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Abstract. An order-preserving encryption (OPE) scheme preserves the
numerical order of numbers under encryption while hiding their original
values in a some extent. However, if all the numbers in a certain domain
are encrypted by an OPE, the original numbers can be restored from
their order. We introduce a notion of novel encryption scheme “request-
based comparable encryption” that provides a certain level of security
even when OPEs cannot. A request-based comparable encryption hides
original values, but it enables any pair of encrypted values to be com-
pared each other when and only when one of them is accompanied by
a “token”. We also consider its weaker notion and a concrete construc-
tion satisfying it. We consider a request-based comparable encryption
complements OPEs and can be an essential security primitive.

Keywords: order-preserving encryption, request-based, database en-
cryption, range query.

1 Introduction

1.1 Background and Motivation

A database (DB) is a system that stores a large amount of data and passes its
portions when requested. It has been an indispensable platform for variety of
services through the network. Since many DBs store sensitive information, they
are potentially vulnerable to abuse, leakage, and theft. Hence, it is important
to unfailingly protect confidentiality of their data. An access control is a fairly
effective approach for it, but it is helpless if the DB is compromised. Hence, it
is desirable to enforce DBs by such an encrypting mechanism that the keys for
decryption are kept by only data owners (not DB). This strategy is considered
to be especially effective for the database-as-service, and can indeed be found
in [12,20,21].

Although encrypting data in a DB can be effective in protecting data, it tends
to spoil the availability of the DB since the DB can handle data only in limited
manner. This may require users to retrieve all data in the DB, decrypt them,
find necessary data among them, and process them all by himself. This imposes
a large amount of computation, communication, and the memory on the user.

A searchable encryption [2,5,17,19] enables DBs to search necessary data
without decrypting them, and an order-preserving encryption ( OPE) [1,8,9]
enables DBs to recognize the numerical order of data without decrypting them.
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These ability recovers the availability of DBs by enabling them to return only
the ciphertexts of data that are required by the users.

A relational database (RDB) [16], which is the most widely-used database
nowadays, frequently selects data in a certain range from a table. This task
can be done by an OPE even if data are encrypted. Since such selection of
data drastically reduces the amount of computation and communication of the
users, OPE is considered to be one of pivotal primitives for RDB with encrypted
data. This is why the proposal of an OPE [8] immediately received attention
from the applied community [18,25,26,29,31,34]. An OPE as well as a searchable
encryption plays an important role for CryptDB [29], an encrypted RDB, to
mark practical efficiency in TPC-C [32] measure.

Boldyreva et al. proposed an OPE [8] and studied the security of OPEs [9] for
its practical use. Their positive result shows that OPEs enjoy reasonable security
as long as the number of ciphertexts is sufficiently small compared to the square
root of size of the domain of relevant numbers. But nothing is guaranteed in the
case the number of ciphertexts is larger than that. Indeed, it is clear, as in the
following example, that OPEs fail to hide anything about encrypted numbers
in some cases. Consider a set of numbers that includes the all numbers in a
domain D and every elements of this set are encrypted by an OPE. If all of
these encrypted numbers are given to an adversary, the adversary is able to
decrypt all the ciphertexts simply by sorting all of them.

That an OPE has a limitation in its secure use causes a serious concern for
encrypted DBs since the OPE is a pivotal primitive for them. Several stronger
primitives such as the committed efficiently-orderable encryption (CEOE) [9]
that exploits a monotone minimal perfect hash function [3], range query meth-
ods in a public key setting [30,11], and searchable encryptions in a public key
setting [5,6,10] have been proposed, but these are not sufficient for salvaging
the benefit of DBs in the case described above. An order-preserving encryption
with additional interactions [28] can enhance the security, but most applications
assume that an RDB handles a thread of instructions without such additional in-
teractions. It is now clear that we definitely need a novel cryptographic primitive
so as an encrypted DB to function with practical efficiency and security.

1.2 Request-Based Comparable Encryption

In this paper, we propose a novel notion of cryptographic primitive called
“request-based comparable encryption (comparable encryption for short)” that
complements OPEs. The comparable encryption overcomes the limitation of
OPEs just as the searchable encryption in [17,13,22] does the limitation of de-
terministic encryptions. It is a symmetric key encryption with such an additional
mechanism that enables one to compare an encrypted number to other encrypted
numbers if and only if the one is given a token associated to this number. Searches
in [11] are also triggered by tokens.

Let us consider applying a comparable encryption to an encrypted DB. The
DB stores encrypted numbers only and, upon a range query, it receives tokens for
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the edges of the range. Then, the DB is able to compare these stored encrypted
values with the edge values without interacting with the user1. Thus, the DB is
able to select out the data which the user required via the query. We emphasize
that encrypted values themselves cannot be compared each other unless either
of them is an edge unlike the case of OPE. Although the token does leak some
numerical orders of the data to the DB, what is leaked to the DB is what the DB
needs for processing data with practical efficiency. A protocol such as“private
information retrieval” introduced in [14,15,23] leaks less data to DB, but such
an approach inevitably requires heavy computational and communicational cost
for DBs. This is not practical for realistic DBs and we thus dismiss such an
approach.

If a user makes a huge number of range queries to a database and this database
accumulates all tokens in these range queries, the database may acquire enough
knowledge to decrypt all ciphertexts in some cases. Our approach is no longer
effective in such an extreme case as OPE is no longer so. However, real users
rarely deposit their data to totally untrusted DBs. The real concerns are that
DBs leak their data because of careless system managers, viruses, via unpatched
vulnerability of the system, design error, or configuration fault. As long as an
intrusion of an adversary is temporal, it succeeds to seize only those tokens that
are in insertion or selection queries which are made at the time of the intrusion.
An example of temporal intrusion is a leakage of the memory data with respect a
query. Such a temporal intrusion only enables the adversary to compare the each
element in the stored data with the encrypted numbers in the query. Since such
a comparison is already delegated to the DB in the query corrupted, leakage of
this result can be considered as the minimum, unavoidable, and acceptable as
long as efficiency is required.

1.3 A Weaker Property and Our Comparable Encryption

The introduced comparable encryption is a very promising primitive for practical
encrypted DBs. However, we have not completely succeeded to propose an ideal
comparable encryption with practical efficiency. We find no definite reason that
it is inherently impossible but we have not. As the DB cannot be practical unless
with practical efficiency literally, we propose a comparable encryption that has a
weaker property than ideal one, but has a stronger security property than OPE
and has practical efficiency. In particular, our comparable encryption is such
that its tokens leak knowledge more than ideally allowed.

To evaluate the difference of security properties between the ideal one and
ours, we first formalized the ideal security requirement and its weaker variant as
well. Then, as a measure of the security level of this weaker variant, we evaluate
the expected ratio between the number of occasions when a token of an ideal
scheme leaks and the number of occasions when a token of a weaker scheme

1 Since DB receives a sequence of requests at one time to avoid heavy communication
and incoherent transaction, DB needs to process requests without interacting with
the user.
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leaks, which we show to be only at most “2.8”. Suppose a temporal intrusion
leaked a token as well as encrypted numbers. Then, the probability that this
token helps to distinguish any of two encrypted numbers is 2.8 times larger in
our scheme than in an ideal scheme.

Our comparable encryption is proved to satisfies this weaker property in the
standard model but is sufficiently fast. The length of ciphertext is proportional
to the bit length of the maximum number. The size of database shall increase
severely if all data are encrypted with our comparable encryption. However,
if the encryption is limitedly applied to only highly confidential data that re-
quire comparison, the database can remain in moderate size. Such limitation is
common when a current product for database encryption such as [27] is used.
Hence, although to reduce ciphertext length is highly desirable, our comparable
encryption as it is still has practical value. The dominant cost for encryption,
generation of token, and comparison are the cost for computing hash values in
these processes, whose number of computation is again proportional to the bit
length of the maximum number 2, which cost is very light. Considering the merit
of efficiency that our scheme enjoys, we consider the weakness of our scheme is
not so serious.

1.4 Organization:

The paper is organized as follows: Section 2 introduces the model of comparable
encryption and describes its basic functionality. Section 3 presents a concrete
scheme of comparable encryption and compares complexity of our scheme with
that of OPE. Section 4 introduces the security requirement of ideal comparable
encryptions and its weaker variant. Then it evaluates the difference between the
two security requirements. Section 5 concludes the paper and poses an open
problem.

2 Model

We introduce the model of comparable encryption and a basic property. Com-
parable encryption is composed of four algorithms, Gen,Enc,Der, and Cmp.

Gen: A probabilistic algorithm that, given a security parameter κ ∈ N and a
range parameter n ∈ N, outputs a parameter param and a master key mkey.
n is included in param.

(param,mkey) = Gen(κ, n)

Enc: A probabilistic algorithm that, given a parameter param, a master key
mkey, and a number 0 ≤ num < 2n, outputs a ciphertext ciph.

ciph = Enc(param,mkey, num)

2 The cost for the decryption is constant if we provide this functionality.
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Der: A possibly probabilistic algorithm that, given a parameter param, a master
key mkey, and a number 0 ≤ num < 2n, outputs a token token.

token = Der(param,mkey, num)

Cmp: An algorithm that, given a parameter param, two ciphertexts ciph and
ciph′, and a token token, outputs −1, 1, or 0.

Cmp(param, ciph, ciph′, token) ∈ {−1, 1, 0}
Although we call the scheme encryption, it provides no decryption algorithm.

But such a functionality can be easily provided by appending an ordinary ci-

phertext ˜ciph to each comparable encryption ciphertext ciph as ciph|˜ciph and
preparing an ordinary decryption algorithm for it. Then, decryption is straight-
forward. Although we consider the decryption algorithm is necessary in practice,
we omit it in our model for the simplicity of the presentation.

We assume ciph and token input to Cmp are related so that they satisfy
ciph = Enc(param,mkey, num) and token = Der(param,mkey, num) for the
same param,mkey, and num. The output of Cmp is −1, 1, or 0, respectively,
when num < num′, num > num′, or num = num′. This requirement is formal-
ized in the following property of completeness.

Definition 1. We say a comparable encryption is complete if, for every κ ∈ N,
n ∈ N, and 0 ≤ num, num′ < 2n, there exist param,mkey, token, ciph, and ciph′

such that

(param,mkey) = Gen(κ, n) , token = Der(param,mkey, num)

ciph = Enc(param,mkey, num) , ciph′ = Enc(param,mkey, num′)

Cmp(param, ciph, ciph′, token) =

⎧

⎨

⎩

−1 if num < num′

1 if num > num′

0 if num = num′

hold with overwhelming probability. Where probability is taken over the distribu-
tion of random tapes input to Gen, Enc, and Der.

3 Proposed Scheme

3.1 Preliminaries and Overview of Our Scheme

Our construction of comparable encryption exploits prefix-preserving encryption
(PPE) [35,4,24]. PPE considers each message as a sequence of blocks. If two
messages have the same sequence of n blocks as their prefixes, the encryptions
of these messages also have the same sequence of n blocks as their prefixes. But
the rest of blocks are different. Thus, a PPE preserves the equivalence of prefix
blocks. A PPE as-is does not meet the purpose of our comparable encryption
since it enables neither to hide the similarity of two numbers nor to recognize
the numerical order of two numbers from their ciphertexts. Our comparable
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encryption is similar to PPE in that it also considers numbers as a sequence of
blocks, where each block is a bit”.

We list here some of the terms necessary in the rest of the paper. Suppose that
n is a given fixed number such that num =

∑n−1
i=0 bi2

i and num′ =
∑n−1

i=0 b′i2
i

with bi, b
′
i ∈ {0, 1} for all 0 ≤ i ≤ n− 1. We let (b0, . . . , bn−1) and (b′0, . . . , b

′
n−1),

respectively, represent num and num′. We say the most significant prefix (n −
�− 1) bits of num is (b�+1, . . . , bn−1). We let MSPBs(num, �) = (b�+1, . . . , bn−1)
denotes this relation.

Our comparable encryption uses PPE ciphertext of a number num as the to-
ken of num (token = Der(param,mkey, num)). Note that, if tokens of num and
num′ are, respectively, token = Der(param,mkey, num) and
token′ = Der(param,mkey, num′) and if MSPBs(num, �) = MSPBs(num′, �),
then MSPBs(token, �) = MSPBs(token′, �) holds. Let token = (d0, . . . , dn−1). If
each �′-th bit of num, i.e. b�′ , is probabilistically encrypted by d�′ , then one can
check whether or not MSPBs(num, �) = MSPBs(num′, �) holds for given � (e.g.,
by decrypting them) using either token or token′. But, whetherMSPBs(num, �) =
MSPBs(num′, �) or not is hidden if the both token and token′ are kept hidden.
This mechanism enables to compare the similarity of encrypted two numbers
only when either of their tokens is given.

When MSPBs(num, �) = MSPBs(num′, �) but
MSPBs(num, � − 1) �= MSPBs(num′, � − 1), Cmp compares num and num′ by
comparing �-th bits of num and num′(b� and b′� respectively). For this com-
parison, e� = b� + mask� mod 3 is generated with a random looking mask
mask�, and encryption of e� is included in the ciphertext of num. Let mask′�
and e′� be also generated in the same manner for num′ here. Suppose that
mask� andmask′� depend on only onMSPBs(num, �) andMSPBs(num′, �) respec-
tively (as well as on the master key), then mask� = mask′� if MSPBs(num, �) =
MSPBs(num′, �). Then b� and b′� are revealed from e� and e′� if b� and b′� are dif-
ferent (i.e.,MSPBs(num, �− 1) �= MSPBs(num′, �− 1)), since e� − e′� = b� − b′� =
1 mod 3 if b� = 1 but e� − e′� = 2 mod 3 if b� = 0. But b� and b′� are hidden if
b� and b′� are the same (i.e., MSPBs(num, � − 1) = MSPBs(num′, � − 1)), since
e�− e′� = b�− b′� = 0 mod 3 does not depend on b�. bi and b′i for i < � are hidden
if MSPBs(num, � − 1) �= MSPBs(num′, � − 1), since ei − e′i mod 3 depends on
maski − mask′i mod 3 which is pseudo-random. If token is designed to reveals
e� and e′�, one can decide which number (num or num′) is greater from their
ciphertexts. Note that bi and b′i for none of i �= � is revealed.

The above construction of comparable encryption from PPE provides satisfac-
tory functionality of comparable encryption. However, its tokens leak knowledge
more than the numerical order of numbers. Suppose that ciph and ciph′ are,
respectively ciphertexts of two numbers num and num′. From ciph, ciph′, and
the token token of num, one can recognize not only the numerical order of num
and num′ but also the most significant bit at which num and num′ differ. This is
not a scheme with an ideal security property, but this is the best we can provide
at this moment. And we analyze the negative impact of this leakage later.
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3.2 Construction

Now we present the specific construction of our comparable encryption below.

Gen: Suppose a security parameter κ ∈ N and the number of digit n. Gen first
randomly chooses a hash function Hash : {0, 1}κ × {0, 1}4+κ+1 → {0, 1}κ
and assigns param = (n,Hash). Next, Gen uniformly and randomly chooses
a master key mkey ∈ {0, 1}κ. Gen outputs param = (n,Hash) and mkey.

Der: Suppose that param = (n,Hash), mkey, and a number
num = (b0, b1, . . . , bn−1) :=

∑

0≤i≤n−1 bi2
i are given. Der generates

dn = Hash(mkey, (0, 0κ, 0))

di = Hash(mkey, (1, di+1, bi)) for i = n− 1, . . . , 0

Der outputs the token token = (d0, d1, . . . , dn).
Enc: Suppose thatparam=(n,Hash),mkey, andanumbernum=(b0, b1, . . . , bn−1)

are given. Enc first generates (d0, d1, . . . , dn) = Der(param,mkey, num) and
then randomly chooses random number I ∈ {0, 1}κ. Next, Enc generates

ci = Hash(di, (2, I, 0))

ei = Hash(mkey, (4, di+1, 0)) + bi mod 3

fi = Hash(di+1, (5, I, 0)) + ei mod 3

for i = n− 1, . . . , 0. Enc finally outputs ciphertext
ciph = (I, (c0, . . . , cn−1), (f0, . . . , fn−1)).

Cmp: Suppose that param = (n,Hash), a pair of ciphertexts
ciph = (I, (c0, . . . , cn−1), (f0, . . . , fn−1)) and
ciph′=(I ′, (c′0, . . . , c′n−1), (f

′
0, . . . , f

′
n−1)), and a token token=(d0, d1, . . . , dn)

are given.
1. Cmp searches and find j such that

(0 ≤ j ≤ n− 1) ∧
(∀k s.t. j < k < n, c′k=Hash(dk, (2, I

′, 0))
) ∧ (

c′j �=Hash(dj , (2, I
′, 0))

)

In case

∀k s.t. 0 ≤ k < n, c′k = Hash(dk, (2, I
′, 0))

hold, Cmp outputs 0 and stops.
2. Cmp generates

ej = fj − Hash(dj+1, (5, I, 0)) mod 3

e′j = f ′
j − Hash(dj+1, (5, I

′, 0)) mod 3

3. Cmp outputs

1 if ej − e′j = 1 mod 3
−1 if ej − e′j = 2 mod 3

Here, input (c1, . . . , cn) are unnecessary. But we include them in the input
only for the simplicity of the description.
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3.3 Completeness of Our Comparable Encryption

The theorem 1 below guarantees that our scheme successfully compares en-
crypted numbers.

Definition 2. We say a function Hash : {0, 1}κ×{0, 1}�→ {0, 1}L is a pseudo-
random function if every poly-time distinguisher D has an advantage in distin-
guishing whether it is accessing Hash(K, ·) with randomly chosen key K ∈ {0, 1}κ
or it is accessing a random function R : {0, 1}� → {0, 1}L with at most negligible
probability in κ.

Theorem 1. The proposed comparable encryption is complete as long as Hash
is a pseudorandom function.

Proof. Let num =
∑n−1

i=0 bi2
i, num′ =

∑n−1
i=0 b′i2

i, � be the largest �′ such that
MSPBs(num, �′)=MSPBs(num′, �′) holds, (d0, . . . , dn)=Der(param,mkey, num),
(d′0, . . . , d

′
n) = Der(param,mkey, num′),

(I, (c0, . . . , cn−1), (f0, . . . , fn−1)) = Enc(param,mkey, num),
and (I ′, (c′0, . . . , c

′
n−1), (f

′
0, . . . , f

′
n−1)) = Enc(param,mkey, num′). Since di and

d′i depend only on {bj}j=i+1,...,n−1 and {b′j}j=i+1,...,n−1 respectively and on
mkey, that bi = b′i holds for i = � + 1, . . . , n − 1 implies that di = d′i holds
for i = � + 1, . . . , n− 1. Hence, Hash(d′k, (2, I

′, 0)) = c′k = Hash(dk, (2, I
′, 0)) for

i = �+ 1, . . . , n− 1.
If num = num′, Hash(d′k, (2, I

′, 0)) = c′k = Hash(dk, (2, I
′, 0)) holds for i =

0, . . . , n− 1. Hence, the output of Cmp is 0 if num = num′. If num �= num′, then
d� = d′� holds with negligible probability. This is because, if collision occurs with
non-negligible probability for a function whose output length is κ, such a func-
tion can be distinguished from the random function by using collisions. Hence,
Hash(d′�, (2, I

′, 0)) = c′� �= Hash(d�, (2, I
′, 0)) with overwhelming probability. For

this �,

e� − e′� := (f� − Hash(d�+1, (5, I, 0)))− (f ′
� − Hash(d�+1, (5, I

′, 0))) mod 3

= (Hash(mkey, (4, d�+1, 0)) + b�)−
(

Hash(mkey, (4, d′�+1, 0)) + b′�
)

mod 3

= (Hash(mkey, (4, d�+1, 0)) + b�)− (Hash(mkey, (4, d�+1, 0)) + b′�) mod 3

= b� − b′� mod 3

Since that num > num′ if b� = 1 > 0 = b′� and that num < num′ if b� = 0 < 1 =
b′�, the output of Cmp is 1 if num > num′ and is −1 if num < num′.

3.4 Efficiency

We compare complexity measures of our scheme with those of OPE. We list them
when numbers num are chosen as 0 ≤ num < 2n in the Table 1. The dominant
cost of computation is computation of hash functions in our scheme. Hence, we
evaluate the computational complexity of our scheme by the number of hash func-
tionHash. Encryption in OPE [8] requires sampling from negative hypergeometric
distribution, which cost is denoted by “sampling”. This requires rather high cost.
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Table 1. Comparison

Our Scheme OPE[8]

ciphertext(text) length (bits) (n+ 1)κ+ 2n n+ constant

token length (bits) (n+ 1)κ -

encryption cost (4n+ 1) · Hash n · sampling

token generation cost (n+ 1) · Hash -

comparison cost (n−B + 2) · Hash (n−B) · bit-comparison

“bit-comparison” is very light computation and n bit-comparison operations is
usually executed in one operation. B is the largest � such that MSPBs(num, �) =
MSPBs(num′, �) holds.

From the table, we see that OPE is more efficient except for generating cipher-
texts. However, we consider that the cost our comparable encryption requires is
still acceptable for most applications, and a comparable encryption is essential
for data to which OPE cannot be applied securely.

4 Security Analysis

We analyze the security of our scheme. As our scheme is not ideal comparable en-
cryption, we introduce a weaker security requirement of comparable encryption
as well as the ideal one.

We require comparable encryption to be semantically secure under chosen
plaintext attacks as long as no token is generated. When a token token is gener-
ated with respect to a number num, it is best if token only enables to compare
this num with other encrypted numbers. To capture such a requirement, we start
from defining a distinguishing game of comparable encryption. In this game, the
adversary may send the challenger either of two types of test query, that is, type
I and type II. This type indicates whether or not ciphertext in the test query
is accompanied with the corresponding token. Then we define two notions of
resolved games followed by two related definitions of indistinguishability of com-
parable encryption. The first notion captures ideal comparable encryption but
the latter captures comparable encryption with an extra leakage of knowledge.

We chose game-based definition rather than simulation-based definitions (in
[17,13,22]) because what each token leaks depends on all issued ciphertexts,
which bothers ideal functionality to check all of them every time a token is
issued. However, game-based definition requires to check if issued tokens have
leaked something crucial only once at the end of the game.

4.1 Ideal Indistinguishability

Definition 3. The distinguishing game is played between challenger C and
adversary A∗ as in the following. It begins when C receives a security parameter
κ ∈ N and a range parameter n ∈ N, runs (param,mkey) ← KeyGen(κ, n), and
gives param to A∗. C responds to queries from A∗ in the game as follows;
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– Whenever C receives (encrypt, num) for any 0 ≤ num < 2n, it returns ciph =
Enc(param,mkey, num).

– Whenever C receives (cmprkey, num) for any 0 ≤ num < 2n, it returns
token = Der(param,mkey, num).

– C receives (test, type, num∗
0, num

∗
1) such that 0 ≤ num∗

0, num
∗
1 < 2n, num∗

0 ≤
num∗

1, and type ∈ {I, II} only once in the game. On receiving this message, C
randomly chooses b ∈ {0, 1} and generates ciph∗ = Enc(param,mkey, num∗

b)
and token∗ = Der(param,mkey, num∗

b ). Then C returns

ciph∗ if type = I
token∗, ciph∗ if type = II.

At the end of the game, A sends b′ ∈ {0, 1} to C. The result of the game ExpκC,A

is 1 if b = b′; otherwise 0.

Type I tests indistinguishability of the encryption of num∗
b . Type II tests indis-

tinguishability of the token with respect to num∗
b . We do not consider chosen-

ciphertext attacks here since encrypt-then-MAC [7] generic construction can
easily make the scheme resistant for them when an ordinary ciphertext is con-
catenated to each ciphertext so as to be decryptable.

The distinguishing game challenges the adversary’s ability to distinguish ci-
phertexts. However, if a certain set of queries is sent to the challenger, it is
inevitable to prevent rational adversaries from distinguishing these ciphertexts.
This is because that tokens enable to compare encrypted numbers inevitably
leaks their orders. Hence, the cases and only the cases when such a leakage triv-
ially helps distinguishing ciphertexts/tokens need to be excluded from the games
to measures the strength of the scheme. For this purpose we introduce the notion
of resolved games.

Definition 4. We say a distinguishing game is resolved if A∗ queries such
(command, num) that the following relation holds during the game, where command
is cmprkey if type = I but command is either cmprkey or encrypt if type = II.

(num∗
0 ≤ num ≤ num∗

1) ∧ (num∗
0 �= num∗

1) , (1)

which relation can be equivalently expressed as

((num∗
0 < num) ∧ (num∗

1 �< num)) ∨ ((num �< num∗
0) ∧ (num < num∗

1)) .

The first form of the relation in Def. 4 represents that num is between num∗
0

and num∗
1 but the case num∗

0 = num = num∗
1 is excluded. It is crystal clear that

two test messages can be distinguishable if a token that can distinguish them is
queried (type I). And it is also clear that two test tokens can be distinguishable
if an message that these tokens decide in different way is encrypted (type II).

The second form of the relation in Def. 4 represents that num∗
0 and num∗

1 are
related to num in different way via the relation “<”. The first and the second
forms are equivalent but the second form has more affinity with distinguishabil-
ity, and we use the second type of form for Def. 6.
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Definition 5. We say that a comparable encryption is indistinguishable (Ind)
if, for every polynomial time adversary A∗, AdvκC,A∗ := |Pr[ExpκC,A∗ = 0] −
Pr[ExpκC,A∗ = 1]| is negligible with respect to κ in the game which is not resolved.

We emphasize that num∗
0 and num∗

1 are always distinguishable in resolved games
as long as the comparable encryption is complete. In other words, adversaries
are not considered to be successful in distinguishing ciphertexts if and only if
distinguishing them is trivially possible due to the functionality of the scheme.

4.2 Weak Indistinguishability

The indistinguishability in Def. 5 is ideal but the scheme we devised does not sat-
isfy this property. However, the scheme partially achieves this property. Hence,
we need to estimate what and how much it achieves. A token for num in our
scheme leaks one bit for each ciphertext addition to that in an ideal scheme
leaks. As we want estimate the relative impact of this leakage compared to the
impact of what an ideal scheme leaks, we introduce a security notion that include
this leakage in term of indistinguishability. For this purpose, we introduce weak
indistinguishability.

We say num <� num
′ if num < num′, MSPBs(num, �) = MSPBs(num′, �), and

b� �= b′� all hold. Note that “num �<� num
′” (the negation of num <� num

′) holds
for some � even if num < num′. We will see how this notion works.

Suppose that num < num′ < num‡ and MSPBs(num, �) = MSPBs(num′, �)
and MSPBs(num′, �′) = MSPBs(num‡, �′) for � < �′. It is trivial that token† =
Der(param,mkey, num†) and ciph† = Enc(param,mkey, num†) enable to dis-
tinguish ciph = Enc(param,mkey, num) and ciph′ = Enc(param,mkey, num′)
if num < num† < num′. In our scheme, token‡ = Der(param,mkey, num‡)
and ciph‡ = Enc(param,mkey, num‡) also enable to distinguish ciph and ciph′.
This is because as follows. ciph, ciph‡, and tokenddagger reveal that �-th bit
of num and num‡ are different. ciph′, ciph‡, and tokenddagger reveal that �-th
bit of num′ and num‡ are the same. The notion “<�” captures this property by
num <� num

‡ and num′ �<� num
‡.

Definition 6. We say a distinguishing game is weakly resolved if A∗ queries
such (command, num) that the following relation holds during the game, where
command is cmprkey if type = I but command is either cmprkey or encrypt if
type = II.

∃�(0 ≤ � < n) s.t.

((num∗
0 <� num) ∧ (num∗

1 �<� num)) ∨ ((num �<� num
∗
0) ∧ (num <� num

∗
1)) .(2)

Here, n is the range parameter given to C at the beginning of the game.

Note that Def. 4 and Def. 6 are different only in that “∃�” is added and that
< is replaced with <�. The Fig. 1 illustrates this difference between Def. 4 and
Def. 6 in the case num∗

0 = 9 and num∗
1 = 13. The figure consists of nodes of

a tree expressed by dots. The leftmost dot is the root and rightmost dots are
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Fig. 1. Tree Representations of 9 and 13, and the ranges specified by “<” and “∃�,<�”

leaves. Other dots are internal nodes. Each path from the root to a leaf expresses
a number in [0, 25). Each path consists of five edge and each edge represents a
bit. An upward edge represents 1 and downward one represents 0. Hence 13,
which is (b4, b3, b2, b1, b0) = (0, 1, 1, 0, 1), is expressed as a path that advances
from the root to a leaf by choosing directions (down,up,up,down,up) at nodes
on the path.

In the case of Fig. 1, the game is resolved if (command, num) for m∗
0 = 9 ≤

num ≤ 13 = m∗
1 is queried but the game is weakly resolved if (command, num)

for 8 ≤ num ≤ 15 is queried. Note that these numbers 8, 9, 13, 15 share the
same node pointed indicated by “branch point(9, 13)” in the figure. Here, 8 and
15 are the minimum and the maximum number that share the node where 9
and 13 branch away. Def. 6 forbids numbers in wider range to be queried so as
the game to be not resolved than Def. 4 forbids. We consider how much this
range is widened is how much schemes get weaker. In this example, the range
13− 9 + 1 = 5 is widened to 15− 8 + 1 = 8 by the ratio of 8/5 = 1.6. We later
argue that the expected value of this ratio is 2.8.

Definition 7. We say that a comparable encryption is weakly indistinguish-
able (wInd-secure) if, for every polynomial time adversary A∗, AdvκC,A∗ :=
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|Pr[ExpκC,A∗ = 0] − Pr[ExpκC,A∗ = 1]| is negligible with respect to κ in the game
which is not weakly resolved.

Since Def. 7 considers that the game is resolved under wider class of queries
than Def. 5 does, it provides weaker security. But we consider this difference is in
moderate extent. The impact of difference between Def. 7 and Def. 5 is analyzed
in Subsection 4.3.

Theorem 2. The proposed comparable encryption is weakly indistinguish-
able as long as Hash is a pseudorandom function.

Proof. The proof is straightforward. We replace some of outputs of hash func-
tions with random variable and then simply prove indistinguishability of them.
The proof is given in Appendix A.

4.3 Comparison of Two Indistinguishability Notions

Although a comparable encryption that are only wInd-secure leaks more knowl-
edge than ideal ones, ciphertexts in it reveal no knowledge without tokens. Hence,
such a comparable encryption is still effective, unlike OPEs, even when encrypt-
ing numbers that are densely distributed in a table. But, as there is a chance
for an adversary to obtain tokens, it is now essential to evaluate the amount of
knowledge that these tokens leak.

From a simple observation, each token with respect to num leaks where num
and num′ branch away for each encryption of num′. This is a great amount of
information if we insist on semantic security. But it is not clear in the context
of such an encryption schemes that comparisons are already possible. Hence,
we evaluate the how knowledge of these branching bits gives an impact in dis-
tinguishing numbers compared to the ideal comparable encryption. We do not
consider ours is the only way to evaluate the impact and consider a lot of dis-
cussion is necessary. We hope our evaluation opens the problem.

Suppose that 0 ≤ num∗
0, num

∗
1 < 2n are given. LetD(num∗

0, num
∗
1) be the num-

ber of num that satisfies Eq. (1) and letN(num∗
0, num

∗
1) be the number of num that

satisfies Eq. (2). Then R(num∗
0, num

∗
1) = N(num∗

0, num
∗
1)/D(num∗

0, num
∗
1) is the

ratio of “the number of occasions when tokens of a weaker scheme leaks” to “the
number of occasions when tokens of an ideal scheme leaks”, which represents how
much wInd-secure comparable encryption is weak compared to ideal comparable
encryption. When the ratio is one, a wInd-secure comparable encryption has no
worse than ideal comparable encryptions. But the ratio that is larger than one
signifies the weakness of wInd-secure comparable encryption.

Since the ratio R(num∗
0, num

∗
1) varies over the choice of pair (num∗

0, num
∗
1),

the ratio at a single point cannot represents the total security of wInd-secure
comparable encryptions. Hence, we evaluate its expected value over uniformly
and randomly chosen (num∗

0, num
∗
1) and consider it as a measure of the weakness

of wInd-secure comparable encryptions. Although imposing uniform distribution
is rather crude, we have no reasonable alternative choice.
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Let �(x, y) be largest � such that MSPBs(x, �) = MSPBs(y, �) holds. Then, the
expected value of R(num∗

0, num
∗
1) is,

2

2n(2n − 1)

∑

0≤x<y<2n

R(x, y) =
2

2n(2n − 1)

∑

0≤x<y<2n

2�(x,y) − 1

y − x

=
2

2n(2n − 1)

n−1
∑

�=0

∑

{x,y|�(x,y)=�}

2� − 1

y − x

=
2

2n(2n − 1)

n−1
∑

�=0

2n−1−�
∑

0≤a,b<2�−1

2� − 1

a+ b+ 1

� 2

2n(2n − 1)

n−1
∑

�=0

2n+1+� 1

22(�−1)

∫ 2�−1

a=1

∫ 2�−1

b=1

2�

a+ b
dbda

� 2

2n(2n − 1)

n−1
∑

�=0

2n+1+� · 2 ln 2 = 4 ln 2 � 2.8

Therefore, we may conclude that, in average, the number of values that helps
adversary distinguish num∗

0 and num∗
1 in wInd-secure comparable encryption is

at most 2.8 times as large as that of values in ideal comparable encryptions. We
consider this is not a considerable sacrifice for achieving practically efficiency of
comparable encryption in most applications. This measure is based on rather
crude assumption of the distribution but note that tokens are always deleted
after their use.

As well as the expected ratio N(num∗
0, num

∗
1)/D(num∗

0, num
∗
1), we give two

more measures of comparison in Table 2. The expected value of
D(num∗

0, num
∗
1)/N(num∗

0, num
∗
1) is almost 1/2. The expected value of

N(num∗
0, num

∗
1) divided by the expected value of D(num∗

0, num
∗
1) is at most 2.

Although the interpretations of these measures are not as natural as that of
the expected value of ratio N(num∗

0, num
∗
1)/D(num∗

0, num
∗
1), they measures the

security of wInd-secure schemes in some extent. Both measures indicate better
security as they get closer to 1.

Table 2. Various comparison measures

Measures value

Expected Value of “N(num∗
0,num

∗
1)/D(num∗

0,num
∗
1)” ≤ 2.8

Expected Value of “D(num∗
0,num

∗
1)/N(num∗

0,num
∗
1)” ≤ 2

“E.V. of N(num∗
0, num

∗
1)”/ “E. V. of D(num∗

0,num
∗
1)” ≥ 1/2

5 Summary and Open Problem

We introduced a novel type of encryption scheme called comparable encryp-
tion, which enables one to compare the numerical order of two encrypted num-
bers only when either of numbers is accompanied by a token. We presented an
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ideal property and a weaker but reasonably nice property of comparable encryp-
tion. We also constructed a comparable encryption that satisfies only the weaker
property but is practically efficient. We consider a comparable encryption is a
useful primitive for encrypted DBs and consider proposing an efficient compa-
rable encryption with the ideal property is a remaining important challenge.
Our construction can be its starting point. By comparing efficiency of OPE and
comparable encryption, we suggest to use an OPE in encrypted DBs when its
positive result (shown by [9]) holds but suggest to use a comparable encryption
when that positive result no longer holds.
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A Proof of Theorem 2

The proof is by contraposition. Suppose that there exists an adversary A∗ such
that AdvκC,A∗ is not negligible with respect to κ in the game which is not weakly
resolved. Then, we show that Hash is distinguishable from the random function,
which is against the assumption that they are pseudorandom function. In par-
ticular, we consider a sequence of games by challengers C,C1, and C2 and then
prove the theorem by the hybrid argument. We let Branch(num, num′) denote
the largest � such that MSPBs(num, �) = MSPBs(num′, �) holds.

Proof. From two lemmas 1 and 2 and the hybrid argument, |AdvκC,A∗−AdvκC2,A∗ |
is negligible in κ as long as Hash is a pseudorandom function. Since AdvκC2,A∗ = 0
from Lemma 3, AdvκC,A∗ is negligible in κ. Hence, the theorem is proved.

Definition 8. Challenger C1 is the same as the challenger C in Definition 3
except the following:

– At the beginning of the game, C1 discards mkey.
– C1 prepares a table and simulate hash function Hash(mkey, ·). That is, when-

ever C1 generates output = Hash(mkey, input) for some input, C1 let
output be output′ if an entry (input, output′) is in the table. Otherwise,
C1 randomly chooses output ∈ {0, 1}κ and writes (input, output) into the
table.

Note that (di)i=0,...,n and (ei)i=0,...,n that C1 outputs for every num is completely
random.

Lemma 1. Assume that Hash is a pseudorandom function. For every polyno-
mial time A∗, |AdvκC1,A∗ − AdvκC,A∗ | is negligible in κ.

Proof. Since mkey is used for only input to hash functions and is never revealed
to A∗, the lemma follows from the indistinguishability of pseudorandom function.

Definition 9. Challenger C2 is the same as the challenger C1 except the fol-
lowing:

– Let (d̄0, . . . , d̄n) and (d̂0, . . . , d̂n) be

(d̄0, . . . , d̄n) = Der(param,mkey, num∗
0)

(d̂0, . . . , d̂n) = Der(param,mkey, num∗
1).

Note that d̄i = d̂i for all i such that Branch(num∗
0, num

∗
1) < i ≤ n

C2 prepares a table and simulate hash function Hash(d̄i, ·) and Hash(d̂i, ·)
for all i such that 0 ≤ i ≤ Branch(num∗

0, num
∗
1). The simulation is as is the

before.
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Lemma 2. Assume that Hash is a pseudorandom function. For every polyno-
mial time A∗, |AdvκC2,A∗ − AdvκC1,A∗ | is negligible in κ.

Proof. Let num∗
0 = (b̄0, . . . , b̄n−1), num

∗
1 = (b̂0, . . . , b̂n−1), and

B = Branch(num∗
0, num

∗
1). Then b̄i = b̂i for all i such that B < i ≤ n. Suppose

that the adversary queries (command, num) for num := (b0, . . . , bn−1). If bi = b̄i
for all i such that B < i < n, then Branch(num∗

1, num) ≤ B. This implies that
the distinguishing game is weakly resolved. Therefore, there exists i such that
bi �= b̄i and that B < i < n, as long as the distinguishing game is not weakly
resolved.

– In the case when type = I, none of d̄0, . . . , d̄B , d̂0, . . . , d̂B is revealed to the
adversary. For such data to be revealed, all d̄B+1, . . . , d̄B needs to be revealed.
But the existence of i such that bi �= b̄i and that B < i < n prevents it.
Since, the values d̄0, . . . , d̄B, d̂0, . . . , d̂B are randomly chosen and unrevealed,
the hardness of distinguishing random values with outputs of Hash(d̄i, ·) and
Hash(d̂i, ·) for all i such that 0 ≤ i ≤ Branch(num∗

0, num
∗
1) = B follows from

the indistinguishability of pseudorandom function. This proves the lemma
in the case type = I.

– In case when type = II, one of tuples (d̄0, . . . , d̄B) and (d̂0, . . . , d̂B) is
given to the adversary depending on the value of b unlike the case when
type = I. We assume b = 0 in the following without lose of generality. Then,
d̄0, . . . , d̄B are given to A∗ in this case. Unlike the case when type = I,
Hash(mkey, (4, d̄i+1, 0)) is used only for generating ēi := Hash(mkey, (4,
d̄i+1, 0))+ b̄i mod 3 for i = 0, . . . , B−1 in ciph∗. Hence, replacing Hash(d̄i+1,
(5, I, 0)) in f̄i := Hash(d̄i+1, (5, I, 0)) + Hash(mkey, (4, d̄i+1, 0)) + b̄i mod 3
with a random value for i = 1, . . . , B does not affect the distribution of f̄i.
This is because the distribution of f̄i for i = 0, . . . , B−1 are already random.
This proves the lemma in the case type = II.

Lemma 3. For every polynomial time A∗, AdvκC2,A∗ = 0.

Proof. The lemma follows from the fact that ciph∗ does not depend on b, which
can be shown as follows. The difference in ciph∗ between num∗

0 and num∗
1 may

occur only in (ci, fi) for i = 0, . . . , B. Since each Hash(d̄i, ·) (we assume b = 0
w.l.g.) for i = 0, . . . , B is randomly chosen, every ci for i = 0, . . . , B does not
depend on b. Since each Hash(d̄i, ·) for i = 0, . . . , B is randomly chosen, every fi
for i = 0, . . . , B does not depend on b. Therefore, the lemma is proved.
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