
© 2001 Oxford University Press Nucleic Acids Research, 2001, Vol. 29, No. 22 4633–4642

REPuter: the manifold applications of repeat analysis
on a genomic scale
Stefan Kurtz*, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher1, Jens Stoye2
and Robert Giegerich

Faculty of Technology, University of Bielefeld, PO Box 10 01 31, D-33501 Bielefeld, Germany, 1Artemis
Pharmaceuticals, Neurather Ring 1, 51063 Köln, Germany and 2Max Planck Institute for Molecular Genetics,
Department for Computational Molecular Biology, Ihnestrasse 73, 14195 Berlin, Germany

Received July 25, 2001; Revised and Accepted September 19, 2001

ABSTRACT

The repetitive structure of genomic DNA holds many
secrets to be discovered. A systematic study of
repetitive DNA on a genomic or inter-genomic scale
requires extensive algorithmic support. The REPuter
program described herein was designed to serve as
a fundamental tool in such studies. Efficient and
complete detection of various types of repeats is
provided together with an evaluation of significance
and interactive visualization. This article circum-
scribes the wide scope of repeat analysis using
applications in five different areas of sequence
analysis: checking fragment assemblies, searching
for low copy repeats, finding unique sequences,
comparing gene structures and mapping of cDNA/
EST sequences.

INTRODUCTION

One of the most striking features of DNA is the extent to which
it consists of repeated substrings. This is particularly true of
eukaryotes. For example, it is estimated that families of reiterated
sequences account for >50% of the human genome (1). The
presence of palindromic (i.e. reverse complemented) repeats
hints to the formation of hairpin structures that may provide
some structural or replicational mechanism (2). Furthermore,
some repeats have been shown to affect bacterial virulence by
acting as the molecular basis of a mechanism used to success-
fully colonize and infect different human individuals (3). This
makes repeats an interesting research topic, and indeed there is
a vast literature on repetitive structures and their hypothesized
functional and evolutionary role.

The manifold applications of repeat analysis

The obvious task of a computer program for automatic repeat
analysis is to find in, for example, a complete genome, all
repeats above a given level of significance. Such analysis alone
can give interesting insights into the structure of the genome
like an abnormal distribution of repetitive elements or recent
duplication events. Usually, the repeats will then be further
investigated by other methods, typically starting with a database

search for any known characteristics of the newly detected
repeat sequence.

Besides presenting a program for this traditional type of
repeat analysis, the emphasis of this article is on the fact that an
efficient and complete computation of repeats is a powerful
algorithmic technique in a variety of tasks normally not
subsumed under repeat analysis. In fact, of the five applica-
tions that we present in Applications, only the one dealing with
low copy repeats related to human malformations reports on
the traditional kind of repeat analysis. The other applications
that we consider go far beyond this: checking sequence assem-
blies; finding unique sequences as a preprocessing step of PCR
primer or DNA oligo chip design; comparing gene structures
in order to verify gene intron/exon predictions; and mapping
ESTs to genomic sequence.

This versatility (yet to be described) results from the fact that
a repeat is a mathematically simple object—a substring w of a
sequence S occurring twice in S (allowing a certain amount of
error). This has two consequences: a substring w that is not a
repeat in S is unique in S; a common substring of sequences S1
and S2 (also allowing a certain amount of error) is a repeat of
the concatenated sequence S1S2. With these two simple obser-
vations it is immediately clear that repeat analysis can be used
for the various types of sequence analysis tasks mentioned
above, once it has been rigorously implemented so as to be
applicable to whole genome sequences.

The challenge of repeat analysis on a genomic scale

A tool for the systematic study of the repetitive structure of
sequences as large as complete genomes must satisfy the
following criteria. (i) Efficiency: to analyze complete
genomes, up to 3–4 billion bp, the space and time used by the
algorithm must scale practically linear with the sequence
length. (ii) Flexibility and significance: a biologically realistic
model must recognize not only exact, but also degenerate, not
only direct, but also palindromic repeats. To determine the
significance of a repeat, a statistical assessment is mandatory.
(iii) Interactive visualization: the large amount of data generated
requires an overview of the whole input sequence, but the user
must also be able to zoom in on details of particular repetitive
regions. (iv) Compositionality: as repeat finding is considered
to be a basic step in genome structure analysis, the program

*To whom correspondence should be addressed. Tel: +49 521 106 2906; Fax: +49 521 106 6411; Email: kurtz@techfak.uni-bielefeld.de

praktikum2-ub
Rechteck

4634 Nucleic Acids Research, 2001, Vol. 29, No. 22

must provide a simple interface to enable composition with
other advanced analysis tools.

The REPuter program described herein satisfies these
requirements in the following way. The search engine REPfind
of REPuter uses an efficient and compact implementation of
suffix trees in order to locate exact repeats in linear space and
time. It has been estimated in Kurtz (4) that this time-critical
task can be done in linear time for sequences up to the size of
the human genome. These exact repeats are used as seeds from
which significant degenerate repeats are constructed allowing
for mismatches, insertions and deletions. Yet, our program is
not heuristic: it guarantees to find all degenerate repeats
according to the parameters specified by the user—minimum
length and maximum number of errors. The output is sorted by
significance scores (E-values). Besides degenerate direct
repeats, REPfind is capable of detecting degenerate palin-
dromic repeats. One of the basic innovations of REPfind is the
ability to process very large DNA sequences very fast. For
example, REPfind computes all 18 391 maximal degenerate
repeats with a length of at least 700 bp with at most 10 errors
in the complete genome of Drosophila melanogaster at a speed
of 100 000 bases per second. More running time and space
results are reported in Kurtz et al. (5) and in Applications.

The output of the search engine REPfind is displayed in the
form of a repeat graph by the interactive visualization program
REPvis. This feature is described in detail in Interactive Visuali-
zation.

The stand-alone version of REPuter described here is avail-
able free of charge for non-commercial purposes. See http://
www.genomes.de for more details. An online version of
REPuter providing some basic functionality can be used
on the Bielefeld Bioinformatics web server (http://
bibiserv.techfak.uni-bielefeld.de/reputer/). There are currently
more than 50 laboratories using the stand-alone version, and
more than 340 submissions to the online version per month.

Related work

There are many papers describing algorithms for finding
repeats in a string [see Kurtz et al. (5) for an overview]. Here
we concentrate on available software tools.

Two types of approaches to locate repeats in biological
sequences can be distinguished. Methods of the first type,
whose most prominent example is RepeatMasker (http://
ftp.genome.washington.edu/RM/RepeatMasker.html;
A.F.A.Smit and P.Green, unpublished), define a ‘repeat’ as a
substring that is known to occur very often in a genome. Such
substrings tend to confuse sequence analysis programs, and
hence they are masked to avoid spurious results. Repeat
masking programs use a dictionary of known repeat sequences
and perform an exact or approximate string matching of the
given sequence against all the dictionary entries.

Programs of the other type, like REPuter, try to find repeats
without prior knowledge, just from the nucleic acid sequence.
The simplest approach to such a priori repeat detection is to
look at a dot plot of the sequence against itself. Here, repeats
show up as diagonal lines. Such dot plots can, for example, be
produced by the programs Dotter [http://www.cgr.ki.se/cgr/
groups/sonnhammer/Dotter.html; (6)] or Large Dot Plots
(http://alces.med.umn.edu/rawdot.html; Virtual Genome
Center, unpublished).

For the algorithmic detection of repeats several methods
have been suggested, and any suite of biosequence analysis
programs contains one or more repeat finding tools, like repeat
in the GCG package [http://www.accelrys.com/products/
gcg_wisconsin_package/; (7)] or etandem, equicktandem,
einverted and palindrome in the EMBOSS package [http://
www.hgmp.mrc.ac.uk/Software/EMBOSS/; (8)]. However,
the algorithms behind these programs are heuristic and not
very well described in the literature or the program documen-
tation.

Several stand-alone programs also exist for finding repeats.
Dst (http://alces.med.umn.edu/newdst.html; Virtual Genome
Center, unpublished) is a heuristic method based on filtration
of fixed-length oligonucleotides. REPRO [http://
mathbio.nimr.mrc.ac.uk/~rgeorge/repro/; (9)] finds repeats in
protein sequences. The method is based on computation of
non-overlapping local alignments, and hence uses time propor-
tional to the square of the sequence length. This naturally
restricts the search to short sequences. OligoRep (http://
wwwmgs.bionet.nsc.ru/mgs/programs/oligorep/; unpublished)
is in spirit similar to our method, but is restricted to short
sequences (a maximal length of 1000 bp is recommended). A
step further in repeat analysis is to cluster the repeats according
to their position, for example, as described in Volfovsky et al.
(10).

A very important subtype of repeats are tandem repeats
where the two (or more) copies of the repeat immediately
follow each other in the DNA sequence. Programs specialized
in finding tandem repeats include Tandem Repeat Finder
[http://c3.biomath.mssm.edu/trf.html; (11)] and Tandyman
(http://www.stdgen.lanl.gov/tandyman/index.html; unpub-
lished).

In all this work either the methods are restricted to small
input or they do not implement the full model of degenerate
repeats. REPuter provides the first solution to efficient and
exhaustive repeat analysis of complete genomes. Thus, it is the
only tool useful for applications beyond repeat analysis consid-
ered here.

MODELS AND ALGORITHMS

Those readers who are less interested in technical details, but
more in the applications of the REPuter program, can safely
skip this section upon first reading.

Basic notions

Let S be a string of length |S| = n over an alphabet Σ. S[i]
denotes the ith character of S, for i ∈[1, n]. S–1 denotes the
reverse of S. For i ≤ j, S[i, j] denotes the substring of S starting
with the ith and ending with the jth character of S. Substring
S[i, j] is denoted by the pair of positions (i, j). The length of the
substring (i, j) is l(i, j) = j – i + 1. To refer to the characters to
the left and right of every character in S without worrying
about the first and last character, we define S[0] and S[n + 1] to
be two distinct characters not occurring anywhere else in S.

A pair of positions (i1, j1), i1 ≤ j1, contains a pair (i2, j2), i2 ≤ j2,
if and only if i1 ≤ i2 and j2 ≤ j1. A pair (p1, p2) of substrings
(i.e. a pair of pairs of positions) contains a pair (p3, p4) of
substrings if and only if p1 contains p3, and p2 contains p4.

A pair of substrings R = ((i1, j1),(i2, j2)) is an exact repeat if
and only if (i1, j1) ≠ (i2, j2) and S[i1, j1] = S[i2, j2]. The length of

praktikum2-ub
Rechteck

Nucleic Acids Research, 2001, Vol. 29, No. 22 4635

R is l(R) = j1 – i1 + 1 = j2 – i2 + 1. An exact repeat R = ((i1, j1),(i2,
j2)) is called ‘maximal’ if and only if S[i1 – 1] ≠ S[i2 – 1] and
S[j1 + 1] ≠ S[j2 + 1] [see Gusfield (12)].

If S is a DNA sequence, then we distinguish between two
kinds of biologically interesting repeats. The repeats defined
above are called direct (or forward) repeats. A pair of
substrings P = ((i1, j1),(i2, j2)) is a ‘palindromic’ (or ‘reverse
complemented’) repeat if and only if S[i1, j1] = S[i2, j2], where
w denotes the reverse complement of a DNA sequence w.

The Hamming distance of two equal-length strings S1 and S2,
denoted by dH(S1, S2), is the number of positions where S1 and
S2 differ.

There are three kinds of edit operations: deletions, insertions
and mismatches of single characters. These are collectively
referred to as differences. The edit distance or Levenshtein
distance of S1 and S2, denoted by dE(S1, S2), is the minimum
number of edit operations needed to transform S1 into S2.

Finding exact repeats

The standard approach to compute maximal exact repeats is
based on hashing methods. These usually tabulate for each
DNA sequence w of a fixed length, say r, the positions P(w) in
S, where w occurs. For each w and i, j ∈ P(w), i < j, ((i, i + r – 1),(j,
j + r – 1)) is an exact repeat of length r. To find maximal
repeats of length at least l, each exact repeat has to be extended
to the left and to the right to check if it is embedded in a
maximal exact repeat of the required length. The extension is
done by pairwise character comparisons, and thus the running
time does not only depend on the number of maximal repeats,
but also on their lengths. In practice, r is between 10 and 13, a
restriction imposed by the hashing techniques. On the other
hand, l is usually of length at least 20. Hence there are many
more repeats to be extended than maximal repeats to be
reported. To exemplify this, we have calculated the corre-
sponding numbers for the genome of the Escherichia coli K12
strain (13). This genome is of length 4 639 221. There are
4 105 188 repeats of length 12 to be extended, but only 7799
maximal repeats of length at least 20. Thus, the ratio of
maximal repeats against tested candidates is 0.0019.

Using the suffix tree for S we do not have to filter out a small
number of maximal repeats from many candidates. Instead, we
directly compute maximal exact repeats (of arbitrary length),
using the algorithm of Gusfield (12). This algorithm runs in
O (n + z) time, where z is the number of maximal repeats.
Thus, the running time is optimal and does not depend on the
lengths of the repeats. It has independently been shown how to
practically construct suffix trees for genomic-size sequences
(4,14). The space efficient implementation techniques developed
by Kurtz (4), and an efficient implementation of the algorithm of
Gusfield (12), were the basis of the first REPuter program for
finding exact repeats (15). This subtask of our new algorithms is
not discussed further.

We will present algorithms for finding degenerate repeats
based on two different distance models: the Hamming distance
model and the edit distance model. In the following we assume
that an error threshold k ≥ 0 and a length threshold l > 0 are
given.

The mismatches repeat problem

k-mismatch repeats are based on the notion of Hamming
distance. A pair of equal-length substrings R = ((i1, j1),(i2, j2)) is

a k-mismatch repeat if and only if (i1, j1) ≠ (i2, j2) and dH(S[i1,
j1], S[i2, j2]) = k. The length of R is l(R) = j1 – i1 + 1 = j2 – i2 + 1.
A k-mismatch repeat is maximal covering if it is not contained
in any other k-mismatch repeat.

The ‘mismatches repeat problem’ is to enumerate all
maximal covering k-mismatch repeats of length at least l that
occur in S. Our algorithm maximal mismatch repeats (MMR)
for solving this problem is based on the following observation.
If R = ((i1, j1),(i2, j2)) is a k-mismatch repeat, then the k
mismatches divide S[i1, j1] and S[i2, j2] into maximal exact
repeats w0, w1, w2,…, wk. The exact repeats w0 and wk occurring
at the borders of the strings are maximal because R is maximal
covering; the others are obviously maximal. Now maxi∈[0, k] |wi|
is a minimum if the mismatching character pairs are equally
distributed over R, yielding a pattern as shown in Figure 1.
Obviously, for such an equal distribution the length of the longest
wi is ≥ . Therefore, every maximal covering k-
mismatch repeat R of length l contains a maximal exact repeat of
length ≥ , called a seed.

Algorithm MMR. Compute all seeds and test for each seed
whether it can be extended to a k-mismatch repeat. More
precisely, for each seed ((i1, j1),(i2, j2)) tables Hleft and Hright of
size k + 1 are computed such that for each q ∈ [0, k]: Hright(q) is
the maximum number p such that dH(S[j1 + 1, j1 + p], S[j2 + 1,
j2 + p]) = q, i.e. S[j1 + 1, j1 + p] and S[j2 + 1, j2 + p] have an
alignment with q mismatches. Analogously, Hleft(q) is the
maximum number p such that dH(S[i1 – p, i1 – 1], S[i2 – p, i2 –
1]) = q. Then, for each q ∈ [0, k], check whether j1 – i1 + 1 +
Hleft(q) + Hright(k – q) ≥ l holds. If so, output the maximal
covering k-mismatch repeat ((i1 – Hleft(q), j1 + Hright(k – q)),(i2 –
Hleft(q), j2 + Hright(k – q)).

It is easy to prove that algorithm MMR correctly solves the
mismatches repeat problem.

Table Hright can be computed in O(k) time by using a suffix
tree that allows to determine the length of the longest common
prefix of two substrings of S in constant time. Since we
construct the suffix tree of S anyway, this imposes virtually no
overhead. Of course, the same approach can be applied to Hleft
[For details on this technique see Harel and Tarjan (16) and
Schieber and Vishkin (17)].

The overall time efficiency of algorithm MMR can be
assessed as follows. The preprocessing phase of computing the
suffix tree and locating the seeds takes O(n) time. For a given
seed, the extension phase of algorithm MMR takes O(k) time
as shown above, yielding an overall time efficiency of O(n + zk)
where z is the number of seeds. The number of seeds z can be
estimated by E where |Σ| is the size of the
alphabet Σ and s = (see below).

Algorithm MMR detects a maximal k-mismatch repeat more
than once if it contains more than one seed. This can be
avoided by stopping the computation of table Hleft as soon as
another seed is detected. This ensures that for a given seed the

Figure 1. k = 3 mismatching characters (denoted by filled circles) distributed
equally over a repeat of length l = 11, yielding a minimum seed size of

.l
k 1+
------------ 11

4
------ 2 .= =

l k–
k 1+
------------ l

k 1+
------------=

l
k 1+

z[] O n2 1
Σ s---------

� �
� �=

l
k 1+

praktikum2-ub
Rechteck

4636 Nucleic Acids Research, 2001, Vol. 29, No. 22

algorithm will output only those maximal k-mismatch repeats
in which this particular seed is the leftmost.

The differences repeat problem

We now extend our technique to allow for insertions and dele-
tions. A pair R = ((i1, j1),(i2, j2)) of substrings is a k-differences
repeat if and only if (i1, j1) ≠ (i2, j2) and dE(S[i1, j1], S[i2, j2]) = k.

The ‘length’ of R is l(R) = min(j1 – i1 + 1, j2 – i2 + 1). A
k-differences repeat is ‘maximal covering’ if it is not contained
in any other k-differences repeat.

The differences repeat problem is to enumerate all maximal
covering k-differences repeats of length at least l. Our algo-
rithm maximal differences repeats (MDR) (for solving this
problem also crucially depends on the fact that every maximal
covering k-differences repeat R of length l contains a maximal
exact repeat of length ≥ , called a seed.

Algorithm MDR. Compute all seeds and try to extend these to
k-differences repeats as shown in Figure 2. To be more precise,
for every seed ((i1, j1),(i2, j2)) compute tables Eleft and Eright
defined as follows: Eright(q) is the set of all pairs (xr, yr) ∈ [1, m]
× [1, n] such that dE(S[j1 + 1, j1 + xr], S[j2 + 1, j2 + yr]) = q, i.e.
S[j1 + 1, j1 + xr] and S[j2 + 1, j2 +yr] have an alignment with q
differences. Analogously, Eleft(q) is the set of all pairs (xl, yl) ∈
[1, m] × [1, n] such that dE(S[i1 – xl, i1 – 1]–1, S[i2 – yl, i2 – 1]–1)
= dE(S[i1 – xl, i1 – 1], S[i2 – yl, i2 – 1]) = q. For each q ∈ [0, k],
for each pair (xl, yl) ∈ Eleft(q), and each (xr, yr) ∈ Eright(k – q):
if j1 – i1 + 1 + xl + xr ≥ l and j2 – i2 + 1 + yl + yr ≥ l, then output
the maximal covering k-differences repeats ((i1 – xl, j1 + xr), (i2
– yl, j2 + yr)).

It is not difficult to show that algorithm MDR correctly
solves the differences repeat problem.

One could of course use a standard dynamic programming
(DP) algorithm [for example see Wagner and Fischer (18)] to
extend seeds in O(n2) time. However, there are faster methods:
using the algorithm of Ukkonen (19), it is possible to compute

Figure 3. Assembly checking of human chromosome 22. REPvis display of exact direct and palindromic repeats with a minimum length of 300 bp. The chromo-
some (32 484 231 bp) consists of 11 concatenated contigs separated by vertical white lines (the separators are specified as an extra annotation and displayed by
REPvis). The color code for repeat length indicates that all other repeats are dwarfed by one long, exact repeat (light purple) of 190 014 bp. The computation time
for this repeat structure is 8 min.

Figure 2. Extension of a seed in algorithm MDR. The elements of Eleft(q) and
Eright(k – q) are marked by filled circles.

l
k 1+

praktikum2-ub
Rechteck

Nucleic Acids Research, 2001, Vol. 29, No. 22 4637

tables Eleft and Eright in O(kn) time by computing only front(k)
of the DP-matrix, see Figure 2. A combination of this algo-
rithm with the longest common prefix technique yields an
O(k2) time method to compute tables Eleft and Eright. Lastly, for
each q ∈ [0, k] the algorithm tests O(k2) combinations of the
values in Eleft (q) and Eright (k – q). Thus, the extension phase of
algorithm MDR takes time O(k3) per seed. As for algorithm
MMR, we conclude that the overall time efficiency of algorithm
MDR is O(n + zk3), where z is the number of seeds.

By restricting to left-most seeds, algorithm MDR can be
improved in a similar way to algorithm MMR.

A different approach to search for degenerate repeats would
be to initially search for inexact seeds and then to extend these
with less errors. However, this approach suffers from the fact
that there is no efficient algorithm for finding all inexact seeds,
even if the number of errors is very small.

Significance of repeats

In order to assess the significance of a repeat found by our
methods, we compute its E-value, i.e. the number of repeats of
the same length or longer and with the same number of errors
or fewer that one would expect to find in a random DNA of the
same length.

As a model of random DNA the uniform Bernoulli model is
used, where each base A, C, G and T has the same probability

p = 1/4 of occurrence. (In general, p = 1/|Σ| for an alphabet Σ of
size |Σ|). The E-value of the number of maximal exact repeats
of length ≥ l can be computed according to the following
formula [for details see Kurtz et al. (5)]:

Therefore,

E-values for k-mismatch repeats can be computed in a
similar way. The probability that two independent sequences
S1 and S2, both of length l, have a Hamming distance of exactly
k under the uniform Bernoulli model is

Using this formula, E[# of maximal ≤ k-mismatch repeats of
length ≥ l] can be approximated by

The exact solution can be found in Kurtz et al. (5).
One can generalize this result for the non-uniform Bernoulli

model with fixed probabilities pa for each a ∈ Σ. This is
achieved by replacing p by the probability p* that the bases at
two randomly chosen positions of S are the same,

Figure 4. Assembly checking of human chromosome 22 (continued). Enlarged view of contig 7 and contig 8, with attention to the 190 014 bp repeat, shown in
light purple. Obviously, the entire contig 8 has also incorrectly been assembled at the beginning of contig 7. This error is rectified in the current release of human
chromosome 22.

E # of maximal exact repeats of length l≥[]
1
2
---= n l– 1+() n l–()p

l
1 p–() n l–()p

l 1+
+

E # of maximal exact repeats of length l≥[] O n
2
p

l()∈

Pr dH S1 S2,() k=[]
l
k� �

� � p
l k–

1 p–()k ⋅=

1
2
---n n 1–()

l
k� �

� � p
l k–

1 p–()
k 2+

p* pa()2
.

a ∈Σ
�=

praktikum2-ub
Rechteck

4638 Nucleic Acids Research, 2001, Vol. 29, No. 22

This, however, is only an approximation to the exact solution
because the different probabilities for self-overlapping repeats
are ignored.
 In the case of the edit distance no analytic solution is known
for Pr[dE(S1, S2) = k]. For this reason we use the procedure of
Kurtz and Myers (20), which estimates the probability of the
event Ak(P) that an arbitrary (not necessarily random) string P
matches the prefix of a random string with edit distance k. This
procedure is an unbiased estimator which gives good results in
a matter of 1000 samples even for patterns of small probability.
To obtain an estimation Pr[dE(S1, S2) = k], we precomputed a
table E. Here E(l, k) is the average of the estimation of the
probability of the event Ak(P). The estimation is delivered by
running the above procedure with 1000 samples for 100
random patterns P, each of length l. The variance of the 100
estimations obtained for each l and k is very small, and so we
argue that E(l, k) gives a good approximation for Pr[dE(S1, S2)
= k] where l = max(|S1|, |S2|). Hence E[# of maximal ≤ k-differ-
ences repeats of length ≥ l] can be approximated by

INTERACTIVE VISUALIZATION

REPvis, the visualization component of the REPuter program,
provides an easy to use interface for examining repeat struc-
tures computed by REPfind. The program is designed to be
used by the biologist, thus putting the data in the hands of those
who can best interpret it.

A typical mode of use is as follows. The visualization comes
up showing a single colored line, depicting either the longest or
the most significant repeat. The first step is to obtain an
impression of the overall number and distribution of repeats.
By shifting a slider, we let further repeats rise on the screen, in
the order of decreasing length or significance, which is coded
in a 10-color scale (see Figs 3, 5, 6, 8 and 9). Since black is
used as the color for the shortest/least significant repeats, we
may go down all the way: if we hit the noise level (see Figs 6
and 7) the more significant repeats still shine up in colors
before a black background of noise.

During the overview, we may catch interest in particular
repeats or repeat-rich regions. A mouse click brings up the
inspection window (see Figs 4 and 7). Here we can zoom in or
out on a region by left or right clicking the mouse. Selecting a
position on the strand symbol prints the information corre-
sponding to this sequence position in a browser box below.
There, a single repeat can be selected to view the alignment of
the two instances of the repeat, or to submit the corresponding
nucleotide sequence for further investigation of biological
significance to a FASTA or BLAST database search.

The repeat graph as displayed by Repvis can be annotated
with additional symbols or lines. For example, the user can
display a predicted gene structure by specifying colored arcs
and their position in the genome. These will be shown together
with the repeat graph, e.g. to generate or verify hypotheses
about the correspondence between the particular repeat struc-
ture and an intron/exon structure (also see Applications).

Figure 5. Low copy repeats. The repeat graph of the selected 3 Mb from human chromosome 22 showing an unusual repeat region (see left part of Fig. 3). The
direct and palindromic repeats of minimum length 100 bp are shown. In essence, the net-like pattern reveals a low copy repeat, with some direct repeats, and others
reversed. Comparing this with the repeat pattern observed in (23), one observes a correspondence to the 3 Mb (TDR) of chromosome 22q11.2, responsible for the
DiGeorge/Velo-cardio-facial syndrome. The computation time for this repeat structure is 30 s.

1
2
---n n 1–()E l k,()

praktikum2-ub
Rechteck

Nucleic Acids Research, 2001, Vol. 29, No. 22 4639

APPLICATIONS

The basic application of REPuter is, of course, to reveal the
repetitive structure of large chromosomes or genomes. Our
recent experience shows that the use of REPuter extends far
beyond the original purpose. This is illustrated by applications
in five different sequence analysis tasks. The running time of
REPfind for each application is given in the figure legends. It
refers to a 400 MHz SUN computer with the Solaris 2.5.1.
operating system.

Assembly checking

The task of assembly programs is to arrange sequence reads in
the proper order and orientation to obtain complete BAC
sequences and contigs. However, assembly programs are not
perfect and the assembly is often erroneous, possibly resulting
in a poor annotation of the resulting sequence.

An assembled sequence can be checked by applying
REPfind to it. Very long repeats may be due to overlapping
regions between BAC sequences or contigs. This may hint to
assembly errors. If repeats are palindromic, one of the repeat
instances may have been assembled in the wrong orientation.

This procedure was applied to the 11 concatenated contigs of
human chromosome 22. The contigs were obtained from
GenBank on March 22, 2001 (accession nos NT_011516.3,
NT_011517.2, NT_011519.4, NT_025937.1, NT_011520.5,
NT_011521.1, NT_011523.4, NT_011524.2, NT_011525.3,
NT_019197.2, NT_011526.3). The REPvis repeat graph
(Fig. 3) indicates an overlapping region of unexpected length.
Zooming into the repeat graph (Fig. 4) reveals that the
complete contig 8 has already been assembled in the beginning

of contig 7. This error has been corrected in the current version
of human chromosome 22.

Low copy repeats related to human malformations

Human malformations and syndromes are often associated
with the deletion or duplication of specific chromosomal
regions. It has been observed that phenotypes related to dele-
tions are more severe than those related to duplications (21).
Chromosomal regions rich in gene content may be directly
associated with several malignant diseases caused by micro-
deletions in this part of the genome. The haploinsufficiency for
at least some of the genes in the deleted region may be respon-
sible for direct effects on specific developmental processes.

One well known aberration associated with such chromo-
somal rearrangements is the DiGeorge/Velo-cardio-facial
syndrome, localized at 22q11.2 (22,23). Most of the rearrange-
ments observed in this region refer to large deletions in a 3 Mb
region, causing various anomalies, including mental retarda-
tion. Some specific low copy repeat elements are identified
flanking this typical deleted region (TDR). This suggests that
they function as breakpoints leading to homologous recombi-
nation, explaining the genomic instability of this chromosome
region.

Low copy repeats form a characteristic net-like pattern in the
visualization provided by REPuter. At a glance, this pattern
indicates the number of repeats, their relative positions and the
regions potentially deleted.

We used Repfind to locate direct and palindromic repeats for
human chromosome 22 (Fig. 3). In the left part of the repeat
graph, an agglomeration of repeats is observed covering a
range of ∼3 Mb containing many repeated blocks (Fig. 5). The

Figure 6. Unique sequences. Direct and palindromic repeats of contig 4 of human chromosome 21 with a minimum length of 20 bp and up to 2 errors. LINEs and
SINEs were masked. Clearly, the noise level of random repeats is reached, generating a black background. The computation time for this repeat structure is 16 s.
This example is continued in Figure 7.

praktikum2-ub
Rechteck

4640 Nucleic Acids Research, 2001, Vol. 29, No. 22

pattern involves one essential element that was repeated four
times, sometimes directly, sometimes reversed. A comparison
with experimental results of Shaikh et al. (23) suggests that the
structure corresponds to the TDR responsible for the
DiGeorge/Velo-cardio-facial syndrome.

Unique sequences

Hybridization techniques are very effective tools in molecular
biology. The research pursued spans a wide range including
genotyping, pre-natal diagnostics and microarray technology.

Hybridization techniques make use of nucleic acid probes to
detect complementary nucleic acid targets present in biological
fluids or tissues. Their success essentially depends on the
specificity of the probe. Targeting the probes to non-unique
sequences may result in cross-hybridization generating false
positives. Finding unique sequences is the mathematical
complement of finding repeats. Since REPuter solves the
repeat finding problem in a non-heuristic way, it can also be
used to solve the complementary problem. Assume the probes
should have length l and be unique up to k errors. Determining
and discarding all repeats of minimum length l and a maximum
of k errors, the remaining sequence fragments are guaranteed
to be unique everywhere. Hence, probes can be designed from
them according to other experimental criteria.

Our example application is the screening of BAC libraries to
get clones used as probes for fluorescence in situ hybridization

in contig 4 of human chromosome 21 (GenBank accession no.
NT_003534). As this screening is done by PCR, our strategy
was to filter out all direct and palindromic repeats with a
minimum length of 20 bp, allowing 2 errors (Figs 6 and 7).
This guarantees the absence of mispriming (in contig 4) for
all primers chosen from the unique sequences. After this
preprocessing step, primers can be designed separately for
each region of interest, using standard software.

Gene structure comparison

Comparative genomics is one of the major reasons for
sequencing whole genomes of different organisms.
Throughout evolution, vital genes and regulatory regions have
been conserved to guarantee basic functions, maintaining simi-
larities across species. Since the mouse is a well known model
organism for studies of human biology and medicine, the
access to its genome allows researchers to make important
discoveries in the regulation of human genes based on
common structures and mechanisms.

REPuter enables us to compare two or more sequences by
concatenating them, and then searching for repeats. Control-
ling the allowed error rate in repeats, we can consider many
grades of similarity. In this way, REPuter provides a simple
plausibility check for gene structures predicted by other soft-
ware tools.

Figure 7. Unique sequences (continued). Zooming into the repeat graph of Figure 6, we find that there are still regions free from repeats. The area between the two
vertical white lines represents 5300 bp. It provides unique candidates for primer design.

praktikum2-ub
Rechteck

Nucleic Acids Research, 2001, Vol. 29, No. 22 4641

In our application example, we consider the 5′-UTR region
from the Mus musculus pellino1 gene (GenBank accession no.
AC091421) and the complete pellino1 gene of Homo sapiens
(GenBank accession no. NT_005326.1; Fig. 8). The gene
structure predicted by the program Genscan [version 1.0, with
default options; (24)] is shown with the repeat graph. Two of
the predicted mouse exons coincide with matches in the human
genomic sequence. However, there is yet another 98% identity
match between both species, 101 bp long (purple). This region
was not predicted as an exon by Genscan, although the strong
conservation and a match with a cDNA (GenBank accession
nos AF302503 for Mouse musculus and AF302505 for Homo
sapiens) suggest that it is indeed an exon.

cDNA/EST mapping

Expressed sequence tags (ESTs) are markers that provide a
rapid and reliable method for gene discovery as well as a
resource to analyze the expression of known and unknown
genes (25).

Given a collection of ESTs and a genomic sequence, one
wants to find local similarities between them. This can be done
by concatenating the genome with all ESTs and searching for
repeats.

We applied this strategy to look for a mouse gene similar to
the human Kiaa0903 gene. There are known homologous
regions between human chromosome 2 holding the Kiaa0903
gene and mouse chromosome 11. The human cDNA Kiaa0903
sequence was concatenated with a contig from the mouse
region (GenBank accession no. AC091423; Fig. 9). The repeat

graph shows that the exons of the Kiaa0903 gene are separated
by very long introns. The 3′- and 5′-ends of the Kiaa0903 gene
are either missing in the contig or are not well conserved.

CONCLUSIONS

We have given five examples for applications of automatic
repeat analysis. On a small scale, all of these analyses can be
done by ad-hoc combinations of traditional tools. However,
all-against-all comparisons break down when data size
approaches that of a small eukaryotic genome or a human chro-
mosome. Heuristic search methods are inadequate when the
presence or absence of repetitive elements must be determined
with certainty. The virtue of REPuter is to combine linear time
efficiency with exhaustive analysis. Thus, a single tool can be
utilized for all analysis tasks which are directed to, or can be
formulated as, tasks of repetitive structure analysis.

ACKNOWLEDGEMENTS

S.K. was partially supported by grant KU 1257/1 from the
Deutsche Forschungsgemeinschaft. J.V.C. was supported by
the DFG-Graduiertenkolleg 635 Bioinformatik.

REFERENCES

1. Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,
Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al. (2001)
Initial sequencing and analysis of the human genome. Nature, 409, 860–
921.

Figure 8. Gene structure comparison. The concatenated 5′-UTR from mouse and human pellino1 gene is considered. Both sequences are separated by the vertical
white line. Since the pellino gene is expressed in opposed strands in mouse and human, we restrict to palindromic repeats. The repeat graph shows palindromic
repeats of 35 bp minimum length with at most two errors. The Genscan prediction is shown as an annotation of the repeat graph, each exon being represented by
a colored bar. By analyzing only the inter-sequence matches, we can identify similarities and conserved regions between mouse and human with respect to the
pellino gene. The purple line suggests that a common exon is missed by Genscan. The computation time for this repeat structure is 3 s.

praktikum2-ub
Rechteck

4642 Nucleic Acids Research, 2001, Vol. 29, No. 22

2. Huang,C., Lin,Y., Yang,Y., Huang,S. and Chen,C. (1998) The telomeres
of Streptomyces chromosomes contain conserved palindromic sequences
with potential to form complex secondary structures. Mol. Microbiol., 28,
905–916.

3. van Belkum,A., Scherer,S., van Alphen,L. and Verbrugh,H. (1998) Short
sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol.
Rev., 62, 275–293.

4. Kurtz,S. (1999) Reducing the space requirement of suffix trees.
Software—Practice and Experience, 29, 1149–1171.

5. Kurtz,S., Ohlebusch,E., Schleiermacher,C., Stoye,J. and Giegerich,R.
(2000) Computation and visualization of degenerate repeats in complete
genomes. In Proceedings of the International Conference on Intelligent
Systems for Molecular Biology. AAAI Press, Menlo Park, CA,
pp. 228–238.

6. Sonnhammer,E.L.L. and Durbin,R. (1995) A dot-matrix program with
dynamic threshold control suited for genomic DNA and protein sequence
analysis. Gene, 167, GC1–GC10.

7. Womble,D.D. (1999) GCG : the Wisconsin package of sequence analysis
programs. In Misener,S. and Krawetz,S.A. (eds), Bioinformatics Methods
and Protocols, Methods in Molecular Biology. Humana Press, Totowa,
NJ, 132, pp. 3–22.

8. Rice,P., Longden,I. and Bleasby,A. (2000) EMBOSS : the European
Molecular Biology Open Software Suite. Trends Genet., 14, 473–475.

9. George,R.A. and Heringa,J. (2000) The REPRO server: finding protein
internal sequence repeats through the web. Trends Biochem. Sci., 25,
515–517.

10. Volfovsky,N., Haas,B. and Salzberg,S. (2001) A clustering method for
repeat analysis in DNA sequences. Genome Biol., 2,
research0027.1–0027.11.

11. Benson,G. (1999) Tandem repeats finder: a program to analyze DNA
sequences. Nucleic Acids Res., 27, 573–580.

12. Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences.
Cambridge University Press, NY.

13. Blattner,F., Plunkett,G., Bloch,C., Perna,N., Burland,V., Riley,M.,
Collado-Vides,J., Glasner,J., Rode,C., Mayhew,G., Gregor,J., Davis,N.,
Kirkpatrick,H., Goeden,M., Rose,D., Mau,B. and Shao,Y. (1997) The

complete genome sequence of Escherichia coli K-12. Science, 277,
1453–1474.

14. Delcher,A., Kasif,S., Fleischmann,R., Peterson,J., White,O. and
Salzberg,S. (1999) Alignment of whole genomes. Nucleic Acids Res., 27,
2369–2376.

15. Kurtz,S. and Schleiermacher,C. (1999) REPuter: fast computation of
maximal repeats in complete genomes. Bioinformatics, 15, 426–427.

16. Harel,D. and Tarjan,R. (1984) Fast algorithms for finding nearest
common ancestors. SIAM Journal on Computing, 13, 338–355.

17. Schieber,B. and Vishkin,U. (1988) On Finding lowest common ancestors.
SIAM Journal on Computing, 17, 1253–1263.

18. Wagner,R. and Fischer,M. (1974) The string to string correction problem.
Journal of the ACM, 21, 168–173.

19. Ukkonen,E. (1985) Algorithms for approximate string matching.
Information and Control, 64, 100–118.

20. Kurtz,S. and Myers,G. (1997) Estimating the probability of approximate
matches. In Proceedings of the Annual Symposium on Combinatorial
Pattern Matching (CPM’97). Springer Verlag, Berlin, pp. 52–64.

21. Brewer,C., Holloway,S., Zawalnyski,P., Schinzel,A. and FitzPatrick,D.
(1998) A chromosomal deletion map of human malformations. Am. J.
Hum. Genet., 63, 1153–1159.

22. Edelmann,L., Pandita,R. and Morrow,B. (1999) Low-copy-repeats
mediate the common 3-Mb deletion in patients with velo-cardio-facial
syndrome. Am. J. Hum. Genet., 64, 1076–1086.

23. Shaikh,T., Kurahashi,H., Saitta,S., O‘Hare,A., Hu,P., Roe,B., Driscoll,D.,
McDonald-McGinn,D., Zackai,E., Budarf,M. and Emanuel,B. (2000)
Chromosome 22-specific low copy repeats and the 22q11.2 deletion
syndrome: genomic organization and deletion endpoint analysis. Hum.
Mol. Genet., 9, 489–501.

24. Burge,C. and Karlin,S. (1997) Prediction of complete gene structures in
human genomic DNA. J. Mol. Biol., 268, 78–94.

25. Adams,M.D., Kelley,J.M., Gocayne,J.D., Dubnick,M.,
Polymeropoulos,M.H., Xiao,H., Merril,C.R., Wu,A., Olde,B.,
Moreno,R.F., Kerlavage,A., McCombie,W. and Venter,J. (1991)
Complementary DNA sequencing: expressed sequence tags and human
genome project. Science, 252, 1651–1656.

Figure 9. cDNA/EST mapping. Looking for a mouse gene similar to the human Kiaa0903 gene. There are known homologous regions between human chromo-
some 2 holding the Kiaa0903 gene and mouse chromosome 11. The human cDNA Kiaa0903 sequence was concatenated with a 104 270 bp contig from the mouse
region. Both sequences are separated by a vertical white line. The repeat graph shows that the exons of the Kiaa0903 gene are separated by very long introns. The
3′- and 5′-ends of the Kiaa0903 gene are either missing in the contig or are not well conserved. The computation time for this repeat structure is 3 s.

praktikum2-ub
Rechteck

