any monotone equilibrium, for each pair of contracts offered by buyers j and −j,
δj(zj, z−j; π̄) = δj (zj, z−j; π). Thus, in any monotone equilibrium, profits associated with a
contract z for buyer j can be written as

Π (z) = [µ (xhπ̄v − th) + (1− µ) (xlπv − tl)]
∫
δj (z, z−j; π̄) dF (z−j) .

Since the contract (0, 0, 0, 0) guarantees zero profits, it follows that for each z ∈ Supp(F )
with

∫
δj (z, z−j; π̄) dF (z−j) > 0,

µ (xhπ̄v − th) + (1− µ) (xlπv − tl) ≥ 0. (1)

Furthermore, in any mixed strategy, at each such z, profits must be identical, or Π(z) = Π̄.
We now prove that for each z ∈ Supp(F ), (1) holds with equality. To do so, consider the
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lowest payoff of the low-quality bank,

u = inf
z∈Supp(F )

th + (1− xh) (π̄v − c) .

Let z denote the contract that attains this infimum. Suppose first that the support of F
has no mass at z. Clearly, there is a sequence {zn = (xh,n, th,n, xl,n, tl,n)}∞n=1 ⊂ Supp (F ) that
converges to z. Since banks accept the contract they prefer most, the probability that a
contract in this sequence is accepted converges to zero, so that

∫
δj (zn, z−j) dF (z−j) → 0.

Hence, Π (zn) → 0 (since µ (xh,nπ̄v − th,n) + (1− µ) (xl,nπv − tl,n) is bounded). Now, since
Π (z) = π,∀z ∈ Supp (F ), we must have π = 0.

Suppose next that F has positive mass f0 at z. Given our tie-breaking rule, the contract z
attracts the bank with probability of at most f0/2. Now, suppose by way of contradiction that
at this contract, profits are strictly positive. Consider a deviation from z to the contract z′ =
(xh, th + ε, xl, tl + ε) for some small ε > 0, where z = (xh, th, xl, tl). The profits conditional
on this offer being better than the contract offered by the other buyer are arbitrarily close
to conditional profits under z. Since this contract is strictly preferred to z by both types,
the probability that the deviating contract is accepted is at least f0. Since the probability
that z is accepted is at most f0/2, it follows that expected profits strictly increase with this
deviation. We have established a contradiction, so profits are zero.

4. Suppose that tl < πv for some contract offered in equilibrium. A deviation to a
contract ẑ = (1, π̄v − ε, 1, πv − ε) for ε sufficiently small makes positive profits from low-
quality banks by attracting them with positive probability and possibly the high-quality
banks as well.

Q.E.D.

3 Proof of Proposition 1

Consider the case where µ < µ̃. We begin by showing that in any pure strategy equilibrium,
tl = πv. This result together with the four key properties implies that any pure strategy
outcome must coincide with the least-cost separating outcome. Suppose, by way of contra-
diction, that a pure strategy equilibrium has tl > πv. Clearly if xh = 0, this contract makes
negative profits, so xh > 0. Consider a deviating contract ẑ = (xh − ε, th − ε(π̄v − c), 1, tl)
with ε small. This deviating contract keeps the high-quality bank indifferent to the supposed
equilibrium contract and relaxes the low-quality bank’s incentive constraint. It attracts the
high-quality bank with probability 1/2 under our tie-breaking rule. Conditional on attract-
ing the high-quality bank, profits from this bank rise by εc and profits from the low-quality
bank are unchanged. Thus, profits are strictly positive, so we have a contradiction.

To show that the least-cost separating outcome is a pure strategy equilibrium, we estab-
lish a preliminary result regarding the high-quality bank’s payoffs. Consider the set of offers
(xh, th), to the high-quality bank implied by a binding incentive constraint for the low-quality
bank and zero profits as a function of tl. Since both the profit function and the incentive con-
straint are linear functions of xh, th, and tl, it follows that xh and th are linear functions of tl.
Since the payoff function to the high-quality bank is linear in xh and th, this payoff, ûh (tl),
is also linear in tl. Clearly, ûh (πv) is equal to the high-quality bank’s payoff in the least-cost
separating outcome and ûh (p̂ (µ)) = p̂ (µ). Since µ < µ̃, ûh (πv) > ûh (p̂ (µ)). Since ûh (th)
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is a linear function of th, it follows that ûh (πv) > ûh (tl) , so that the high-quality bank
prefers the least-cost separating outcome to any associated with tl > πv that breaks even
and in which the incentive constraint for the low-quality bank holds with equality. Given this
preliminary result, suppose that buyer 2 offers the least-cost separating outcome. Consider
a deviation by buyer 1 to contracts of the form ẑ = (x̂h, t̂h, 1, t̂l) with t̂ > πv. Since any
such contract that breaks even does not attract the high-quality bank, it is clear that any
contract that does attract the high-quality bank must yield negative profits. Clearly since
any deviation that has x̂l < 1 is dominated by a further deviation that sets the amount sold
by the low-quality bank to 1 and keeps it indifferent to the original deviation, the restriction
to deviations that have x̂l = 1 is without loss of generality.

To show that when µ < µ̃, our model has no mixed strategy equilibrium, suppose by way
of contradiction that it did. Note that the preliminary result established above implies that
the high-quality bank strictly prefers the least-cost separating outcome to any other offer
in the support of the offer distribution and the low-quality bank strictly prefers any offer
greater than πv to the least-cost separating outcome. Thus, a deviation by one of the buyers
to a pure strategy contract close to the least-cost separating outcome, and more profitable
when accepted, attracts high-quality banks with probability close to 1 and low-quality banks
with probability close to zero.

Suppose now that µ ≥ µ̃. We will show a mixed strategy equilibrium exists where the
distribution over contracts F (z) is given by

F (tl) =

(
tl − πv

µ(π̄ − π)v

) µ
d(1−µ)−1

. (2)

Since tl ≥ πv and profits are zero at every contract in the support of F, it follows that
x̂hπ̄v ≥ t̂h. Next we show that the best deviations ẑ have the property that for some z in
the support of F , the high-quality bank is indifferent between z and ẑ, or

t̂h + (1− x̂h) (π̄v − c) = th + (1− xh) (π̄v − c) . (3)

To see this result, notice that if for all z, the left side of (3) is strictly greater than the right
side, then t̂h can be reduced and profits can be raised. If the left side of (3) is strictly below
the right side for all z, then δ1 (ẑ, z; π̄) = 0 for all z and profits cannot be strictly positive.

Clearly, the best deviation satisfies the incentive constraint of the low-quality bank with
equality, or

t̂l + (1− x̂l) (πv − c) = t̂h + (1− x̂h) (πv − c) , (4)

and x̂l = 1.
We now evaluate profits for a deviation of the form x̂h = xh+ε and t̂h and t̂l given by (3)

and (4). For any contract z in the support of F , the probability of attracting either a high-
or low-quality bank to contract z is given by F (tl). Since the high-quality bank is indifferent
between z and ẑ, the probability of attracting the high-quality bank to ẑ is given by F (tl).
It is straightforward to show that the deviation contract has t̂l satisfying

t̂l = tl + (π̄ − π)vε.

Thus, the probability of attracting the low-quality bank to the deviation is given by F (t̂l) =
F (tl + (π̄ − π)vε) . Holding fixed (xh, th), we then define profits from this deviation as a
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function of ε as

Π (ε) = (1− µ)F (tl + (π̄ − π) vε) (πv − tl − (π̄ − π) vε) (5)

+µF (tl) ((xh + ε) π̄v − th − (π̄v − c) ε) .
Next we prove that profits are globally concave and attain a maximum at ε = 0. First,

note that

Π′(0) = (1− µ)(π̄ − π)vf (tl) (πv − tl)− (1− µ)F (tl) (π̄ − π)v + µF (tl)c (6)

= 0.

Suppose now that the distribution F is continuous, has no mass point, has a connected
support that is a subset of [πv, p̂ (µ)] , and F (tl) < 1 if tl < p̂(µ). Then solving the differential
equation (6), we obtain that it has a unique solution given by (2).

We now prove that Π′′(ε) < 0 for all ε, so ε = 0 is a global maximum. Differentiating (5)
twice gives

Π′′(ε) =(1− µ) ((π̄ − π)v)2 f ′ (tl + (π̄ − π)vε) (πv − tl − (π̄ − π)vε)

− 2(1− µ) ((π̄ − π)v)2 f (tl + (π̄ − π)vε) .

Now, note that

f ′(tl) =
f(tl)

tl − πv

[
µc

(1− µ)(π̄ − π)v
− 2

]
.

Hence,

Π′′(ε) =(1− µ) ((π̄ − π)v)2 f (tl + (π̄ − π)vε)

×
[
−2 + (πv − tl − (π̄ − π)vε)

(
µc

(1− µ)(π̄ − π)v
− 2

)(
1

tl + (π̄ − π)vε− πv

)]
=− (1− µ) ((π̄ − π)v)2 f (tl + +(π̄ − π)vε)

µc

(1− µ)(π̄ − π)v

<0.

Consider the solution to the differential equation in (6) with the boundary condition that
F (p̂ (µ)) = 1. This solution coincides with (2).

Next, we show that the above mixed strategy equilibrium is unique in the class of mono-
tone equilibria. Since the solution to (6) is unique in the class of distributions that are
continuous, that have no mass point, that have a connected support which is a subset of
[πv, p̂ (µ)] , and that satisfy F (tl) < 1 if tl < p̂(µ), we need only show that any mixed strategy
distribution must have these properties.

To see that tl ≤ p̂ (µ), let x̂h(tl) and t̂h(tl) denote the set of offers (xh, th) to the high-
quality bank implied by a binding incentive constraint for the low-quality bank and zero
profits as a function of tl. These solutions have the properties that x̂h (tl) is increasing and
x̂h (p̂ (µ)) = 1. Since x̂h (tl) ≤ 1, it follows that tl ≤ p̂ (µ).

To show that F has no mass points, suppose there exists a tl ∈ Supp (F ) and that
F (tl+) > F (tl−) with tl > πv.. Then, consider a deviation by one of the buyers to

z′ =
(
x̂ (tl)− ε, t̂h (tl)− ε (π̄v − c) , 1, tl − ε (π̄ − π) v

)
.

Note that by construction the high type is indifferent between z′ and ẑ (tl) whereas the low
type strictly prefers ẑ (tl). Now suppose that F (tl+)− F (tl−) = f(tl) > 0, that is, F puts
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mass f(tl) on tl. Clearly, the deviation contract z′ is incentive compatible. Hence, as ε
converges to 0, the fraction of high-quality banks attracted to z′,

∫
δj(z

′, z−j; π)dF (z−j) ap-
proaches F (tl−)+f(tl)/2 (the 1/2 follows from the uniform tie-breaking rule). The fraction
of low-quality banks attracted to z′,

∫
δj(z

′, z−j; π)dF (z−j) approaches F (tl−). Hence, the
profits for this deviation converge to

µ (F (tl−) + f/2)
(
x̂h(tl)π̄v − t̂h(tl)

)
+ (1− µ)F (tl−) (πv − tl) =

F (tl−)
[
µ
(
x̂h(tl)π̄v − t̂h(tl)

)
+ (1− µ) (πv − tl)

]
+ µf(tl)/2

(
x̂h(tl)π̄v − t̂h (tl)

)
> 0,

where the inequality follows from the fact that (1) holds with equality and tl > πv. Hence, for
ε sufficiently small enough, z′ is a profitable deviation that yields the necessary contradiction.

To see that the upper bound of the support of F is p̂(µ), suppose for some tl < p̂(µ),
F (tl) = 1. We prove that there exists a profitable deviation. Consider the deviation z′ =
(1, p̂(µ)− ε, 1, p̂(µ)− ε). Straightforward algebra can be used to show that

t̂h(tl) + (1− x̂h(tl))(π̄v − c) = x̂h(tl)p̂(µ) + (1− x̂h(tl)) (π̄v − µc) .
Since tl < p̂(µ), x̂h(tl) < 1 and µ > µ̃, it follows that p̂(µ) > π̄v − µc, so that

p̂(µ) > t̂h(tl) + (1− x̂h(tl))(π̄v − c).
Hence, for ε > 0 and sufficiently small, the deviation contract z′ attracts both high- and
low-quality banks with probability 1 against the equilibrium, or

∫
δj(z

′; z−j; π)dF (z−j) = 1
for π = π, π̄. But profits at z′ = ε > 0, which implies that a profitable deviation would exist.
Thus, for all tl < p̂(µ), F (tl) < 1.

Suppose next that F (tl) does not have connected support. That is, suppose there exists
an interval [t1, t2] such that F (tl) = F (t1) ,∀tl ∈ [t1, t2]. Since F (t1) < 1 and for all
t < p̂(µ), F (t) < 1, it must be that t2 < p̂(µ). Consider then a deviation of the form
z′ =

(
x̂h (t2) , t̂h (t2)− ε, 1, t2

)
. Since t2 < p̂ (µ) the incentive constraint for the high-quality

bank is slack at ẑ (t2) , so that if ε > 0 is chosen sufficiently small enough, z′ is incentive
compatible. Furthermore, for ε sufficiently small the fraction of high- and low-quality banks
attracted to z′ is the same as ẑ (t2), since F (tl) is constant in a neighborhood below t2. This
implies that z′ makes higher profit than ẑ (t2) and hence z′ is a profitable deviation.

Since the distribution has the desired properties, it must coincide with the distribution
F (·) in (2).

Q.E.D.

4 Basic Properties of Partial Pooling Allocations

Lemma 1 Consider the partial pooling allocation described in section II.B with xl = 1.
Then we have the following:

1. If the incentive constraints in the two-period model are satisfied and equilibrium profits
are nonnegative, participation constraint for the high-quality bank and the constraint
imposed by Bertrand competition can be respectively simplified to xh ≤ x̄h(µh, v) and
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xh ≥ xh(µh, v), where x̄h(µh, v) and xh(µh, v) are given by

xh ≤ x̄(µ′h, v) =
β
[
∆ (µ′h; π̄)−∆ (µ′h; π)

(
1− µ

µ′h

)]
+
(

1− µ
µ′h

)
c

π̄v − c− p̂ (µ) +
(

1− µ
µ′h

)
c

(7)

2−µ−µ′h
µ′h(1−µ)

(π̄ − π) v + c
2−µ−µ′h
µ′h(1−µ)

(c− β∆ (µ′h; π)) = x(µ′h, v) ≤ xh. (8)

2. The upper bound implied by the participation constraint

th + (1− xh) (π̄v − c) + βV (µ′h; π̄) ≥ π̄v − c+ βV (0; π̄) (9)

is decreasing in µ′h when µ′h ≥ µ̃ and increasing otherwise.

3. The lower bound xh, when positive, is decreasing in µ′h.

4. Aggregate volume implied by the upper bound in (9) is maximized at µ′h = µ̃.

5. Ex ante welfare implied by the upper bound in (9) is maximized at µ′h = µ̃.

6. When µ′h is large enough, xh ≤ x̄h.

Proof.

1. Using the incentive constraints and zero profits, we solve for th and tl to obtain

th =

(
p̂ (µ) + c

(
µ

µ′h
− 1

))
xh +

(
µ

µ′h
− 1

)
(β∆ (µ′h; π)− c) (10)

tl = πv +
µ

µ′h
(µ′h (π̄ − π) v + c)xh +

µ

µ′h
(β∆ (µ′h; π)− c) .

Substituting for th in (9), we get(
p̂ (µ) + c

(
µ

µ′h
− 1

))
xh +

(
µ

µ′h
− 1

)
(β∆ (µ′h; π)− c)− xh (π̄v − c) + β∆ (µ′h; π̄) ≥ 0(

µ

µ′h
− 1

)
(β∆ (µ′h; π)− c) + β∆ (µ′h; π̄) ≥

[
π̄v − c−

(
p̂ (µ) + c

(
µ

µ′h
− 1

))]
xh.

Note that since µ ≤ µ∗ and that µ ≤ µ′h, π̄v − c− p̂ (µ) ≥ 0 and −c (µ/µ′h − 1) ≥ 0. Hence,
we have

x̄h =

(
µ
µ′h
− 1
)

(β∆ (µ′h; π)− c) + β∆ (µ′h; π̄)

π̄v − c−
(
p̂ (µ) + c

(
µ
µ′h
− 1
)) ≥ xh. (11)

Next, substituting for th and tl from (10) into the constraint implied by Bertrand com-
petition, we have that

1

2
µ

[
(1− µ) (π̄ − π) vxh + c

(
1− µ

µ′h

)
xh +

(
1− µ

µ′h

)
(β∆ (µ′h; π)− c)

]
≤

(1− µ)

[
µ

µ′h
(µ′h (π̄ − π) v + c)xh +

µ

µ′h
(β∆ (µ′h; π)− c)

]
.
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After simplification, this inequality can be written as

2− µ− µ′h
µ′h

(c− β∆ (µ′h; π)) ≤ xh

[
(1− µ) (π̄ − π) v +

2− µ− µ′h
µ′h

c

]
.

The right side of this inequality is positive, so that dividing both sides by the expression in
brackets on the right side, we obtain the expression for the lower bound:

xh =

2−µ−µ′h
µ′h(1−µ)

(c− β∆ (µ′h; π))

(π̄ − π) v +
2−µ−µ′h
µ′h(1−µ)

c
≤ xh. (12)

2. Suppose that µ′h ≥ µ̃. The denominator of (11) is an increasing function of µ′h. Hence,
it suffices to show that the numerator is decreasing in µ′h. Using the definition of the value
function V (·, ·), we can write the numerator as(

µ

µ′h
− 1

)(
β
µ′h − µ̃
1− µ̃

(π̄ − π) v − c
)

+ β
(µ′h − µ̃)2

µ′h (1− µ̃)
(π̄ − π) v =

β
(µ′h − µ̃)

µ′h (1− µ̃)
(π̄ − π) v [µ′h − µ̃+ µ− µ′h] + c

(
1− µ

µ′h

)
=

β
(π̄ − π) v (µ− µ̃)

1− µ̃

[
1− µ̃

µ′h

]
+ c

(
1− µ

µ′h

)
. (13)

Using the property that µ̃/(1 − µ̃) = (π̄ − π) v/c, we obtain that the derivative of the last
expression with respect to µ′h is given by

− c

(µ′h)
2

[
β

(
(π̄ − π) v

c

)2

(µ̃− µ)− µ

]
.

Using the definition of the adverse selection discount, d, we can write this expression as

− c

(µ′h)
2

[
βd2

(
d

1 + d
− µ

)
− µ

]
.

Here, we show that the term in brackets is positive and hence the derivative of the numerator
is negative:

βd2

(
d

1 + d
− µ

)
− µ ≥ (1 + d) d

(
d

1 + d
− µ

)
− µ

≥ d2 −
(

1− 1

d

)(
d2 + d+ 1

)
=

1

d3
≥ 0,

where the first inequality follows from the assumption that banks are sufficiently patient and
the second inequality follows from µ ≤ µ∗ = 1− 1/d.

To see that x̄h is increasing in µ′h when µ′h ≤ µ̃, note that when µ′h ≤ µ̃, ∆ (µ′h; π) = 0,
so that we can write the upper bound as

x̄h =
c

π̄v−c−p̂(µ)
1−µ/µ′h

+ c
.

Clearly this function is increasing in µ′h.
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3. Suppose that xh is positive. Note that the expression c − β∆ (µ′h; π) is decreasing in
µ′h. In addition,

2−µ−µ′h
µ′h(1−µ)

(π̄ − π) v +
2−µ−µ′h
µ′h(1−µ)

c
=

1

c+ (π̄−π)v
2−µ−µ′

h
µ′
h
(1−µ)

. (14)

The function
2− µ− µ′h
µ′h (1− µ)

=
1

µ′h
+

1

µ′h (1− µ)
− 1

1− µ
is decreasing in µ′h and hence the expression in (14) is decreasing in µ′h. Thus, xh is the
product of two decreasing functions. Since both are positive functions, xh must be decreasing.

4 and 5. Note that aggregate welfare is given by

p̂ (µ)− (1− T ) c+ βµV (µ′h; π̄) + β

(
µ

µ′h
− µ

)
V (µ′h; π) + β

(
1− µ

µ′h

)
V (0; π) , (15)

where T is aggregate volume. To prove our claims, we first obtain a simplified version of the
continuation value

βµV (µ′h; π̄) + β

(
µ

µ′h
− µ

)
V (µ′h; π) + β

(
1− µ

µ′h

)
V (0;π)

and show for later use that this continuation value is increasing in µ′h. Note that when
µ′h ≤ µ̃, the continuation value is constant since V (µ′h; π) = V (0;π) and hence it is weakly
increasing. For values of µ′h ≥ µ̃, the continuation value is given by

βµ [V (µ′h; π̄)− V (0; π̄)] + β

(
µ

µ′h
− µ

)
[V (µ′h; π)− V (0; π)] + β (1− µ)V (0;π) + βµV (0; π̄) =

βµ (π̄ − π) v
(µ′h − µ̃)2

(1− µ̃)µ′h
+ β

(
µ

µ′h
− µ

)
(π̄ − π) v

µ′h − µ̃
1− µ̃

+ β (1− µ)V (0;π) + βµV (0; π̄) =

β
µ′h − µ̃
1− µ̃

(π̄ − π) v

[
µ
µ′h − µ̃
µ′h

+
µ

µ′h
− µ

]
+ β (1− µ)V (0;π) + βµV (0; π̄) =

β
µ′h − µ̃
1− µ̃

(π̄ − π) v

[
µ

1− µ̃
µ′h

]
+ β (1− µ)V (0; π) + βµV (0; π̄) =

β
µ′h − µ̃
µ′h

(π̄ − π) vµ+ β (1− µ)V (0; π) + βµV (0; π̄) . (16)

The above function is increasing in µ′h.
In what follows, we first show that ex ante welfare in (15) is maximized at µ′h = µ̃. This

establishes claim 5. In addition, we show that aggregate volume T is increasing in µ′h ≤ µ̃.
Since continuation values are increasing in µ′h, that welfare is maximized at µ′h = µ̃ implies
that volume is also maximized at µ′h = µ̃.

Before studying properties of welfare, note that if we set µ′h = 1, given that banks are
sufficiently patient, an argument similar to that of proposition 4 shows that x̄h must be
negative. Hence, in order to have a partial pooling allocation, µ′h must be bounded above.
In other words, admissible values of µ′h belong to the interval [µ, µ̄] , where µ̄ is such that
when we set µ′h = µ̄, x̄h is equal to 0.

9



To study ex ante welfare, suppose that µ′h ≥ µ̃ and recall that total volume is given by

T =
µ

µ′h
(x̄h − 1) + 1,

and hence, ex ante welfare can be written as

κ+
µ

µ′h
(x̄h − 1) c+ β

µ′h − µ̃
µ′h

(π̄ − π) vµ,

where κ is independent of µ′h and we have used (16) to rewrite the continuation utilities. We
can rewrite the above as

κ′ + c
µ

µ′h

(
x̄h − 1− µ̃ (π̄ − π) v

c

)
= κ′ + c

µ

µ′h

(
x̄h − 1− β d2

1 + d

)
, (17)

where κ′ is independent of µ′h. As we have shown in the proof of property 2, specifically in
(13), both the numerator and the denominator of x̄h are linear functions of y = 1

µ′h
. This

implies that x̄h − 1− βd2/ (1 + d) has the same property. That is, a, a′, b, b′ exists such that

x̄h − 1− βd2

1 + d
=
−a+ a′ 1

µ′h

b− b′ 1
µ′h

=
−a+ a′y

b− b′y
,

where b = π̄v − p̂ (µ) is positive. Note that x̄h is a decreasing function of µ′h and hence
an increasing function of y. This implies that the derivative of the above expression with
respect to y is positive, or

b′a− a′b
(b− b′y)2 ≥ 0. (18)

Now, if we let (17) as a function y be called f (y), then we can write

f (y) = κ′ + µy
−a+ a′y

b− b′y
and we have

f ′ (y) = µ
−a+ a′y

b− b′y
+ µy

b′a− a′b
(b− b′y)2

f ′′ (y) = µ
b′a− a′b
(b− b′y)2 + µ

b′a− a′b
(b− b′y)2 + 2µy

(b′a− a′b) b′

(b− b′y)3

= 2µ
(b′a− a′b) (b− b′y) + y (b′a− a′b) b′

(b− b′y)3

= 2µb
b′a− a′b
(b− b′y)3 .

Note that from (18) and the fact that b > 0, the above expression is convex. This implies

that ex ante welfare as a function of µ′h, given by f
(

1
µ′h

)
is convex since both f (·) and

1
µ′h

are convex functions. Hence, in order to show that welfare is maximized at µ′h = µ̃,

it is sufficient to show that f
(

1
µ̃

)
≥ f

(
1
µ̄

)
, where µ̄ is such that x̄h = 0. Extensive and

cumbersome algebra (available upon request) establishes that since banks are sufficiently
patient, this inequality is satisfied. Hence, among values of µ′h for which x̄h ≥ 0, welfare
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is maximized at µ′h = µ̃. As we have shown before, when µ′h ≤ µ̃, x̄h is increasing in µ′h.
This implies that aggregate volume is increasing in µ′h for values of µ′h ≤ µ̃ and hence so is
welfare. This establishes the claim that welfare is maximized at µ′h = µ̃.

Finally, note that the above establishes that for values of µ′h ≥ µ̃, volume is maximized
at µ′h = µ̃. Furthermore, as we just showed, volume is increasing in µ′h when µ′h ≤ µ̃ . Hence,
volume is maximized at µ′h = µ̃.

6. In order to prove the claim, let µ′h be such that ∆ (µ′h; π) = c. This is the value of µ′h
for which xh = 0. At this value, x̄h is given by

x̄h =

(
µ
µ′h
− 1
)

(β∆ (µ′h; π)− c) + β∆ (µ′h; π̄)

π̄v − c−
(
p̂ (µ) + c

(
µ
µ′h
− 1
))

=
β∆ (µ′h; π̄)

π̄v − c−
(
p̂ (µ) + c

(
µ
µ′h
− 1
)) > 0.

This establishes the claim.
Q.E.D.

4.1 Establishing the constraint (A13)

We establish the result by showing that x̄h(µ
′
h, v) is less than the right side of (A13). Using

(13), we have that

x̄h(µ
′
h, v) =

β (π̄−π)v(µ−µ̃)
1−µ̃

[
1− µ̃

µ′h

]
+ c
(

1− µ
µ′h

)
π̄v − c−

(
p̂ (µ) + c

(
µ
µ′h
− 1
)) ,

so that using the definition of µ∗ and simplifying, we have that

x̄h(µ
′
h, v) =

β (µ− µ̃) µ′−µ̃
(1−µ̃)

(π̄ − π) v + (µ′ − µ) c

µ′ (µ∗ − µ) (π̄ − π) v + (µ′ − µ) c
.

Further algebra shows that x̄h(µ
′
h, v) is increasing in µ. Since the right side of (A13) equals

β
1−µ′h
1−µ̃ , it is sufficient to show that the following inequality holds:

β (µ∗ − µ̃) µ′−µ̃
(1−µ̃)

(π̄ − π) v + (µ′ − µ∗) c
(µ′ − µ∗) c

≤ β
1− µ′

1− µ̃
. (19)

Straightforward algebra shows that the left side of (19) is concave and decreasing in µ′ (all
derivations are available upon request). Since the right side of (19) is linear in µ′, it is
sufficient to show that the above inequality is satisfied at µ′ = µ̃ (the lowest possible value
of µ′) and the derivative of the left side is also lower than the derivative of the right side.
This result implies that the inequality in (19) holds for all values of µ′ ≥ µ̃. The value of
the left side at µ′ = µ̃ is given by 1, whereas the value of the right side is given by β. By
the assumption that banks are sufficiently patient, β ≥ 1. The derivative of the left side is
given by

−β (π̄ − π) v

c

1

1− µ̃
(µ̃− µ∗)2

(µ′ − µ∗)2 .

11



Evaluating the derivatives of the left and right sides of (19) at µ′ = µ̃, we obtain the following
needed inequality:

− β

1− µ̃
(π̄ − π) v

c
≤ − β

1− µ̃
,

which holds under our assumption that (π̄ − π) v/c = d > 1.
Q.E.D.

5 Infinite Horizon Model with Divisible Assets

In this section, we show that the equilibrium constructed in section IV is also an equilibrium
if we allow for trade of a fraction of bank portfolios. To do so, we make the following
additional assumption:

β (1− λ)

1− β (1− λ)
≥ (π̄ − π) v2

max

cEv
.

As in the indivisible asset case, we investigate whether the following is an equilibrium:

if µt < min {µ∗ (vt) , µh} , (xh, th) = 0, (xl, tl) = (1, πvt)

if µt ≥ µ∗ (vt) , (xh, th) = (xl, tl) = (1, p̂ (µt) vt)

if µt ∈ (µh, µ
∗ (v)), (xh, th) = (xl, tl) = (0, 0) ,

where p̂ (µt) with a little abuse of notation is given by π̄µt+π (1− µt) and µ∗ (v) = 1− c
(π̄−π)v

.
Since the allocations are identical, the value function is identical as well. We let the beliefs
be

µ′ (x, t; vt, µt) =

{
0 t− x (π̄vt − c) ≤ max {x̂p̂ (µt) vt − x̂ (π̄vt − c) , th − xh (π̄vt − c)}
1 o.w.

In what follows, we check that the above strategies as well as the beliefs constitute an
equilibrium.

1. We start from the case where µ∗ (vt) ≤ µh. Suppose that µ < µ∗ (v). Consider
some deviation, z′ = (x′h, t

′
h, x

′
l, t
′
l). As in the proof of lemmas 1 and 2, both of the contracts

cannot be preferred statically to (0, 0) by the high-quality bank. Suppose (x′h, t
′
h) is statically

preferred to (0, 0) by the high-quality bank. We first show that this contract must also attract
the low type. To see this, note that we must have

t′h + (1− x′h) (π̄v − c) + β (1− λ)V (1; π̄) ≥ π̄v − c+ β (1− λ)V (µh; π̄)

β (1− λ)

(
π̄Ev

1− β (1− λ)
− V (µh; π̄)

)
≥ x′h (π̄v − c)− t′h

β (1− λ)

(
π̄Ev

1− β (1− λ)
− V (µh; π)

)
> β (1− λ)

(
π̄Ev

1− β (1− λ)
− V (µh; π̄)

)
≥ x′h (π̄v − c)− t′h > x′h (πv − c)− t′h,

which implies that the low-quality bank also prefers (x′h, t
′
h) to (0, 0). As in the proof of

lemmas 1 and 2, we cannot have µ′ (x′l, t
′
l) = µ′ (x′l, t

′
l) = 1. In addition, if µ′ (x′l, t

′
l) = 0, we

12



can assume that x′l = 1 and we must have

t′l + β (1− λ)V (0;π) ≥ t′h + (1− x′h) (πv − c) + β (1− λ)V (1; π)

t′l > t′h + (1− x′h) (πv − c) + c.

So the profits from this deviation are given by

µ (x′hπ̄v − t′h) + (1− µ) (πv − t′l) ≥ µ (x′hπ̄v − t′h) + (1− µ) (πv − t′h − (1− x′h) (πv − c)− c)
= µ (x′hπ̄v − t′h) + (1− µ) (x′h (πv − c)− t′h)
= x′hp̂ (µ) v − t′h − c (1− µ)x′h.

Since µ∗ (v) > µ and (x′h, t
′
h) is statically preferred to (0, 0) by the high-quality bank, it

must be that p̂ (µ)x′h ≤ t′h, and hence the above expression is negative. Now, suppose that
µ ≥ µ∗ (v). As we have done before, it is sufficient to show that any contract that attracts
the high-quality bank also attracts the low-quality bank. To do this, consider the offer (x′, t′)
that gives the lowest static payoff to the bank of low quality and is statically preferred to
(1, p̂ (µ)) by the high-quality bank. Such an offer satisfies

t′ = π̄vx′

x′π̄v + (1− x′) (π̄v − c) = p̂ (µ) v

x′c = c− (1− µ) (π̄ − π) v.

It is sufficient to show that the low-quality bank prefers this offer to the pooling outcome:

x′π̄v + (1− x′) (πv − c) + βV (1;π) ≥ µ (π̄ − π) v + c+ βV (µ; π)[
1− (1− µ)

(π̄ − π) v

c

]
((π̄ − π) v + c) ≥ µ (π̄ − π) v + c+ βV (µ; π)− β

1− β
π̄Ev

(π̄ − π) v (1− µ)− (1− µ) (π̄ − π) v
(π̄ − π) v + c

c
≥ βV (µ; π)− β

1− β
π̄Ev

(1− µ) ((π̄ − π) v)2

c
≤ β

1− β
π̄Ev − βV (µ; π) ,∀µ ∈ [µ∗ (v) , 1] .

We will show later that this inequality is satisfied.
2. Now, suppose that µ∗ (v) ≥ µh. For µ∗ (v) < µ, the proof is the same as before. So

we only need to consider the case with µh ≤ µ < µ∗ (v). It is clear that no offer below the
market-odds line attracts the high-quality bank. Furthermore, as before we can show that
an offer of (x′h, t

′
h) that is above the market-odds line attracts the low-quality bank as well,

and hence the accompanying contract (1, t′l) must be at least as good as (x′h, t
′
h). That is,

t′l + βV (0;π) ≥ t′h + (1− x′h) (πv − c) + βV (1; π)

t′l ≥ t′h − x′h (πv − c) + πv.

So as before, we can show that this contract cannot make positive profits.
To conclude the proof, we show that the following inequality is satisfied:

(1− µ) ((π̄ − π) v)2

c
≤ β (1− λ)

1− β (1− λ)
π̄Ev − β (1− λ)V (µ; π) ,∀v,∀µ ∈ [µ∗ (v) , 1]

Note that the right side of the above inequality is independent of v, so we have to check
the above inequality at highest possible value of v. Now there are two possibilities. Either
µ > µ∗ (v̄) , in which case we only have to show that the inequality holds for v = v̄, or
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µ ≤ µ∗ (v) , in which case we have to show the inequality for v = v∗ (µ). Suppose that v = v̄
and that µ > µ∗ (v). Note that since v∗ (µ) > v̄, the equilibrium calls for selling at the
pooling price all of the time. Hence, the above inequality becomes

(1− µ) ((π̄ − π) v̄)2

c
≤ β (1− λ)

1− β (1− λ)
(1− µ) (π̄ − π)Ev.

Given our assumption above, this inequality is satisfied. Now, let us turn our attention to
the second case where µ ≤ µ∗ (v). In this case, the inequality becomes

c

1− µ
≤ β (1− λ)

1− β (1− λ)
π̄Ev − β (1− λ)V (µ; π) ,∀v,∀µ ∈ [µ∗ (v) , 1] ,

where the left side is evaluated at v = v∗ (µ). We can rearrange the terms and write the
above inequality as

c

1− µ
+ β (1− λ)V (µ; π) ≤ β (1− λ)

1− β (1− λ)
π̄Ev.

Since the left side is an increasing function of µ, we need to show this inequality to be
satisfied only at µ = µ∗ (v̄). Note that for µ = µ∗ (v̄), the equilibrium involves selling by all

types all of the time; hence, V (µ; π) = (µπ̄+(1−µ)π)Ev
1−β(1−λ)

and we can write

c

1− µ∗ (v̄)
=

(1− µ∗ (v̄)) ((π̄ − π) v̄)2

c
.

Hence, the above inequality can be written as

(1− µ∗ (v̄)) ((π̄ − π) v̄)2

c
≤ β (1− λ)

1− β (1− λ)
(1− µ∗ (v̄)) (π̄ − π)Ev.

which is satisfied by our assumption above.
Q.E.D.

14


	Normalization of Bank and Buyer Payoffs
	General Properties of Static Equilibrium
	Proof of Proposition 1
	Basic Properties of Partial Pooling Allocations
	Establishing the constraint (A13)

	Infinite Horizon Model with Divisible Assets

