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Quantum circuits must run on quantum
computers with tight limits on qubit and gate
counts. To generate circuits respecting both
limits, a promising opportunity is exploiting
uncomputation to trade qubits for gates.
We present Reqomp, a method to automat-

ically synthesize correct and efficient uncom-
putation of ancillae while respecting hardware
constraints. For a given circuit, Reqomp can
offer a wide range of trade-offs between tightly
constraining qubit count or gate count.
Our evaluation demonstrates that Reqomp

can significantly reduce the number of required
ancilla qubits by up to 96%. On 80% of our
benchmarks, the ancilla qubits required can be
reduced by at least 25% while never incurring
a gate count increase beyond 28%.

1 Introduction
Quantum computers will remain tightly resource-
constrained for the foreseeable future, both in terms of
available qubits and number of operations applicable
before an error occurs. Running quantum programs
hence requires compiling them to circuits with a lim-
ited qubit and gate count. A promising opportunity
to achieve this goal is to exploit the need for uncom-
putation as an opening to trade qubits for gates.

What is Uncomputation? Just as classical pro-
grams, quantum circuits often leverage temporary val-
ues, called ancilla variables. Whereas classical pro-
grams can discard temporary values whenever conve-
nient, temporary values in quantum circuits must be
carefully managed to avoid side-effects on other val-
ues through entanglement [1, §3]. Uncomputation is
the process of preventing such side-effects by revert-
ing ancilla variables to state |0〉 after their last use,
thus ensuring that they are disentangled from the re-
mainder of the state. For instance, Fig. 1 shows a
circuit implementing CCCCH: the H gate on qubit
t with four control qubits o, p, q, and r. Fig. 1a uses
three ancillae variables a, b, c, stored in the respective
ancilla qubits u0, u1, u2. The first ancilla a holds o ·p,
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(c) 2-qubit uncomputation.

Fig. #qb #gt
1a 8 4
1b 8 7
1c 7 9

(d) Resources.

Figure 1: Two uncomputation strategies for CCCCH.

b holds o ·p · q, and c holds o ·p · q · r. We then use this
last ancilla c to control the H gate on t, only applying
H if all of o, p, q, and r hold state |1〉. In Fig. 1a,
these ancilla variables are not uncomputed, and may
result in unexpected interactions if this circuit is used
as part of a bigger computation. They must therefore
be uncomputed, as shown in Fig. 1b: the operations
applied to each of them are reverted at the end of the
circuit, ensuring that all ancilla qubits are reset to |0〉.
Reducing Qubits. After uncomputing an ancilla
variable, its qubit can be reused by another ancilla
variable, therefore reducing the overall number of
qubits used by the circuit. Sometimes, it is even ben-
eficial to uncompute an ancilla variable (too) early,
allowing its qubit to be reused at the cost of later re-
computing the ancilla variable when it is needed again.

Fig. 1b simply uncomputes ancilla variables in the
reverse order of their computation, namely c–b–a. As
no ancilla qubit can be reused, Fig. 1b requires 8
qubits and 7 gates overall (see Fig. 1d). Fig. 1c shows
an alternative implementation of CCCCH leveraging
recomputation. It uncomputes ancilla variable a early,
making its qubit u0 free for the computation of ancilla
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variable c. However, uncomputing b requires a again,
forcing us to recompute it and subsequently uncom-
pute it for a second time, at the cost of 2 additional
gates. Overall, Fig. 1c thus trades qubits for gates
compared to Fig. 1b, as summarized in Fig. 1d.
Correctness. Clearly, uncomputation is only use-
ful if it correctly resets ancillae to |0〉 without mod-
ifying the remainder of the state. However, this is
difficult to achieve, as uncomputing an ancilla may
require some preprocessing on its controls, to ensure
that they are in the right state (for details, see §7.1).
Synthesizing the right gates to achieve uncomputa-
tion is thus a fundamental challenge, as evidenced by
correctness issues in Square [2] which attempts to
automate the placement of programmer-defined com-
putation and uncomputation blocks (see §7.1).
Our Work. We present Reqomp, a method to auto-
matically synthesize and place correct yet efficient un-
computation while respecting hardware constraints.
Reqomp takes as inputs a quantum circuit C without
uncomputation (such as Fig. 1), its ancilla variables
and a space constraint specifying the number of avail-
able ancilla qubits. If possible, Reqomp extends C
to a circuit C which uncomputes all ancilla variables,
using only the number of ancilla qubits specified.

To ensure Reqomp synthesizes correct uncomputa-
tion, it extends circuit graphs [1] (a graph representa-
tion of quantum circuits) by the new concept of value
indices tracking the state of qubits. This allows Re-
qomp to determine which gates must be placed to
reach the desired state.
Evaluation. Our experimental evaluation shows
that Reqomp can significantly reduce the number of
required ancilla qubits by up to 96% compared to the
most relevant previous work Unqomp [1]. Many algo-
rithms are amenable to a significant reduction: for 16
of 20 benchmarks, Reqomp can reduce the number of
ancilla qubits by 25% compared to Unqomp, without
incurring a gate count increase beyond 28%. For the
remaining 4 examples, Reqomp strictly outperforms
Unqomp, albeit by a smaller margin. In some cases,
Reqomp achieves an impressive ancilla qubit reduc-
tion at very low cost: for one example, by 75% at the
cost of increasing gate count by 17.6%.

Note that Unqomp already showed that manual un-
computation is both error-prone and less efficient than
automatically synthesized uncomputation [1, §7].
Main Contributions. Our main contributions are:

• Reqomp, a method to synthesize and place
uncomputation in circuits under space con-
straints (§3–§4);

• A correctness proof for Reqomp (§5);

• an implementation1 and evaluation of Reqomp
demonstrating it outperforms previous work (§6).

1Reqomp is publicly available at https://github.com/
eth-sri/Reqomp.

2 Background
We now introduce the necessary background on quan-
tum computation.
Quantum States. We write the quantum state ϕ of
a system with qubits p and q as:

1∑
j=0

1∑
k=0

γj,k |j〉p ⊗ |k〉q =
∑

l∈{0,1}2

γl |l〉pq ∈ H2, (1)

where γj , γk, γl ∈ C and ⊗ is the Kronecker product.
If ϕ factorizes into

(∑
j γ
′
j |j〉p

)
⊗
(∑

k γ
′′
k |k〉q

)
, p

and q are unentangled, otherwise they are entangled.
Whenever convenient, we omit ⊗ and write |j〉 instead
of |j〉p. We use latin letters |j〉 to denote computa-
tional basis states from the canonical basis {|0〉 , |1〉}
and greek letters ϕ to denote arbitrary states.
Gates. A gate applies a unitary operation to a quan-
tum state. Here, we only consider gates with a single
target qubit in state ϕ and potentially multiple con-
trol qubits C = {c1, ...} in state |j〉 for j ∈ {0, 1}m,
mapping |j〉C⊗ϕ to |j〉C⊗φ, where the mapping from
ϕ to φ may depend on the control j. Specifically, only
the value of the target qubit may be changed, while
control qubits are preserved. Note that this mapping
can be naturally extended to superpositions (i.e., lin-
ear combinations as in Eq. (1)) by linearity. Further,
because any circuit can be decomposed into single-
target gates, not considering multi-target gates is not
a fundamental restriction.

A gate is qfree if its mapping can be fully described
by operations on computational basis states, i.e., if for
control qubits C and target qubit t it is of the form

|j〉C |k〉t 7→ |j〉C |F (j, k)〉t ,

for F : {0, 1}m × {0, 1} → {0, 1}. For example, the
NOT gate X, the controlled NOT gate CX, and the
Toffoli gate CCX are qfree, while the Hadamard gate
H and the controlled Hadamard gate CH are not
qfree. Qfree gates are known to be critical for syn-
thesizing uncomputation [1, 3, 4].
Uncomputation. The task of uncomputation is to
revert all ancilla variables in a circuit to their initial
state |0〉, while preserving the circuit effect on the
other variables. Formally, given a circuit C, we want
to synthesize C which resets ancillae variables to |0〉
without affecting the remainder of the state:

Definition 2.1 (Correct Uncomputation, [1, 3]). C
correctly uncomputes the ancillae A in C if whenever

|0 · · · 0〉A ⊗ ϕ
JCK7−−→

∑
j∈{0,1}|A|

γj |j〉A ⊗ φj , then

|0 · · · 0〉A ⊗ ϕ
JCK7−−→

∑
j∈{0,1}|A|

γj |0 · · · 0〉A ⊗ φj .

Here, JCK denotes the semantics of circuit C acting
on a given input state. We refer to [1] for a more
thorough introduction to uncomputation.
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3 Overview
We now showcase how Reqomp tackles the problem
of ancilla variables uncomputation under space con-
straints. It takes as input a quantum circuit and
a number of available ancilla qubits. If successful,
it returns a quantum circuit where all ancilla vari-
ables from the original circuit are uncomputed and
all other variables are preserved, using only the num-
ber of available ancilla qubits.
Example Circuit. Fig. 2 shows the algorithm of Re-
qomp and applies it to an example circuit with three
ancilla variables, a, b and c. We note that while this
circuit does not implement a relevant algorithm, it
allows showcasing the key features of Reqomp on a
simple example.
Reqomp Workflow. Fig. 2 highlights the steps
performed by Reqomp, which we detail in §3.1–§3.4.
First, Reqomp converts the circuit C into a circuit
graph G (§3.1 and in Fig. 2). Using this repre-
sentation, Reqomp identifies the dependencies among
ancilla variables in the circuit, and uses them to derive
an uncomputation strategy respecting the number of
available ancilla qubits (§3.2 and in Fig. 2). Re-
qomp then applies this strategy to build a new circuit
graph G containing uncomputation (§3.3 and in
Fig. 2). Finally, Reqomp converts the resulting cir-
cuit graph into a circuit C (§3.4 and in Fig. 2).

3.1 Building the Circuit Graph
Reqomp does not work directly on circuits, but in-
stead on an augmented version of the circuit graphs
introduced in Unqomp [1], additionally tracking qubit
values through value indices. For simplicity, we refer
to those augmented circuit graphs simply as circuit
graphs in the remainder of the text. The first step of
Reqomp is hence to convert the circuit C in Fig. 2 to
the circuit graph G. The Reqomp algorithm performs
this step in Lin. 2 (see Fig. 2). This transformation
also produces a value graph gval , discussed below.
Vertices and Edges. The circuit graph G contains
one init vertex per qubit (e.g., s0.0 for qubit s), and
one gate vertex per gate (e.g., s1.0 for the first X
gate on s). It also connects consecutive vertices on
the same qubit by a target edge, e.g., s0.0 → s1.0 .
Further, as a1.0 represents a CX gate controlled by
qubit s, the circuit graph G also contains a control
edge between the corresponding vertices on s and a1.0:
s1.0 •→ a1.0 . Finally, the circuit graph G also con-
tains anti-dependency edges to enforce the correct or-
dering between otherwise unordered vertices. For ex-
ample, a1.0 99K s0.1 ensures that the secondX gate
on s (represented by s0.1) can only be applied after
the CX gate targeting a (represented by a1.0). Gen-
erally, circuit graphs must be acyclic, as translating
them to a circuit requires applying its gate vertices in
a topological order.

Tracking Values. While the above construction fol-
lows Unqomp [1], we additionally introduce a new ver-
tex naming convention to track qubit values. Specifi-
cally, each vertex (e.g., s1.0) is identified by its qubit
(here s), its value index (here 1) and its instance in-
dex (here 0). The value index is chosen such that in-
tuitively, two vertices with the same qubit and value
index hold the same "value", even in the presence of
entanglement. The instance index is used to ensure
uniqueness of vertex names. For instance, as X is self-
inverse, the value on qubit s is the same in the very
beginning of the circuit ( s0.0 ) as after applying the
two X gates to s ( s0.1 ). More precisely, if the input
state to the circuit is |0〉s ⊗ ϕ, after the two X gates
on s have been applied, the final state is |0〉s ⊗ ϕ′ for
some ϕ′. Reflecting this in the circuit graph, vertices
s0.0 and s0.1 share the same value index 0.

To track value indices during circuit graph con-
struction and later during uncomputation, we rely on
the value graph gval , shown in Fig. 2. It records for
each qubit and value index the possible value transi-
tions: for instance a CX gate from a0 with control
s1 yields a1 (see Fig. 2). Note that we do not spec-
ify the instance index of s1: as any vertex on qubit s
with value index 1 carries the same value, any of them
can be used as a control. The value graph gval also
records which operations can be safely uncomputed.
For instance, as CX is a qfree gate, the CX on a0 can
be uncomputed: applying CX on a1 with control s1
yields a0 (note that CX is self-inverse).

Preparing the New Circuit Graph. To apply the
necessary uncomputation operations, Reqomp does
not modify the circuit graph G built above, but in-
stead creates a new empty circuit graph G where
uncomputation and computation can be interleaved
according to a chosen uncomputation strategy. In
the Reqomp algorithm, Lin. 3 builds this new empty
circuit graph G and Lin. 4 allocates nAncillaQubits
qubits, used to store all the ancilla variables. 2

For our example, this results in a graph consisting
of (i) init vertices for all non-ancillae variables and
(ii) slots for all available ancillae qubits. Fig. 2b shows
these slots as dashed blocks (Fig. 2 groups the new
empty circuit graph with the section on applying un-
computation ):

s0.0 r0.0

2Note that while nAncillaQubits does not constitute an up-
per limit on the physical qubits required overall (as non-ancillae
are not taken into account), we can control the latter by de-
creasing or increasing nAncillaQubits.
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Building the circuit
graph (§3.1)

Deriving the
uncomputation
strategy (§3.2)

Applying the
uncomputation
strategy (§3.3)

Obtaining
the final
circuit (§3.4)
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X
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Circuit C

1: func Reqomp(C, nAncillaQubits: int)
2: G, gval ← ToCircuitGraph(C)
3: G← Empty graph with initial vertices from G
4: availAncillaQubits ← AllocateQubits(nAncillaQubits)
5: connectedComps ← PartitionAncillae()
6: if PartitionAncillae() returned an error then
7: return Reqomp-Lazy(G)
8: for cc ∈ connectedComps do
9: if cc is not a path graph then
10: return Reqomp-Lazy(G)
11: stages ← getLinearStrat(cc,nAncillaQubits)
12: for anc, fwd ∈ stages do
13: if fwd then
14: ancQb← availAncillaQubits.pop()
15: i← freshInstanceId

G
(anc, 0)

16: addVertex
G

(anc0,i, ancQb)
17: addEdge

G
(getLastOnQb

G
(ancQb)→ anc0,i)

18: v ← evolveQubitFully(anc, fwd)
19: if s is last fwd stage in stages acting on anc then
20: evolveControlledNonAncillae(v)
21: if not fwd then
22: availAncillaQubits.push(v.qubit)
23: evolveNonAncillae()
24: assertFullyEvolved()
25: return ToCircuit(G)

Reqomp algorithm
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Circuit With Uncomputation C
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Figure 2: Overview of Reqomp.
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3.2 Deriving the Uncomputation Strategy

Based on the circuit graph G in Fig. 2, Reqomp
decides on an uncomputation strategy in two steps.
First, it extracts relevant ancilla variables dependen-
cies from the circuit graph. Second, it computes an
optimal strategy based on those dependencies.

Identifying Ancilla Variable Dependencies. On
the circuit graph G from Fig. 2, Reqomp identifies all
ancilla variables vertices (highlighted in red) and their
dependencies (highlighted in blue), and extracts the
following ancilla dependencies (also shown in Fig. 2):

a b c

Here, each vertex corresponds to an ancilla variable
and each edge corresponds to a control edge among
gate vertices between these respective ancilla vari-
ables. The Reqomp algorithm (Fig. 2) performs this
step in Lin. 5. This line additionally partitions the
ancilla dependency graph. Specifically, it identifies
ancilla variables that do not interact with each other
(i.e., lie in different connected components of the an-
cilla dependency graph), and can therefore be com-
puted and uncomputed independently. This allows
us to then process the individual partitions in a suit-
able order, deriving and applying a separate uncom-
putation strategy for each. We note that our run-
ning example in Fig. 2 only yields a single connected
component—the general case is discussed in §4.2.

Failure and Fallback. Unfortunately, finding a suit-
able order among partitions may be impossible, in
which case Lin. 6–7 of Reqomp fall back to our alter-
native algorithm Reqomp-Lazy, discussed in §4.5.

In general, uncomputation according to Def. 2.1 is
not always physically possible [1, §6.2]. Because we
cannot always achieve uncomputation, our algorithms
apply heuristics to succeed as frequently as possible.
However, we must accept that they may fail in some
cases. When this happens, we can fall back to a dif-
ferent heuristic such as Reqomp-Lazy. If this also
fails, it may indicate that no approach can achieve
uncomputation, hinting at a possible implementation
mistake or misconception by the programmer. If un-
computation is possible but no available approach can
synthesize it automatically, a programmer can always
uncompute manually instead.

Computing the Uncomputation Strategy. For
each partition (i.e., connected component) identified
above, Lin. 9 checks that the ancilla variables exhibit
a linear dependency, i.e., if each ancilla variable only
depends on its direct predecessor. If this was not the
case in Fig. 2, our approach would fail, falling back
to our alternative algorithm Reqomp-Lazy (Lin. 10).
Lin. 11 then derives an optimal uncomputation strat-
egy using dynamic programming [5]. For our example
circuit with two ancilla qubits, the following optimal

strategy is found:

a, b, a†, c, c†, a, b†, a†. (2)

Here we write a to denote "computing ancilla a", and
a† to denote "uncomputing ancilla a".

3.3 Applying the Uncomputation Strategy
Now that the uncomputation strategy for the current
connected component has been chosen, Lin. 12–22 of
Reqomp apply each of its stages in turn, first comput-
ing a.
Applying stage a. We now describe the effect of the
first computing stage, which computes a. As this is a
compute stage, denoted by fwd = True in the Reqomp
algorithm, Lin. 14 picks an available ancilla qubit to
use and Lin. 15 gets a fresh instance index for a qubit
on variable a and value index 0. Using those, Lin. 16
creates a new node in G on this chosen qubit (a0.0
in our example) and Lin. 17 links it via target edge
to the previous last node on this qubit if it exists (as
target edges link nodes on the same qubit). Lin. 18
then evolves the ancilla variable a until its maximum
value index in G, which is 1. To do so, it uses the
value graph gval as a guide: from a0, applying CX
controlled by s1 gives a1. Therefore, Reqomp first
adds the gate vertex a1.0 with gate CX to G. Now
a1.0 must be controlled by some s1, of which there are
currently none in G. Reqomp hence computes this s1,
again using gval as a reference: applying gate X to
some s0 gives s1. s1.0 with gate X is hence added to
G. Reqomp finally adds the control edge s1.0 •→ a1.0,
resulting in Fig. 2c and concluding the stage.
Applying stage b. The next stage computes b. Since
fwd is true as before, Lin. 14 picks an ancilla qubit
to use and Lin. 15–17 place the init vertex b0.0 in
it. Then, based on gval , Reqomp determines that it
should apply a CCX gate with controls a1 and s1
to go from b0 to b1. It thus adds b1.0 to G as well
as the control edge a1.0 •→ b1.0

3. Additionally, Re-
qomp seemingly should control b1.0 by s0.0. However,
this is impossible, since this would induce a cyclic de-
pendency that prevents transforming G to a circuit:
s1.0 •→ a1.0 •→ b1.0 (from Fig. 2c), b1.0 99K s1.0 (as
b1.0 must be applied before changing the value of s).
Since s0.0 is thus not available as a control, Reqomp
instead uncomputes s to value index 0 by inserting a
fresh vertex s0.1 and using it as a control, as shown
in Fig. 2e.
Applying stage a†. The next stage, denoted a†,
uncomputes a. To this end, just as for computing
b, Lin. 18 determines from the value graph gval that
applying a CX gate with control s1 allows moving a
from value index 1 to 0. Therefore, it introduces a
CX gate vertex a0.1. Further, again as above, s1.0

3Reqomp always adds ancilla controls before non ancilla
ones, as we found this to work best in practice.
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is not available as a control for a0.1, as this would
create a cyclic dependency (s0.1 •→ b1.0 99K a0.1 99K
s0.1). Reqomp thus recomputes s1, creating the vertex
s1.1. Finally, as the value index of the introduced
gate vertex a0.1 is 0, a is now fully uncomputed and
therefore in its original state |0〉. Thus, Lin. 22 adds
its ancilla qubit back to the pool of available qubits,
indicated with a dashed box in Fig. 2e.
Evolving Non-Ancilla Variables. As the stages
described above only evolves ancilla variables, we
make sure that we periodically evolve non-ancillae as
well. To this end, whenever we perform the last step
on a specific ancilla, we evolve all non-ancillae con-
trolled by this ancilla to the point at which they need
this control (Lin. 19–20). For instance, in Fig. 2, com-
puting c also triggers to computation of r.
Final Steps. After all uncomputation and recom-
putation stages for all ancilla variables have been ap-
plied, Lin. 23 evolves any non-ancillae that may not
yet be fully evolved, that is to say whose last value
index in G is different from what it is in G.

Finally, Lin. 24 checks if all variables are fully
evolved, either back to their initial state index 0 (for
ancilla variables), or to their final state index in G
(for non-ancillae). If not, Reqomp fails.

3.4 Obtaining the Final Circuit
If the above check succeeded, the final step of the
algorithm converts the circuit graph G to a circuit
C. This step works analogously to Unqomp [1], by
creating a qubit per init vertex and applying the gate
vertices in any topological order. For our example,
this results in the circuit C in Fig. 2. Importantly, the
resulting circuit uses the same physical ancilla qubit
to hold both a and c, saving one qubit at the cost of an
extra uncomputation and recomputation of qubit a.

4 Reqomp
In this section, we formalize our main algorithm Re-
qomp. §4.1–§4.4 go into more details into each of its
steps, mirroring §3.1–§3.4. §4.5 presents our fallback
algorithm Reqomp-Lazy.

4.1 Building the Circuit Graph
We first present our augmented circuit graphs in more
detail. The main novelty compared to the circuit
graphs of Unqomp is the introduction and formaliza-
tion of value indices to track qubit values.
Valid Circuit Graph. As discussed in §3.1 and con-
sistently with Unqomp [1], a circuit graph consists
of init vertices, gate vertices, target edges →, con-
trol edges •→, and anti-dependency edges 99K. Anti-
dependency edges can be reconstructed from the tar-
get and control edges: whenever there are three ver-

qs′.j

qs.0 : G

qs′.k

qs.i : G

rs′′.l

rs′′.m

(a) Case (fwd)

qs.j

qs′.0 : G†

qs′.k

qs.i : G

rs′′.l

rs′′.m

(b) Case (bwd)

Figure 3: Illustration of case (iv) in Def. 4.1. Dotted lines
indicate a sequence of gate vertices, grayed out letters are
unimportant.

tices n, c, d such that c→ d and c•→n, there is an edge
n 99K d ensuring that n must be computed before d.

A circuit graph is valid iff it corresponds to a valid
circuit. Most importantly, all valid circuit graphs
must be acyclic; we recall the precise definition of
valid circuit graphs from [1] in Def. C.1. The seman-
tics of a valid circuit graph G, denoted JGK, are de-
fined as the semantics of a circuit it can be converted
to, as any of those circuits have equivalent semantics.

In contrast to Unqomp, we augment vertices by
naming them using the naming convention qs.i, where
q is the qubit name, s its value index and i its instance
index that we use to ensure each vertex is uniquely
named.
Tracking Qubit Values. We use value indices to
track when a qubit revisits a previous state. Intu-
itively, if a qubit is in some basis state at a value
index, then if the qubit reaches the same value in-
dex at a later point in time, it will again be in
this same basis state. We can translate the intu-
ition above more formally as follows: for every pair
of vertices qs.i and qs.i′ , applying all gates G′ between
these vertices should preserve q, in the following sense:

∀b ∈ {0, 1}.
∀ϕ ∈ Hn−1.

∃ψ ∈ Hn−1. |b〉q ⊗ ϕ
JG′K
7−−−→ |b〉q ⊗ ψ, (3)

where Hn−1 denotes the set of quantum states over
n − 1 qubits. As we can write any state as a sum of
computational basis states, Eq. (3) allows us to reason
about any state.
Well-Valued Circuit Graph. To enforce the prop-
erty above, we introduce the notion of well-valued cir-
cuit graphs, which describes a vertex naming scheme
sufficient to ensure Eq. (3). Formally, we show in
App. C that any well-valued circuit graph ensures
Eq. (3) (more precisely, Lem. C.3 implies this).

Definition 4.1 (Well-valued Circuit Graph). We say
a valid circuit graph is well valued iff:
(i) all vertex names are of the form qs.i where q is

the name of the vertex qubit, s and i are natural
numbers

(ii) there are no duplicate vertices

(iii) the init vertex on each qubit has name q0.0 and
for any qs.i in G, qs.0 is in G
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(iv) any gate vertex qs.i satisfies one of the following
(see also Fig. 3):

(fwd) valIdx(pred(qs.i)) = valIdx(pred(qs.0))
and qs.i and qs.0 have the same gate and same
control vertices (up to their instance indices)

(bwd) if we denote s′ = valIdx(pred(qs.i)),
we have that (i) valIdx(pred(qs′.0)) = s,
(ii) qs.i.gate is qfree and equal to qs′.0.gate

†, and
(iii) both qs.i and qs′.0 have the same controls (up
to instance indices).

Here, pred(v) is the unique v′ such that v′ → v
and valIdx(v) is the value index of v. We now give
some intuition of the last condition (iv). Case (fwd)
corresponds to a (forward) computation, for instance
s1.0 and s1.1 in Fig. 2e. Here, case (fwd) ensures that
s0.0 → s1.0 and s0.1 → s1.1 apply the same operation
the "same" starting state. This is the case as both
s1.0 and s1.1 have the same gate X, and their prede-
cessors (s0.0 and s0.1) have the same value index 0.
Case (bwd) corresponds to a (backward) uncomputa-
tion, for instance a1.0 and a0.1 in Fig. 2e. Here, case
(bwd) ensures that that the operations a0.0 → a1.0
and a1.0 → a0.1 are exact inverses of each other.
Specifically, it ensures that (i) a0.1 and the prede-
cessor of a1.0 (here a0.0) have the same value index 0,
(ii) the gates of a1.0 and a0.1 are inverses of each other,
and (iii) their controls (s1.0 and s1.1) have the same
qubit and value index.
Building Well Valued Circuit Graphs. Reqomp
works only with well-valued circuit graphs: the con-
version from circuit to circuit graph ensures that the
resulting graph is well valued, and later when build-
ing another circuit graph, Reqomp preserves well-
valuedness at every step.

To help convert a circuit into a circuit graph, Re-
qomp builds in parallel a value graph gval , as shown
in Fig. 2. Initially, gval contains one init vertex per
qubit but without an instance index, for example s0
for qubit s. When encountering a new gate, for exam-
ple the first X gate on qubit s, we pick a fresh value
index for this qubit and extend gval . Here, we pick
1 for the value index and add vertex s1 to gval . As
the last vertex on qubit s in G is currently s0.0 with
value index 0, we also add the edge s0

X−→ s1. Fur-
thermore, as X is qfree s1 can be uncomputed, which
we materialize with the reverse edge s1 → s0, giving:

s0 s1
X

X

Later, when we encounter the second X gate on qubit
s, we again check the value graph. The last vertex on
s in G is now s1.0, with value index 1. From s1, gval

shows that an X gate brings back to s0. Therefore,
we do not update gval , and know that the new gate
vertex in G must have value index 0: this results in
vertex s0.1.

a0.0 b0.0 q0.0 c0.0 d0.0

b2.0 q1.0 c1.0 d1.0

b1.0

(a) Circuit Graph

a b c d

(b) Ancilla Dependencies

Figure 4: Demonstration of PartitionAncillae (Fig. 13).

4.2 Deriving the Uncomputation Strategy
After converting the circuit to a circuit graph, Re-
qomp partitions the ancillae of the circuit graph and
checks if those partitions have linear dependencies.

Why Partition Ancillae? Reqomp aims at bal-
ancing ancilla qubits and gates. For two ancillae that
do not interact, such a trade-off is easy: we should
always uncompute the first ancilla early, making its
qubit available for the latter one. As the ancillae are
independent, the latter one does not need the ear-
lier one, so the early uncomputation will not induce
extra gates, i.e., no recomputation is necessary. For
instance, in Fig. 4a, ancillae {a, b} and {c, d} are inde-
pendent. Therefore it is strictly better to uncompute
a and b before computing c and d, thereby reusing the
physical ancilla qubits initially holding a and b for c
and d. This is in contrast to ancillae that are part of
the same partition. For instance, in Fig. 1, we saw
that for 3 linked ancillae, uncomputing early or late
may yield different trade-offs.

Where to Partition? Fig. 4a shows an example
graph with four ancillae a, b, c, and d. We can see
that ancillae {a, b} do not directly interact with ancil-
lae {c, d}, and should therefore be two different parti-
tions. We now explain how we identify such partitions
based on the circuit graph.

To this end, we first collect all ancillae and record
their direct dependencies (smaller, light gray vertices
and edges in Fig. 4b). Then, we extract con-
nected components to determine which ancillae must
be processed in tandem (larger, dark gray components
in Fig. 4b). Finally, we determine the order in which
we should process these components, ensuring that if
an ancilla c transitively depends on ancilla b, c’s com-
ponent is processed before b’s component (captured
by edges in Fig. 4b). If ordering the connected
components is impossible due to cycles, the partition-
ing fails, and Reqomp falls back to Reqomp-Lazy. For
completeness, App. B.1 provides an implementation
of PartitionAncillae.
Linear Dependencies. Once partitioned, we pro-
cess each cluster of ancillae independently, completely
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computing and uncomputing its ancillae before mov-
ing on to the next cluster. The first processing step
for each cluster is ensuring its ancilla are linearly de-
pendent (Lin. 9 in Fig. 2). If not, Lin. 10 falls back
to Reqomp-Lazy. We say ancillae a1, . . . , an are lin-
early dependent if all gates targeting ai for i > 1 are
only controlled by ai−1 and non-ancillae. In Fig. 4a,
ancillae a and b are linearly dependent, and ancillae
c and d are linearly dependent. Lin. 9 checks this us-
ing the graph exemplified in Fig. 4b: each connected
component must be a simple path.

For simple paths, the getLinearStrat function called
in Lin. 11 then yields a correct uncomputation strat-
egy. We note that we avoid solving the general prob-
lem of finding an uncomputation strategy for any an-
cilla dependency, as it is P-SPACE complete [6].

4.3 Applying the Uncomputation Strategy
We now go into the most central part of Reqomp,
building up G step by step, following the uncom-
putation strategy. All modifications to G are done
through function evolveVtx, shown in Fig. 5. This
function is always called through the helper function
evolveQubitFully (called in Lin. 18 of the Reqomp al-
gorithm in Fig. 2).
Evolve Vertex. Function evolveVtx is used to evolve
vertices, i.e., to bring qubits from one value index to
another. It uses the value graph gval as a guide, and
iteratively modifies G. We demonstrate this in detail
on an example. Fig. 6 illustrates a possible call to
evolveVtx, where G is already partially built, and we
would like to revert a single gate on qubit a, whose
latest vertex is a1.0. Here, Fig. 6a shows the origi-
nal graph G—for simplicity, we assume that graph G
before the call to evolveVtx coincides with G. Fur-
ther, Fig. 6b shows the value graph gval we use as a
guide and Fig. 6d shows G after the call. The example
call is evolveVtx(a, 0, ∅), which uncomputes a single
gate on qubit a: it will bring qubit a from its current
value index 1 to 0. The argument ∅ indicates that no
vertices on any other qubit are in the process of be-
ing added—this argument is needed to avoid infinite
recursion (see also Lin. 29, discussed shortly).
Determine Reference. In Fig. 6, evolveVtx pro-
ceeds as follows. Lin. 30 gets the last vertex last on
qubit x. Lin. 32 then checks that the nV Id, that is
the value index we want to add to the graph, here 1,
can be reached in just one gate step. This is the case
as a0 is just one CX gate away from a1, as evidenced
by the edge a0

CX,b0−−−−→ a1 in gval .
Because the new value index 0 is smaller than the

current one 1, Lin. 33 sets fwd to false, indicating that
we want to uncompute. Therefore, we enter the else
branch starting in Lin. 37. Here, Lin. 38 determines
that the first time a had the same state index as last
in G was in vertex ref , i.e., in a1.0. It then looks up
the gate which produced ref (a CX gate) and records

its inverse as gt (Lin. 39).
Uncomputing non-qfree gates could lead to un-

expected results as shown by [1]. Therefore,
evolveVertex only uncomputes qfree gates, as checked
in Lin. 40.

Uncomputing a Gate. To uncompute ref ,
evolveVtx adds vertex v to G, which applies gate gt
(Lin. 41–42, see a0.1 in Fig. 6d). However, to ensure
that v indeed uncomputes ref , we must control it by
vertices with the same state index as the controls of
ref . To this end, Lin. 43 iterates over all controls
c of ref . It then gets a (potentially fresh) vertex c
(Lin. 45), which should have the same value index
and qubit as c (Lin. 46), and be available as a con-
trol for v (Lin. 47). Then, it uses c as a control for v
(Lin. 48). In Fig. 6c, we demonstrate why we cannot
control a0.1 by b0.0 directly—this would induce a cycle
a0.1–b1.0–q1.0–a0.1. Instead, Fig. 6d also uncomputes
b, using the resulting b0.1 to control a0.1.

Here, both the iteration order and the strategy to
obtain c are parametrized by a strategy ctrlStrat (see
Lin. 43 and Lin. 45). We note that evolveVtx is
quite versatile, and could be instantiated with various
strategies. In this work, we show two possible strate-
gies: the strategy for our main algorithm Reqomp,
and a strategy Reqomp-Lazy, which closely follows [1].

Computing. Fig. 5 can also compute values by set-
ting nVId to a value greater than that of the last one
on qbit. This works analogously to uncomputation,
by selecting ref and gt appropriately (Lin. 34–36).

Avoiding Infinite Recursion. The assertion in
Lin. 29 ensures that we never call evolveVtx recur-
sively on the same qubit. This avoids infinite re-
cursion where two qubits keep triggering recompu-
tation of the other. To this end, we propagate the
set I of qubits currently under construction through
getAvailCtrl to potential recursive calls into evolveVtx
(see Lin. 54 and Lin. 68).

Control Strategy of Reqomp. Fig. 5 also shows
the control strategy employed by Reqomp. In order
to get an available control (Lin. 62), it locates the last
control with the same value index as c, and returns
it if it is available to control v (Lin. 63–65). Here
available means that adding this control edge c •→ v
and any anti-dependency edge 99K it induces does not
create a cycle in G.

Otherwise, it evolves the latest vertex of the qubit
until it matches the value index of c, and returns it if
it is available for v (Lin. 67–70).

Using evolveVtx. Function evolveVtx is always
called through evolveQubitFully (Lin. 56, called
from Fig. 2), which in turn calls evolveVertexUntil
(Lin. 50). Function evolveVertexUntil then choses ap-
propriate intermediate steps to bring a qubit q from
the value index of its last vertex to the given value
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26: func evolveVtx(qbit: Qubit, nVId: int, I = ∅: Set[Qubit])
27: . nVId: value index of the vertex to be added to G
28: . I: set of in-progress qubits under construction
29: assert q /∈ I
30: last ← getVertex

G
(qbit, "last")

31: oVId ← last.valIdx
32: assert there exists qbitoVId → qbitnVId ∈ gval

33: fwd ← (nVId > last.valIdx)
34: if fwd then
35: ref ← getVertexG(qbit, "first",nVId)
36: gt ← ref .gate
37: else
38: ref ← getVertexG(qbit, "first", last.valIdx)
39: gt ← ref .gate†
40: assert gt is qfree
41: v ← addVertex

G
(gt, qbit,nVId)

42: addTargetEdge(last, v)
43: for c ∈ ctrlStrat.sort(getControlsG(ref )) do
44: . getAvailCtrl may mutate G via evolveVertex
45: c ← ctrlStrat.getAvailCtrl(c, v, I ∪ {qbit})
46: assert c.valIdx = c.valIdx and c.qbit = c.qbit
47: assert isAvailable

G
(c, v) . avoid trust in ctrlStrat

48: addControl
G

(c, v)
49: return v

50: func evolveVertexUntil(qbit: Qubit, valObj: int, I :Set[Qb])
51: . Evolve qbit from its last vertex to the given valObj
52: p← getPath(getVertex

G
(qbit, "last").valIdx, valObj)

53: for (valIdx, fwd) in p do
54: evolveVtx(qbit, valIdx, I)
55: func evolveQubitFully(qbit: Qubit, fwd: bool)
56: . Fully evolve qbit (forward/backward)
57: if fwd then
58: valIdx ← getVertexG(qbit, "maxValIdx").valIdx
59: else
60: valIdx ← 0
61: return evolveVertexUntil(qbit, valIdx, ∅)
62: func getAvailCtrl(c: Vertex, v: Vertex, I :Set[Qb])
63: c ← getVertex

G
(c.qbit, "last", c.valIdx)

64: if isAvailable
G

(c, v) then
65: return c
66: else
67: c′ ← getVertex

G
(c.qbit, "last")

68: c ← evolveVertexUntil(c′, c.valIdx, I)
69: assert isAvailable

G
(c, v) . always holds if v is fresh

70: return c

Figure 5: Basic building block for evolving values and helper functions.

a0.0 b0.0 q0.0

a1.0 b1.0

q1.0

c

ref

a0.0 b0.0 q0.0

a1.0 b1.0

q1.0

a0.1v

last

c a0.0 b0.0 q0.0

a1.0 b1.0

b0.1 q1.0

a0.1v

last

c

a0 a1 b0 b1 q0 q1

CX, b0

CX, b1

X

X

CCH

a1, b1

(b) gval

(a) Original graph G

(c) G; invalid control (d) G; after call

Figure 6: Demonstration of evolveVtx from Fig. 5.

71: func OptimizeRCCX()
72: for v ∈ G do
73: if v is later uncomputed then
74: v.gate← RCCX

75: if v is an uncomputation step then
76: v.gate← RCCX†

Figure 7: General-purpose optimization replacing CCX gates.

index valObj by (i) finding the shortest path4 in
the value graph between the two value indices and
(ii) calling evolveVtx for each step on this path. We
formally describe getPath in App. B.2 (Fig. 14).

4As detailed in App. B.2 (Fig. 14), we may force extra steps
in the path to ensure some values are computed at least once.

4.4 Obtaining the Final Circuit

We already discussed how to convert the final circuit
graph G to a circuit in §3.4. Now, we describe a
generic post-processing optimization we additionally
perform during this step. Fig. 7 shows this optimiza-
tion, which was previously discussed in [1]. Specifi-
cally, it replaces CCX gates which are later uncom-
puted by RCCX gates. While RCCX gates introduce
an additional phase change, replacing pairs of CCX
gates ensures that this phase change is also reverted.

As RCCX gates can be implemented more effi-
ciently than CCX gates (the latter require more T
gates), this can lead to a substantial efficiency im-
provement. This is particularly appealing in our set-
ting, were we encounter many CCX gates, and most
of them are uncomputed.

We note that Unqomp could only apply this opti-
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77: func Reqomp-Lazy()
78: G← DeepCopy(G)
79: U ←

{
qs.i ∈ G | q ancilla in G.qbs, i = 0 and s > 0

}
80: for v ∈ reverse(topologicalSort(U)) do
81: l← last

G
(v.qubit)

82: p← predecessorgval (v)
83: assert l.valIdx == v.valIdx
84: assert p.valIdx == v.valIdx− 1
85: evolveVertexUntil(l.qbit, p.valIdx)
86: assertFullyEvolved()
87: reuseAncillaRegisters()
88: func getAvailableControl(c: Vertex, v: Vertex)
89: lc ← getVertex

G
(c.qbit, "all", c.valIdx)

90: . Sorted according to target edges
91: for c ∈ lc do
92: if isAvailable

G
(c, v) then

93: return c
94: c′ ← getVertex

G
(c.qbit, "last")

95: c ← evolveVertexUntil(c′, c.valIdx)
96: return c

Figure 8: Fallback algorithm closely following Unqomp [1].

mization to gates it had itself uncomputed, whereas
Reqomp can also identify uncomputation that is al-
ready in place in the original circuit, by leveraging
value indices.

4.5 Reqomp-Lazy
While most quantum circuits we have investigated
have linear ancilla dependencies, some are more com-
plex. For those, Reqomp falls back to Reqomp-Lazy,
as shown in Lin. 7 and Lin. 10 of Fig. 2. This fall-
back is inspired by Unqomp [1], but leverages the aug-
mented circuit graphs and evolveVtx. In particular,
Reqomp can uncompute and recompute controls for
a vertex when they are not directly available. In con-
trast Unqomp would have returned an error anytime
this happens. We provide an example in §6.

Overview. Fig. 8 shows our implementation of
Reqomp-Lazy. Lin. 78 initializes G with a copy of
G, to be extended by adding vertices that perform
uncomputation. Then, Lin. 79 defines U as the set
of all vertices to be uncomputed: it contains the first
instance (i = 0) of each value index on each ancilla
qubit. Then, Lin. 80–85 step through U in reverse
topological order and revert all operations on ancil-
lae by calling evolveVertexUntil (Lin. 85). Note that
Lin. 83–84 ensure that the current last node on the
qubit has the same value index as v and that its prede-
cessor has value index exactly v.valIdx−1, and there-
fore that the call to evolveVtxUntil will result in ex-
actly one call to evolveVtx, uncomputing a single step
on the given ancilla variable. Then, analogously to
Reqomp, Lin. 85 evolves all non-ancillae (which may
have been reverted by calls to evolveVtxUntil) and
Lin. 86 asserts all qubits are fully evolved. Finally, as
specified in the original version of Unqomp [1, §5.4],
Lin. 87 allocates ancillae to the same physical qubits
if their lifetimes do not overlap.

(a) Circuit

(b) Extension

H

X X

X

X

X

X

X

|0〉
|0〉

|0〉
|0〉
|0〉
|0〉
|0〉

q

a

q0.0

q1.0

a0.0

a1.0

a0.1

|0〉
|0〉

|0〉
|0〉
|0〉
|0〉
|0〉

|1〉
|0〉

|0〉
|1〉
|0〉
|1〉
|0〉

1√
2

1√
2

+

Figure 9: Intuition on the correctness of Reqomp.

Custom Control Strategy. While this implemen-
tation reuses evolveVtx, it leverages a custom control
strategy, shown in Lin. 88. The goal of this strategy
is to use controls that are as early (in terms of tar-
get edges) as possible, therefore keeping later controls
available for later uncomputations.

Specifically, the strategy to get a control c available
for a target v is stepping through all possible vertices
with the correct state index, and picking the first that
is available for v. Only if none is available, analo-
gously to Reqomp, Lin. 94–95 evolve the last vertex
on the qubit of c until it has the correct state index.

5 Correctness
We prove in App. C that Reqomp synthesizes correct
uncomputation. In this section, we provide an intu-
ition of this proof.

Value Index Assertions. The correctness of Re-
qomp relies on value indices. At the end of the algo-
rithm (Lin. 24), we assert that the last vertex on all
ancilla qubits has value index 0, and that for any non-
ancilla qubit, the value indices of the last vertex are
the same for the original graph and the synthesized
graph. Intuitively, this ensures that ancillae are reset
to |0〉, while other qubits are preserved.

Correctness hence relies on the precise formal inter-
pretation of value indices, Intuitively, we claim that
two vertices on the same qubit with the same value
index hold the same value.

Extended Circuits. To formally define this notion,
we introduce the notion of an extended circuit. We
conceptually extend a given circuit to allow us to com-
pare the value of all vertices occurring in the circuit.

Fig. 9 exemplifies this by extending the example
circuit in Fig. 9a, which applies an H gate and two
controlled X gates to qubits q and a. Overall, the
circuit in Fig. 9a yields state

1√
2 |0〉q |0〉a + 1√

2 |1〉q |0〉a ,
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which we write in a column-by-column format in
Fig. 9a (right).

Fig. 9b shows our extension of Fig. 9a, copying5

the value of each vertex from the corresponding cir-
cuit graph to a fresh qubit. The name of these copy
qubits is the same as their corresponding vertex but
underlined, e.g., q0.0 holds the initial state of q, cor-
responding to vertex q0.0.

Value Index. Intuitively, copy qubits with the same
value index and qubit hold the same value. More pre-
cisely, if we write the state produced by the extended
circuit as a sum of computational basis states, in each
summand (with a non-null coefficient), copy qubits
with the same value index and qubit hold the same
value. For example, in every summand (i.e., column)
of the final state in Fig. 9b, a0.0 and a0.1 hold value
|0〉 (see red bracket in Fig. 9).

Similarly, each qubit holds the same value as its
last copy qubit. For example, in every summand (i.e.,
column) of the final state in Fig. 9b, q and q1.0 both
hold either value |0〉 or |1〉 (see blue bracket in Fig. 9).

In Lem. C.3 (App. C) we formally prove that these
two facts hold for any well-valued circuit graph, as
defined in Def. 4.1.

We further show in App. C that any circuit graph
built with evolveVtx (Fig. 5) is well-valued.

Final Values in the Extended Graph. Using the
final assertion in Reqomp (Lin. 24), we have that at
the end of the circuit, the last vertex on all ancilla
qubits has value index 0. Hence those qubits hold
the same value as the initial value of that qubit, i.e.,
|0〉. More precisely, consider a circuit graph G with
ancilla qubits A and non ancilla qubits Q, and de-
note G the circuit graph after uncomputation. We
then have that any summand in the final state af-
ter applying the extended version of G is of the form
|0...0〉A ⊗ |i〉Q ⊗ |...〉V , where we use V to denote all
the copy qubits in E(G).

The assertion in Lin. 24 further checks that
the value indices of non-ancilla qubits match
their respective last vertices in G. As we
show more formally in App. C, this means
that if the effect of the extended version E(G)
of G on some initial state can be written as

|0 · · · 0〉A ⊗ ϕ
JE(G)K
7−−−−−→

∑
j∈{0,1}|A|

k∈{0,1}|Q|

γjk |j〉A ⊗ |k〉Q ⊗ |...〉V ,

then the effect of the extended version E(G)
of G on the same state can be written as:

|0 · · · 0〉A ⊗ ϕ
JE(G)K
7−−−−−→

∑
j∈{0,1}|A|

k∈{0,1}|Q|

γjk |0 · · · 0〉A ⊗ |k〉Q ⊗ |...〉V ′ ,

where we denote V ′ the set of copy qubits in E(G).

5Note that copying using a controlled X gate does not vio-
late the no-cloning theorem.

Circuit Graph Semantics. Importantly, the se-
mantics of the unextended circuit follows straight-
forwardly from the semantics of the extended circuit.
In Fig. 9, simply ignoring the rows from Fig. 9b yields
the correct final state. If we similarly ignore the val-
ues of the copy qubits V and V ′ in the two equations
above, we recover the correct uncomputation theo-
rem, for circuits C and C:

Definition 2.1 (Correct Uncomputation, [1, 3]). C
correctly uncomputes the ancillae A in C if whenever

|0 · · · 0〉A ⊗ ϕ
JCK7−−→

∑
j∈{0,1}|A|

γj |j〉A ⊗ φj , then

|0 · · · 0〉A ⊗ ϕ
JCK7−−→

∑
j∈{0,1}|A|

γj |0 · · · 0〉A ⊗ φj .

Multiple Graphs. Note that here we assumed
that both G and G have the same effect, as they
apply the same gates for the same value indices.
Proving this formally requires extra work, done in
Lem. C.4 (App. C).

6 Evaluation
We have evaluated Reqomp on an existing benchmark
to answer the following research questions:

Q1 Circuit Efficiency: Can Reqomp create efficient
circuits in terms of number of qubits and gates,
while allowing to trade one for the other?

Q2 Usability: Is Reqomp fast and directly applicable
to a wide range of circuits?

Implementation. We implemented Reqomp as a
language extension of Qiskit, using Qiskit’s built-in
AncillaRegister type to mark ancilla variables in
the circuit. As Qiskit, our extension is implemented
in Python.

6.1 Benchmarks
To evaluate Reqomp, we used the benchmark from
Unqomp [1]. The first column in Table 1 summarizes
the circuits in our benchmark, separated into "small"
and "big" circuits. While the "small" circuits were
taken directly from Unqomp, we have generated the
"big" circuits by re-parametrizing the original circuits
to yield bigger circuits. This allows us to demonstrate
the Reqomp also performs well on larger circuits.

For completeness, we provide the exact parameters
for each circuit in App. D, including the resulting cir-
cuit sizes.
Circuits. To provide an intuition on our benchmark,
we explain selected circuits (see [1, §7.1] for details).

IntegerComparator takes a constant parameter n
and multiple input qubits encoding a value v, and flips
its output qubit if and only if v ≥ n. MCX flips its
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Table 1: Reqomp results when targeting a specific ancilla qubit reduction compared to Unqomp (e.g., −66.7 indicates a
reduction by 66.7%). Columns Max and Min report the results for the most aggressive settings, respectively optimizing only
for number of qubits and optimizing only for number of gates. Columns -75%, -50%, and -25% report the gate counts when
achieving the respective ancilla qubit reductions. Entries "x" indicate that a given ancilla qubit reduction was not achieved.

Ancilla Reduction
Max -75% -50% -25% Min

Algorithm anc gates gates gates gates anc gates
Small
Adder -66.7 70.5 x 39.2 15.7 -8.3 0.0
Deutsch-Jozsa -50.0 40.9 x 40.9 20.4 0.0 0.0
Grover -33.3 12.9 x x 12.9 0.0 0.0
IntegerComparator -63.6 47.1 x 36.1 11.6 0.0 -5.2
MCRY -63.6 80.0 x 53.3 26.7 0.0 0.0
MCX -60.0 55.2 x 46.0 27.6 0.0 0.0
Multiplier 0.0 -5.1 x x x 0.0 -5.1
PiecewiseLinearR -50.0 7.5 x 7.5 2.5 0.0 -3.3
PolynomialPauliR -33.3 9.5 x x 9.5 0.0 0.0
WeightedAdder 0.0 -9.7 x x x 0.0 -9.7
Big
Adder -93.0 314.9 64.7 42.9 21.0 -1.0 0.0
Deutsch-Jozsa -92.9 327.1 69.0 45.7 23.3 0.0 0.0
Grover -50.0 37.8 x 37.8 16.2 0.0 0.0
IntegerComparator -92.9 310.8 60.2 37.6 14.7 0.0 -6.7
MCRY -96.0 515.4 75.3 50.2 25.1 0.0 0.0
MCX -96.0 509.9 74.9 49.8 25.1 0.0 0.0
Multiplier 0.0 -5.4 x x x 0.0 -5.4
PiecewiseLinearR -85.0 47.1 17.6 10.2 2.8 0.0 -3.8
PolynomialPauliR -50.0 14.4 x 14.4 1.5 0.0 0.0
WeightedAdder 0.0 -8.0 x x x 0.0 -8.0

output qubit if and only if all its input qubits are one.
MCRY applies a rotation to its output qubit if and
only if all its control qubits are one. PiecewiseLinearR
applies a rotation f(x) to its output qubit, where x
is the value on its input qubits and f is piecewise
linear. PolynomialPauliR works analogously, but for
polynomial f . WeightedAdder takes as parameters a
list of weights λ0, ...λn and outputs

∑
λiqi where the

qi are the input values.

6.2 Q1: Circuit Efficiency
We now discuss the efficiency of circuits produced
by Reqomp in terms of qubits and gates. To put
our results into perspective, we compare them to Un-
qomp [1].
Approach. For each circuit, we ran Reqomp
targeting all possible number of ancilla qubits
nAncillaQubits (see Fig. 2). We then recorded, for
all calls that terminated without error, the number of
qubits and gates of the resulting circuit (with uncom-
putation).

We note that Reqomp had to fall back to Reqomp-
Lazy for circuits Multiplier and WeightedAdder, as
the ancilla dependencies of these circuits are not lin-
ear. While Reqomp-Lazy succeeds on these circuits
and even outperforms Unqomp, it cannot offer multi-
ple space-time trade-offs.
Results. Table 1 summarizes our results. For all ex-
amples, using the maximum number of ancilla qubits
(column Min as this is the minimal reduction) yields
better results than Unqomp for 10 circuits, and equiv-

alent results for the remaining 10 circuits. For ex-
ample, Reqomp saves 5.2% of gates on circuit Inte-
gerComparator, without requiring additional qubits.
This is because Reqomp can identify uncomputation
already present in the original circuit, allowing it to
avoid unnecessary operates when uncomputing or re-
computing an ancilla or even a control. Analogous
effects occur for PiecewiseLinearR, WeightedAdder,
and Multiplier, where the last two are handled by
Reqomp-Lazy.

More importantly, Table 1 demonstrates that Re-
qomp can significantly reduce the number of ancilla
qubits compared to Unqomp: by up to 96% for two
examples, and by at least 25% for 16 out of 20 circuits.
Importantly, this reduction comes at only a moderate
cost in gate count, of below 28% for qubit reductions
of 25%. As most quantum computers are more lim-
ited in terms of qubits than gates, these trade-offs are
highly favorable. Further, for some examples the re-
duction in qubits comes at almost no cost in gates: for
instance for PiecewiseLinearR, reducing the number
of ancilla qubits by 75% only increases the number of
gates by 17.6%.

Trade-Offs. To further demonstrate the gate count
cost incurred by these reductions, Figs. 10a–10b show
a more fine-grained visualization of the trade-offs be-
tween ancilla qubits reduction and gate count in-
crease.

Overall, we immediately observe that on all circuits,
reducing the number of available ancilla qubits can
only increase (and never decrease) the gate count of
the resulting circuit. However, the rate of this increase
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(a) Gate counts for selected small circuits. (b) Gate counts for selected big circuits.

(c) Circuit depth for selected small circuits. (d) Circuit depths for selected big circuits.

Figure 10: Gate counts (a–b) and circuit depths (c–d) for given numbers of ancillae, using Reqomp ( ) and Unqomp ( ).

varies among the different circuits, as discussed next.
For some benchmarks such as PiecewiseLinearR

(Figs. 10a–10b) and PolynomialPauliR (Table 1), Re-
qomp can drastically reduce the number of ancillae at
almost no cost in terms of gates.

For other benchmarks such as MCX (Figs. 10a–10b)
and MCRY (Table 1), Reqomp can still reduce the
number of ancillae substantially, but at a significant
cost in terms of gates. In such cases, the appropriate
ancilla reduction depends on the available hardware—
a programmer with access to Reqomp can then sys-
tematically select the right trade-off.

Other circuits fall somewhere between these two

categories (Figs. 10a–10b and Table 1): Reqomp
can reduce the number of ancilla qubits, at a non-
negligible cost in terms of gates.

Very Small Number of Qubits. Fig. 10 fur-
ther demonstrates that enforcing a very small number
of ancillae typically increases the number of applied
gates significantly. For instance, MCX with 200 con-
trols can be implemented with only 8 ancilla qubits,
but this requires a staggering 21 831 gates, compared
to only 3579 when 200 ancillae are used.

Overall, we conclude that enforcing very small num-
ber of ancilla qubits is typically not a good approach.
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Figure 11: Gate requiring definition in Unqomp.

Depth. For completeness, Figs. 10c–10d shows the
trade-off between ancilla qubits reduction and circuit
depth. As we do not optimize for circuit depth, reduc-
ing the number of ancillae sometimes yields shorter
circuits. Still, overall, circuit depth behaves analo-
gously to gate count, generally increasing for reduced
ancilla qubits counts, at different rates depending on
the circuit.

Interestingly, in some cases, we can reduce the an-
cilla count at almost no cost in circuit depth, even
though there is a cost in gate count. For example, re-
ducing ancillae from 99 to 25 on Adder only increases
depth by 31%, even though it increases the gate count
by 64%.

6.3 Q2: Reqomp Usability
We also investigated the usability of Reqomp, showing
that it is both fast and directly applicable to many
quantum circuits.
Reqomp Runtime. Our evaluation indicated that
Reqomp is fast: it synthesized uncomputation for all
circuits in Table 1 within five seconds.

Furthermore, running Reqomp typically takes as
much time as decomposing the resulting circuit to ba-
sic gates using Qiskit’s built-in decompose() function.
We hence believe that Reqomp can be integrated into
the programmer’s workflow without incurring a sig-
nificant slowdown.
Applicability. Recall that even for a circuit where
uncomputation is possible in principle, Reqomp may
raise an error. We therefore investigated how fre-
quently Reqomp succeeds in practice, comparing it
to other tools:

Qfree only Unqomp Reqomp
% examples covered ≤ 50% 60% 100%

We find that Reqomp (with the fallback strategy
Reqomp-lazy) finds a circuit with uncomputation for
all input circuits. In contrast, Unqomp can only cover
60% of those circuits directly. We will explain shortly
how we tweaked Unqomp to also cover the remaining
40%. Furthermore, only 50% of the circuits in our
benchmark are purely classical, hence any tool that
exclusively supports qfree gates can at most be used
on 50% of the examples.
Unqomp Limitations. Unqomp can only handle
60% of the circuits in our evaluation directly, because

it cannot accurately handle uncomputation occurring
in the input circuit. Fig. 11 illustrates this on a circuit
applying a CX gate (see red box on the left), where
the bar over C indicates that the control is inverted.
To invert the controls, the circuit applies an X gate to
invert the control, and another X gate to restore the
value of the control. To uncompute a it is hence nec-
essary to track that after two X gates, p is back to its
original value shown as p0 in Fig. 11, and therefore ap-
plying a third X gate will bring its value to p1 again,
allowing to uncompute a. Value indices allow Reqomp
to precisely track those value changes, and insert the
uncomputation gates (in the green box). In contrast,
Unqomp fundamentally cannot allow for recomputa-
tion, as its correctness relies on each operation being
computed and uncomputed exactly once. It further
does not recognize uncomputation or recomputation
already present in the original circuit. Therefore in
Fig. 11, Unqomp cannot recognize that the second X
gate recovers the original value of p. Even if it did,
it could not recompute p1 to uncompute a. In our
evaluation (Table 1), we bypassed this type of issue
by defining the red block as a custom gate controlled
by p. Unqomp then never decomposes this new gate,
assumes it keeps p constant, and places it to uncom-
pute a. Unfortunately, this approach makes Unqomp
harder to use, and in some cases makes the resulting
circuit less efficient.

7 Related Work
We now discuss works related to Reqomp.

7.1 Square
Even though it cannot synthesize uncomputation
code, Square [2] looks very closely related to Re-
qomp at first sight. Specifically, it presents "a com-
piler that automatically [places uncomputation] in or-
der to manage the trade-offs in qubit savings and gate
costs" [2, §1]. Unfortunately, Square suffers from
various shortcomings that prevent a meaningful com-
parison to Reqomp.
Square Problem Statement. Square takes as
input a program defining a qfree circuit (non qfree
gates are not supported). In this program, each func-
tion consists of the three blocks Compute (indicating
forward computation), Store (indicating computation
of outputs), and Uncompute (indicating uncomputa-
tion). Square then compiles this program to a circuit
by arranging these blocks, possibly repeating blocks
when recomputation is helpful.

Square defines three different strategies for inter-
leaving the blocks. Lazy (uncompute as late as pos-
sible), Eager (uncompute as early as possible), and
finally Square itself, using a custom heuristic. For
the example CCCH in Fig. 1, Lazy would correspond
to the 3-qubit strategy shown in Fig. 1b and Eager to
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Figure 12: Circuit with varying Uncomputation.

the 2-qubit strategy shown in Fig. 1c. We now present
the main shortcomings of Square.

Constant Compute/Uncompute Blocks. As
mentioned in §1, the gates needed to uncompute an
ancilla variable may depend on where this uncompu-
tation occurs in the circuit. It is hence impossible
to define fixed Compute and Uncompute blocks to
be applied anywhere. For instance, consider the cir-
cuit in Fig. 12a. It uses three ancilla variables a, b,
and c to compute the output variable r from the in-
put i. Fig. 12a highlights the Compute and Uncom-
pute blocks Square would consider, namely blocks
a, b and, c for computation and blocks a†, b†, and c†
for uncomputation. Note how the value of qubit i is
changed by block b, and restored later by block b†, en-
suring that qubit i has the same value for the CX gate
in block a† as it had in block a. Now, if we want to
save one ancilla qubit by uncomputing ancilla variable
a early, we get the circuit shown in Fig. 12b. Here,
when uncomputing a for the first time, the value of i
has been changed in block b and is not yet restored.
To correctly uncompute a in the block a†2 (different
from the block a†), it is hence necessary to restore i
using an X gate before using it as a control to uncom-
pute a. Similarly, block b† must change the value of i
again.

Not accounting for the above, Square assumes
that no matter its placement, uncomputation code
can be kept unchanged. In particular, its eager strat-
egy would use the Compute and Uncompute blocks
from Fig. 12a, yielding Fig. 12c. This is clearly incor-
rect as this circuit has different semantics than the one
in Fig. 12a. For example, for input |0〉i |0〉t, Fig. 12a
produces state |0〉i |0〉t while Fig. 12c produces state
|0〉i |1〉t (assuming ancillae are in state |0〉).

We note that Square does not exclude such
patterns—in fact its little-belle benchmark con-
tains an analogous pattern. 6

Incomplete Uncomputation. Besides only sup-
porting fixed uncomputation code, Square may also
skip uncomputation of some ancilla variables. For
some examples evaluated in [2], the implementation of
the lazy strategy does not insert any uncomputation
code at all, leaving all ancilla variables dirty, while
the eager strategy uncomputes all of them. Specifi-
cally, we believe that the reported differences between
strategies in the Square publication ([2, Tab. III]) on
the reversible arithmetic benchmarks7 RD53, 6SYM,
2OF5, and ADDER4 are only due to leaving some
ancillae dirty—as these benchmarks do not contain
nested uncomputation, the order of uncomputation
should not make a difference.

Additional Parameters. Finally, the implemen-
tation of Square is inconsistent with the system de-
scribed in [2]. Specifically, using the interface to spec-
ify Compute blocks requires providing 7 parameters,
and some benchmarks evaluated in [2] also contain
Unrecompute and Recompute blocks not mentioned
in the publication [2]. Even though the authors pro-
vided us with brief explanations of these parameters
on request, we could not confidently derive correct
parameters for new benchmarks.

7.2 Purely Classical Circuits
Most works synthesizing uncomputation cannot han-
dle non-qfree gates [7, 8, 9, 10, 4]. 8 It has already
been established [1] that using such works on quan-
tum circuits by separating out the qfree subparts typ-
ically yields inefficient circuits, and is sometimes even
impossible.

In the following, we discuss works which only sup-
port qfree gates, and define a custom strategy allowing

6Benchmark little-belle is available at https:
//github.com/epiqc/Benchmarks/blob/master/bench/
square-cirq/synthetic/little_belle.py. We note that
different uncomputation strategies do not yield different
results on it, as it does not contain gates modifying the output
and hence is semantically equivalent to the identity.

7Available at https://github.com/epiqc/Benchmarks/
tree/master/bench/square-cirq/application.

8[4] can verify uncomputation for non qfree circuits, but can
synthesize it only for qfree ones.
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to trade qubits for gates. We have already discussed
Square in §7.1.
Boolean Functions. Revs [7, 8] translates irre-
versible classical functions to reversible circuits. It
focuses on optimization possibilities during the trans-
lation from boolean functions to reversible circuits,
but also offers an uncomputation strategy, however
without the option of trading qubits for gates.

Similarly, [11] also translates boolean specifications
to reversible circuit. While it introduces another un-
computation heuristic, it also cannot trade qubits for
gates.

We expect that both of those strategies could be
incorporated into Reqomp, possibly yielding more ef-
ficient circuits.
Pebble Games. Multiple works present uncompu-
tation strategies for classical reversible computation,
which can be reduced to solving pebble games [12].
Importantly, while pebble games operate on depen-
dency graphs on values, Reqomp operates on quan-
tum circuits. In particular, pebble games assume all
values can be uncomputed, which is incorrect for non-
qfree gates. Further, a direct translation of circuits to
such graphs would ignore repeated values, leading to
issues analogous to Fig. 11. In contrast, conflating re-
peated values can lead to cyclic dependencies, which
are not supported by pebble games.

Knill [5] provides an optimal yet efficient solution
for linear dependencies. As most circuits we en-
counter in practice exhibit linear dependencies, Re-
qomp uses the same uncomputation strategy. Meuli
et al. [13] suggest using a SAT-solver to handle arbi-
trary dependencies, which may be a possible extension
of Reqomp.

7.3 Non-Qfree Circuits
We now discuss works offering uncomputation for
non-qfree circuits.
Language Level. Quantum languages like Quip-
per [9] and Q# [14] offer convenience functions to
automatically insert uncomputation. However, these
functions are often tedious to use, and may insert in-
correct uncomputation (see [1, §8] for details).

Silq [3] uses a type system to detect which variable
can be safely uncomputed, but does not synthesize
this uncomputation. Overall, none of those works can
constrain the number of ancillae used.
Circuit Level. We are aware of only two works
supporting uncomputation for non-qfree circuits. Re-
QWire [4] can only verify user supplied uncomputa-
tion (in the case of non-qfree circuits). Unqomp [1]
allows to synthesize uncomputation for quantum cir-
cuits, but cannot trade qubits for gates. Further, as
discussed in §6, it uses a notion of circuit graphs that
does not allow to track qubit values and therefore is
unable to uncompute directly many examples that Re-
qomp can handle.

8 Conclusion
We introduced Reqomp, a method to synthesize and
place efficient uncomputation for quantum circuits
with space constraints. Reqomp is proven correct and
can easily be integrated into circuit based quantum
languages such as Qiskit. We demonstrate in our eval-
uation that Reqomp is widely applicable and yields
wide ranges of trade-offs in space and time, for in-
stance allowing to generate tightly space constrained
circuits by using only a few ancilla qubits.
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A Notational Conventions

Table 2 summarizes notational conventions used in
this work.

Symbol Meaning
i Imaginary unit
o, p, q, r, t, u, . . . Qubits
a, a(0), b, c, d, . . . Ancilla qubits
n Number of qubits
C Circuit
G = (V,E) Circuit graph
gval = (V val , Eval) Value graph
G = (V ,E) Synthesized circuit graph
v, v′, v, w, . . . Vertex
s State index
i Instance index
qs.i, p0.1, r1.0, . . . Vertex with explicit q, s, i
c, c Control vertex
ϕ, φ, ψ,

∑
j
γj |j〉 Quantum state

γ, γ′, γ, λ, λ′, λ, . . . Complex coefficient (see above)
j, k, l Variables to sum over (see above)
Q Set of qubits
A Set of ancilla qubits
R Set of non-ancillae qubits (rest)
F : {0, 1}n+1 → {0, 1} Classical function defining qfree

gate with n controls
U (Unitary) gate (e.g., X or CX)
JGK Semantics of a circuit graph, as a

function over quantum states
E(G) Extended graph of G
qs.i Qubit in E(G) holding a copy of

qs.i

LGMp Coefficient for the projection p of
the semantics of E(G)

Table 2: Notational conventions used throughout this work.

B Algorithms
B.1 Partitioning
Fig. 13 shows the algorithm for partitioning the input
graph.

B.2 Reqomp Convenience Methods
Fig. 14 shows convenience functions omitted from Re-
qomp in Fig. 2.
GetPath. The function getPath used by
evolveVertexUntil is shown in Fig. 14. For ancilla vari-
ables, it simply returns the shortest path between the
two values in the value graph. However for non an-
cilla variables, it forces the computation of interme-
diate values that may not have been computed yet.
This could happend for a circuit such as:

q X X H

Here the value graph is:

q1 q0 q2
X

X

H

q1 � q0 → q2

Therefore, if we want to compute q2 from q0, the
shortest path is simply q0 → q2. However as H is not
qfree, once q2 has been computed, it can never be un-
computed again, and therefore, we can never compute
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97: func PartitionAncillae()
98: Ganc ← AncillaDependencies(G)
99: comps ← ConnectedComponents(Ganc) . Subgraphs of Ganc
100: Gancdeps ← (comps, {}) . Each comp is a vertex of Gancdeps
101: for comp ∈ comps do
102: for comp′ ∈ comps do
103: if ∃ path from c ∈ comp to c′ ∈ comp′ in G then
104: addEdgeGancdeps (comp, comp′)

105: assert Gancdeps has no cycles
106: return comps in topological order according to Gancdeps

107:
108: func AncillaDependencies(G) . Dependency graph on ancilla qubits
109: Va ← {v.qbit | v ∈ G, v.isAnc}
110: Ea ← {(v.qbit, v′.qbit) | v ∈ G, v′ ∈ getControlledG(v)} ∩ Va × Va

111: Ga ← (Va, Ea)

Figure 13: Partitioning the uncomputation problem into independent subproblems.

112: func evolveControlledNonAncillae(v: Vertex)
113: v ← getVertexG(v.qbit, v.valIdx)
114: for t ∈ getControlledG(v) do
115: if not t.isAnc then
116: if @tt.valIdx.i ∈ G then
117: t′ ← getVertex

G
(t.qbit, "last")

118: evolveVertexUntil(t′, t.valIdx)
119:
120: func evolveNonAncillae()
121: . Evolve remaining non-ancillas
122: for v ∈ final vertices in G do
123: if not v.isAnc then
124: evolveQubitUntil(v.qbit,v.valIdx)
125:
126: func assertFullyEvolved()
127: . Abort if values were evolved incorrectly
128: for v ∈ final vertices in G do
129: v ← getVertex

G
(v.qbit, "last")

130: if v.isAnc then
131: assert v.valIdx = 0
132: else
133: assert v.valIdx = v.valIdx
134:
135: func getPath(q: Qubit, from: int,to: int)
136: p← shortestPathInValueGraph(q, from, to)
137: if q.isAnc then
138: return p

139: p′ ← []
140: r ← [from+ 1, to] if from < to else [to, from− 1]
141: v ← from
142: for i in r do
143: if i /∈ p and @j, qi.j ∈ G then
144: p′ ← p′ + shortestPathInValueGraph(q, v, i)
145: v ← i
146: p′ ← p′ + shortestPathInValueGraph(q, v, to)
147: return p

Figure 14: Convenience functions leveraged by Reqomp
(Fig. 2).

q1, which may be needed for some later computation.
To correct this, we introduce q1 (if it has not already
been computed in G) in the path, giving:

q0 → q1 → q0 → q2

B.3 Linear Steps
Fig. 15 shows getLinearStrat. It is adapted from [5]:
we added the uncLast parameters that allows us to
apply it to ancillae only (that is we want all qubits
to be computed once then uncomputed whereas the
original algorithm did not uncompute the last qubit
in the dependency line).

C Formal Correctness Proof
In the following, we provide a formal proof that Re-
qomp synthesizes correct uncomputation according to
Def. 2.1.

C.1 Definitions and Helper Lemmas
We first define what we consider to be a valid circuit
graph, following [1]:

Definition C.1 (Valid Circuit Graph). A circuit
graph is valid iff

(i) its init vertices have no incoming target edge
while gate vertices have exactly one,

(ii) all its vertices have at most one outgoing target
edge

(iii) its anti-dependency edges can be reconstructed
from its control and target edges according to the
rule discussed in §4.1,

(iv) the number of incoming control edges of each gate
vertex v matches the number of controls of the
gate of v

(v) G is acyclic.

In a valid circuit graph, we can define for any non
init vertex n its predecessor pred(n) as the only vertex
m such that m → n (the target edge from m goes
to n). We can also define for any qubit q its last
vertex last(q): it is the only vertex on qubit q with no
outgoing target edge.
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148: func getLinearStrat(cc: Qubit, nqbits: int)
149: sortedAncillae ← topoSort(cc)
150: return [(sortedAncillae[i], b) for (i, b) ∈ stepsDP(|sortedAncillae|,nqbits, false)]
151:
152: func stepsDP(nanc: int, nqbits: int, uncLast: bool)
153: if return value was computed previously then
154: return previously computed value . memoization
155: if nanc = 0 then
156: return []
157: if nanc = 1 then
158: if nqbits = 0 then
159: return null
160: if uncLast then
161: return [(0, true), (0, false)]
162: else
163: return [(0, true)]
164: for m ∈ {1, . . . ,nanc − 1} do
165: if uncLast then
166: toM ← stepsDP(m,nqbits, false) . 0→ m
167: fromM ← [(i+m, b) for (i, b) ∈ stepsDP(nanc −m,nqbits − 1, true)] . m � nanc
168: cleanM ← [(i,¬b) for (i, b) ∈ reverse(stepsDP(m,nqbits, false))] . 0← m
169: else
170: toM ← stepsDP(m,nqbits, false) . 0→ m
171: fromM ← [(i+m, b) for (i, b) ∈ stepsDP(nanc −m,nqbits − 1, false)] . m � nanc
172: cleanM ← [(i,¬b) for (i, b) ∈ reverse(stepsDP(m,nqbits − 1, false))] . 0← m
173: stepsm ← toM + fromM + cleanM
174: return arg minstepsm cost(stepsm)

Figure 15: Optimal uncomputation strategy for linear graphs.

We now restate the well-valued circuit graph defi-
nition, and illustrate it on an example.

Definition C.2 (Well-valued Circuit Graph). We say
a valid circuit graph is well valued iff:

(i) all vertex names are of the form qs.i where q is
the name of the vertex qubit, s and i are natural
numbers

(ii) there are no duplicates

(iii) the init vertex on each qubit has name q0.0 and
for any qs.i in G, qs.0 is in G

(iv) any vertex qs.i verifies one of the following:
(fwd) valIdx(pred(qs.i)) = valIdx(pred(qs.0))

and qs.i and qs.0 have the same gate and same
control vertices (up to their instance indices)

(bwd) if we denote s′ = valIdx(pred(qs.i)),
we have that (i) valIdx(pred(qs′.0)) = s, (ii)
qs.i.gate is qfree and equal to qs′.0.gate

†, and
(iii)both qs.i and qs′.0 have the same controls (up
to instance indices).

Vertices in a well-valued circuit graph are of the
shape qs.i, where we call s its value index (valIdx in
the algorithms) and i its instance index. i is 0 for the
first occurrence of qs in the graph, but otherwise we
only use its value to ensure uniqueness of the vertex
names.

Due to the following lemma, it suffices to only con-
sider valid and well-valued circuit graphs:

x0.0 x0.00.0 x1.00.0

x0.00.1 : CX

x1.0 : H

x1.01.0 : CX

Figure 16: Extended graph example, copy vertices are shown
in green.

Lemma C.1 (evolveVertex Correctness). For a valid
and well-valued circuit graph G, any number of calls
to evolveVertex results in a valid and well-valued cir-
cuit graph G such that (i) {qs.0 ∈ G} is a subset of
{qs.0 ∈ G} and (ii) for any qs.0 in G ∩ G, it has the
same gate and control vertices (up to instance index)
in both graphs.

Proof. By induction on the depth of calls to
evolveVtx.

We then define the extended graph E(G) of a circuit
graph G. Roughly, we want E(G) to keep a copy of
every vertex qs.i in G, saved on a fresh qubit qs.i. For
a graph G with one qubit and two vertices, we show
E(G) in Fig. 16.

Definition C.3 (Extended Graph). For any cir-
cuit graph G = (V,E), we define its extended graph
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E(G) = (Ve, Ee) as follows:

Ve =V ∪
{
qs.i0.0, qs.i1.0 | qs.i ∈ V

}
Ee =E ∪

{
qs.i0.0 → qs.i1.0 | qs.i ∈ V

}
∪
{
qs.i •→ qs.i1.0 | qs.i ∈ V

}
For each qs.i in V , we have added a new qubit qs.i,

with one init vertex and one gate vertex CX con-
trolled by qs.i. In the following we refer to those added
qubits as V . Note that while qs.i1.0 is a vertex, qs.i is
qubit.

As the extended graph is a valid graph, it corre-
sponds to a circuit and therefore its semantics JE(G)K
is well defined. For a given input state ϕ to G, this
allows us to define:

Definition C.4 (Projected Coefficients). For a fixed
input state ϕ to the circuit graph G = (V,E), we de-
fine the projected coefficients of G as the unique com-
plex numbers LGMp such that:

JE(G)Kϕ⊗ |0...0〉V =∑
p:E(G).qbs→{0,1}

LGMp |p(G.qbs)〉G.qbs ⊗ |p(V )〉V

where p(Q) = (p(q(1)), ..., p(q(n))) for qubits Q =
{q(1)...q(n)}.

Using these coefficients, we can prove the follow-
ing three lemmas. First, the semantics of the circuit
graph G can be expressed in terms of its projected
coefficients LGMp:

Lemma C.2 (Projected Coefficients for Graph Se-
mantics). For a circuit graph G we have:

JGKϕ =
∑

p:E(G).qbs→{0,1}

LGMp |p(G.qbs)〉

Proof. We can prove this by induction on the number
of gates in G.

Second, copies have consistent values. Specifically,
for a given qubit q and valIdx s, all qs.i hold the same
value as qs.i, and the value of q is the same as the
copy of the last vertex on q:

Lemma C.3 (Null Projected Coefficients). For a
valid and well-valued circuit graph G = (V,E) and
p : E(G).qbs → {0, 1}, we have LGMp = 0 if

(i) p(qs.i) 6= p(qs.0) for some qs.i, or

(ii) p(q) 6= p(last(q)) for some qubit q.

Proof. We prove Lem. C.3 in App. C.3.

Finally, if LGMp 6= 0, it depends only on the gates
used for the first computation of each qs.0.

Lemma C.4 (Projected Coefficients Values). For a
circuit graph G and p : E(G).qbs → {0, 1}, we have
that if LGMp 6= 0 then:

LGMp =α
p(q

(0)
0.0...q

(n)
0.0 )

∏
qs.0∈G

s 6=0

γqs.0

Here the α describe the initial state:

ϕ =
∑

k∈{0,1}m

αk |k〉 .

and the γ are gate coefficients defined such that
JgK |c〉 |t〉 =

∑1
t′=0 γ

g
t,c→t′ |c〉 |t′〉 for a gate g and t in

{0, 1} and c ∈ {0, 1}m. We have further shortened

γqs.0 = γqs.0.gate
p(pred(qs.0)),p(ctrls(qs.0))→p(qs.0)

Proof. We prove Lem. C.4 in App. C.3.

C.2 Main Proof
Using Lem. C.1–C.4, we can prove the correctness of
Reqomp:

Theorem C.1 (Correctness). Have G a circuit graph
built from a circuit with n qubits, of which m are an-
cilla variables. Without loss of generality, we can as-
sume that those ancilla variables A =

(
a(1), . . . , a(m))

are the first m qubits of G. Let Reqomp(G,A) = G.
If

|0 · · · 0〉A ⊗ ϕ
JGK7−−→

∑
k∈{0,1}m

λk |k〉A ⊗ φk, then

(4)

|0 · · · 0〉A ⊗ ϕ
JGK7−−→

∑
k∈{0,1}m

λk |0 · · · 0〉A ⊗ φk. (5)

Note that this is an equivalent rewrite of Def. 2.1.

Proof. We first make the values of the non-ancilla
qubits explicit, and denote R = G.qbs\A. This al-
lows us to rewrite Eq. (4) as :

JGK |0 · · · 0〉A ⊗ ϕ =
∑

k∈{0,1}m

k′∈{0,1}n−m

λkk′ |k〉A |k
′〉R (6)

Similarly for G we can write:

JGK |0 · · · 0〉A ⊗ ϕ =
∑

k∈{0,1}m

k′∈{0,1}n−m

λkk′ |k〉A |k
′〉R (7)

Note that here we use λ to refer to a coefficient in
G, and not to the complex conjugate of λ.

To prove the theorem, it is hence enough to prove
that for all k′,

λkk′ =
{

0 if k 6= 0 (i)∑
k λkk′ if k = 0 (ii)
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To do so, we first identify Eq. (7) with Lem. C.2.
This gives us that:

λkk′ =
∑

p:E(G).qbs→{0,1}
p(G.qbs)=kk′

LGpM (8)

The assertion at Lin. 24 in the Reqomp algorithm
(Fig. 2) and Lem. C.3 then give that for any ancilla
qubit a(i), if p(a(i)) 6= p(a(i)

0.0), then LGpM is null. As
a

(i)
0.0 copies the initial state of the ancilla, we then get

that if k 6= 0, then λkk′ = 0, proving (i).
To prove (ii), we first note that Eq. (8) holds analo-

gously forG, allowing us to derive the following. Here,
we denote V0 = {qs.0 ∈ V }. We then have for any k′
in {0, 1}n−m:

∑
k∈{0,1}m

λkk′ =
∑

k∈{0,1}m

∑
p:E(G).qbs→{0,1}

p(G.qbs)=kk′

LGpM (9)

=
∑

p:E(G).qbs→{0,1}
p(R)=k′

LGpM (10)

=
∑

p0:V0→{0,1}

∑
p:E(G).qbs→{0,1}

p(R)=k′

p|V0 =p0

LGpM (11)

Using Lem. C.3, we have that for any p0 : V0 →
{0, 1}, there is a unique p+

0 : E(G).qbs → {0, 1} such
that p|V0 = p0 and LGMp is not known to be null. We
can hence further rewrite Eq. (11):

∑
k∈{0,1}m

λkk′ =
∑

p0:V0→{0,1}
p0(R0)=k′

LGMp+
0
, (12)

where we denoted R0 = {qs.0 | last(q) = qs.i, q ∈ R}.
Similarly, we write the same equation for G and λkk′ :

∑
k∈{0,1}m

λkk′ =
∑

p0:V0→{0,1}
p0(R0)=k′

LGMp+
0

(13)

Using that λkk′ is null if k 6= 0, we finally get:

λ0k′ =
∑

p0:V0→{0,1}
p0(R0)=k′

LGMp+
0

(14)

Now, if V0 = V0, as gates are the same for any qs.0
in G and G, Eq. (12) and Eq. (14) combined with
Lem. C.4 and Lem. C.1 give us (ii).
If this is not the case, there must exist some qs.0 in

V0\V0. For instance this could happen if G contains

q0.0 → q1.0 → q0.1, and G only contains q0.0 : it
was not necessary to compute q1.0 to reach the same
final state as in G. The crucial observation is that
this vertex qs.0 gate is qfree. If q is an ancilla, this is
clear as Reqomp would have raised an error otherwise.
Indeed, Reqomp computes all ancillae (in Lin. 18) and
check that they are all later uncomputed (Lin. 24).
All operations on ancillae are hence uncomputed, and
therefore their gate must be qfree (this is checked in
Lin. 40). If q is not an ancilla, it means then qs.0 must
have been uncomputed in G (as the final state of non
ancilla qubits in both graphs is the same). As qfree
gates coefficients γ are either 0 or 1, having an extra
qfree gates does not change the result of the sum in
Eq. (12), concluding this proof.

C.3 Proofs of Helper Lemmas
We now prove Lem. C.3 and Lem. C.4 by induction
on the number of gates in G.

Proof. For a circuit graph G with no gates, an imme-
diate induction on the number of qubits gives both
lemmas.

Now suppose both lemma holds for any G with at
most l gates. Now have G′ = (V ′, E′) with l+1 gates.
We can write G′ as G′ = G ·qs.i where G = (V,E) has
l gates and qs.i can be applied last in G′. To simplify
notations, we assume qs.i has only one control vertex
ct.j . If it has 0 or more controls, the reasoning is
analogous.

By definition, we know that:

JE(G)Kϕ =
∑

p:E(G).qbs→{0,1}

LGMp |p(G.qbs)〉G.qbs |p(V )〉V

If we now apply qs.i and qs.i0.1 (the CX gate copying
qs.i to a new qubit) to one state of the sum above, we
get for any p : E(G).qbs→ {0, 1}:

Jqs.i · qs.i0.1K |p(G.qbs)〉G.qbs |p(V )〉V =∑
b∈{0,1}

γqs.i.gate
p(q),p(c)→b |p(G.qbs\{q}), b〉G.qbs |p(V ), b〉V ′

Here b appears first as the value on the qubit q, and
second as the value on the copy qubit qs.i.

As E(G′) = E(G) ·qs.i ·qs.i0.1, we can use the above
to compute LG′Mp′ for any p′ : E(G′).qbs→ {0, 1}. We
first notice that if p′(q) 6= p′(qs.i), then LG′Mp′ = 0,
giving us in Lem. C.3 (ii) for q. In the following, we
hence only consider p′ such that p′(q) = p′(qs.i). We
then get:

LG′Mp′ =
∑

b∈{0,1}

LGMp′|E(G).qbs

[q 7→b]

γqs.i.gate
b,p′(c)→p′(q) (15)

21



Using the recursion hypothesis, this immediately
gives that if for any q′ 6= q if p′(q′) 6= p′(last(q′)),
then LG′Mp′ = 0, giving us Lem. C.3 (ii) for q′ 6= q.
Together with the above, we hence get Lem. C.3 (ii).

We now work on proving both Lem. C.3 (i) and
Lem. C.4. The recursion hypothesis gives us that for
any (q′, s′, i′) 6= (q, s, i), if p′(q′s′.i′) 6= p′(q′s′.0), then
again LG′Mp′ = 0. We hence only need to establish
that if p′(qs.i) 6= p′(qs.0) then LG′Mp′ = 0, and the
value of this coefficient when it is not null (that is to
say Lem. C.4). To do so, we now consider p′ consistent
with what we have already proven, i.e., p′ such that
for any q′ in G.qbs, p′(q′) = p′(last(q′)) and for any
(q′, s′, i′) 6= (q, s, i), p′(q′s′.i′) = p′(q′s′.0).

We first notice that the recursion hypothesis gives
that if b 6= p′(pred(qs.i)), then LGMp′|E(G).qbs

⊕q 7→b

= 0.

Hence one of the summands in Eq. (15) is null:

LG′Mp′ = LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.i))

γqs.i.gate
p′(pred(qs.i)),p′(c)→p′(q)

Using the constraints on p′, we can rewrite this to:

LG′Mp′ = LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.i))

γqs.i.gate
p′(pred(qs.i)),p′(ct.0)→p′(qs.i)

Now we distinguish two cases. If this is the first
occurence of qs, that is to say i = 0, we immediately
get Lem. C.3 (i), as i = 0. For Lem. C.4, by rewriting
the equation above using that i = 0

LG′Mp′ = LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.0))

γqs.0.gate
p′(pred(qs.0)),p′(ct.0)→p′(qs.0)

and using the induction hypothesis, we can conlude.

On the other hand, if i 6= 0, we again need to
distinguish two possibilities: cases fwd and bwd in
Item (iv) of Def. 4.1We focus on the later case, as the
first is simpler. We denote qs′.i′ = pred(qs.i). We can
hence rewrite:

γqs.i.gate
p′(pred(qs.i)),p′(ct.0)→p′(qs.i) =

γqs.i.gate
p′(qs′.0),p′(ct.0)→p′(qs.i)

As we know that G′ is well-valued, we have that
qs.i.gate = qs′.0.gate

† and that both gates are qfree.
Generally, the coefficient for the reverse of a qfree gate
g is

γg†

t,c→t′ = γg
t′,c→t,

as a qfree gate coefficient can only be 0 or 1.
We can hence again rewrite the above coefficient as:

γ
qs′.0.gate
p′(qs.i),p′(ct.0)→p′(qs′.0).

Here, we used that
(
g†
)† = g. Overall this gives us

that:

LG′Mp′ = LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.0))

γ
qs′.0.gate
p′(qs.i),p′(ct.0)→p′(qs′.0)

Now if p′(qs.i) 6= p′(qs.0), let us prove that LG′Mp′ is
null. If LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.i))

is null this is clear, other-

wise using Lem. C.4 we get that LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.i))

contains γ
qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0). We hence have

that LG′Mp′ is a product which includes the factors
γ

qs′.0.gate
p′(qs.i),p′(ct.0)→p′(qs′.0) and γ

qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0).

As qs′.0.gate is qfree, one of those coefficients is null,
and hence so is LG′Mp′ .
Finally, if p′(qs.i) = p′(qs.0), we get Lem. C.3

(i) trivially. If LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.i))

is null, Lem. C.4

holds trivially. Otherwise, we use as above that
γ

qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0) is in LGM p′|E(G).qbs

⊕q 7→p′(pred(qs.i))

. As

γ
qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0) is 0 or 1, it is equal to its

squared value, and the recursion hypothesis allows us
to conclude.

D Evaluation Values
We show in Table 4 the absolute numerical results
on which the relative values in Table 1 are based.
Table 3 further shows the exact parameters of each
circuit used in our evaluation.
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Table 3: Parameters for all examples in Table 1 and Table 4.

Algorithm Parameters
Small
Adder 12 qubits per operand
Deutsch-Jozsa 10 control qubits, with oracle MCX, returning true iff the value is 1111111111
Grover’s algorithm 5 control qubits, with oracle MCX, returning true iff the value is 1111111111
IntegerComparator 12 control qubits, comparing to i = 463
MCRY 12 control qubits, with rotation angle θ = 4
MCX 12 control qubits
Multiplier 5 qubits for each operand, and 5 for the result
PiecewiseLinearR 6 control qubits, function breakpoints are [10, 23, 42, 47, 51, 53, 63], slopes are [39, 32, 77, 27, 77, 4, 74]

and offsets are [174, 40, 110, 163, 100, 185, 130]
PolynomialPauliR 5 control qubits, polynomial coefficients are [2, 2, 2, 2, 2]
WeightedAdder 10 controls qubits, values for sum are [0, 1, 1, 5, 2, 10, 4, 4, 9, 3]
Big
Adder 100 qubits per operand
Deutsch-Jozsa 100 control qubits, with oracle MCX, returning true iff the value is 1111111111
Grover’s algorithm 10 control qubits, with oracle MCX, returning true iff the value is 1111111111
IntegerComparator 100 control qubits, comparing to i = 878234040205782925887743338143
MCRY 200 control qubits, with rotation angle θ = 4
MCX 200 control qubits
Multiplier 16 qubits for each operand, and 5 for the result
PiecewiseLinearR 40 control qubits, function breakpoints are [63870600266, 81180069351, 185076947411, 350818281077,

590566882159, 677977056232, 866030640015, 949186564661, 978976427282], offsets are [46, 59, 40, 48,
54, 67, 21, 71, 22] and coefficients are [60, 59, 6, 45, 83, 44, 34, 130, 130]

PolynomialPauliR 10 control qubits, polynomial coefficients are [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
WeightedAdder 20 controls qubits, values for sum are [9, 0, 9, 10, 2, 6, 10, 6, 8, 5, 8, 7, 8, 4, 0, 0, 5, 7, 5, 6]

Table 4: Reqomp results for the reductions presented in Table 1. We also report Unqomp results. Columns Max and Min
report the results for the most aggressive settings, respectively optimizing only for number of qubits and optimizing only for
number of gates. Columns -75%, -50%, and -25% report the gate counts when achieving the respective ancilla reductions.
Entries "x" indicate that a given ancilla reduction was not achieved. Q is total number of qubits, A is number of ancillae, CX
is number of CX gates, G is total number of gates and D is circuit depth.

Ancilla Reduction
Max -75% -50%

Algorithm Q A CX G D Q A CX G D Q A CX G D
SmallAdder 28 4 326 1132 482 x x x x x 30 6 270 924 346Deutsch-Jozsa 15 4 78 331 162 x x x x x 15 4 78 331 162Grover 8 2 192 839 456 x x x x x x x x x xIntegerComparator 17 4 110 456 251 x x x x x 18 5 100 422 231
MCRY 17 4 122 486 263 x x x x x 18 5 104 414 225MCX 17 4 102 405 243 x x x x x 18 5 96 381 202Multiplier 24 20 420 1500 550 x x x x x x x x x x
PiecewiseLinearR 10 3 1000 3851 2188 x x x x x 10 3 1000 3851 2188PolynomialPauliR 8 2 360 1381 846 x x x x x x x x x x
WeightedAdder 25 40 689 2606 1184 x x x x x x x x x x
Big
Adder 207 7 6824 24664 8832 225 25 2820 9792 3005 250 50 2470 8492 2806Deutsch-Jozsa 108 7 2700 10999 5632 125 24 1038 4351 2289 150 49 888 3751 2041Grover 15 4 3600 15312 7734 x x x x x 15 4 3600 15312 7734IntegerComparator 108 7 2720 11758 6190 125 24 1042 4584 2452 150 49 892 3938 2177
MCRY 209 8 7358 29430 15268 250 49 2096 8382 4646 300 99 1796 7182 4134MCX 209 8 7278 29109 15283 250 49 2088 8349 4653 300 99 1788 7149 4141Multiplier 79 64 4688 16768 5764 x x x x x x x x x x
PiecewiseLinearR 47 6 31064 124834 67353 51 10 25252 99754 55636 61 20 23812 93512 50941PolynomialPauliR 15 4 30322 119245 65640 x x x x x 15 4 30322 119245 65640
WeightedAdder 38 80 1857 7042 3259 x x x x x x x x x x

Ancilla Reduction Unqomp
-25% Min

Algorithm Q A CX G D Q A CX G D Q A CX G D
SmallAdder 33 9 228 768 275 35 11 200 664 267 36 12 200 664 267Deutsch-Jozsa 17 6 66 283 142 19 10 54 235 126 19 8 54 235 126Grover 8 2 192 839 456 9 3 168 743 386 9 3 168 743 378IntegerComparator 21 8 82 346 172 24 12 68 294 164 24 11 68 310 164
MCRY 21 8 86 342 177 24 12 68 270 161 24 11 68 270 161MCX 20 7 84 333 179 23 12 66 261 154 23 10 66 261 154Multiplier x x x x x 24 20 420 1500 550 24 20 460 1580 573
PiecewiseLinearR 11 4 958 3671 1952 13 6 906 3465 1932 13 6 906 3583 1986PolynomialPauliR 8 2 360 1381 846 9 3 330 1261 693 9 3 330 1261 735
WeightedAdder x x x x x 25 40 689 2606 1184 25 40 749 2886 1322
Big
Adder 275 75 2120 7192 2494 299 99 1784 5944 2291 300 100 1784 5944 2291Deutsch-Jozsa 174 73 744 3175 1563 199 100 594 2575 1386 199 98 594 2575 1386Grover 17 6 3000 12912 6279 19 8 2550 11112 5902 19 8 2550 11112 5852IntegerComparator 175 74 742 3284 1662 200 100 596 2670 1484 200 99 596 2862 1484
MCRY 350 149 1496 5982 3145 400 200 1196 4782 2793 400 199 1196 4782 2793MCX 349 148 1494 5973 3138 399 200 1194 4773 2786 399 198 1194 4773 2786Multiplier x x x x x 79 64 4688 16768 5764 79 64 5168 17728 5886
PiecewiseLinearR 71 30 22372 87224 45711 81 40 21050 81592 44966 81 40 21050 84852 46752PolynomialPauliR 17 6 26962 105805 55664 19 8 26572 104245 50936 19 8 26572 104245 60488
WeightedAdder x x x x x 38 80 1857 7042 3259 38 80 1989 7658 3458
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