

Requirements and Design of a Dynamic Grid Networking Layer

George Clapp, Joel Gannett, Ronald Skoog Telcordia Technologies

{clapp, jgannett, rskoog}@research.telcordia.com

Workshop on Grids and Advanced Networks GAN'04 April 22, 2004

Copyright © 2004, Telcordia Technologies, Inc. All Rights Reserved

An SAIC Company

Outline

- Introduction
- Fine Granularity Bandwidth Management
- Bandwidth Granularity and Network Capacity
- Coarse Granularity Bandwidth Management
- Conclusions

Background

- Grid computing has fundamental "on demand" aspects
- On demand processing and storage resources have always been an integral part of grid computing
- On demand networking resources can enable a much wider range of grid computing services
 - Enables services that use large and/or sporadic bandwidth usage between sites
 - Enables adaptive sharing and more efficient use of computing resources
- The technology is emerging to make Bandwidth on Demand (BoD) feasible:
 - GMPLS (IETF), ASTN/ASON (ITU-T), and UNI/NNI (OIF)

The Key questions are:

- When is BoD used?
- How can BoD be provided in a cost efficient manner?

Bandwidth Networking Model

- We envision the grid networking layer to be a hybrid optical and packet infrastructure (HOPI)
 - The networking layer will provide various levels of bandwidth granularity for bandwidth management
 - Granularity ranges from very fine best-effort IP packet networking to very coarse granularity of a single or group of wavelengths.
- This is the networking model that is emerging from the R&E community
- We consider two levels of bandwidth granularity
 - Fine Granularity:
 - connections established with IP/MPLS paths or SONET/SDH channels using virtual concatenation (1 – 150 Mbps channels).
 - Coarse Granularity:
 - Connections established with full wavelengths (1 –10 Gbps channels)

Outline

Introduction

- Fine Granularity Bandwidth Management
- Bandwidth Granularity and Network Capacity
- Coarse Granularity Bandwidth Management
- Conclusions

Fine Granularity Bandwidth Management

Goals of the Fine Granularity BoD Analysis

- Identify the key parameters that affect decisions on using fine granularity BoD.
- Identify the key parameters that affect the design and implementation of BoD capabilities.
- In short, identify the **fundamental forces** that will drive grid networking BoD deployment decisions and network design.

Network Model

How do you decide between using BoD or Dedicated Bandwidth between grid sites?

Fine Granularity Bandwidth Requirement Model

- Users create demand for aggregate bandwidth between each pair of grid sites
 - required bandwidth varies statistically over time (described later)
 - required aggregate bandwidth reflects bandwidth needed to meet QoS objectives
- BoD capacity is provisioned in a fixed bandwidth unit -e.g., 1 Mbps, DS-1 (1.5 Mbps), STS-1 (50 Mbps)

Bandwidth Units Needed to Meet Pt-Pt User Load

Statistical Model of Bandwidth Unit Demand Arrival/Departure Process (1)

Statistical Model of Bandwidth Unit Arrival/Departure Process (2)

Copyright © 2004, Telcordia Technologies, Inc. All Rights Reserved

Network Traffic Model

Cost Analysis

• Over a long period of time, the average cost rate per unit time is

Parameters Determining When Dedicated and BoD Resources are Used

Felcord

BoD Network Traffic Analysis Model

Effect of Bursty Traffic on BoD Network

 BoD facility utilization is low if there are few pt-pt pairs requesting BoD capacity, regardless of how high the load A₀ is.

Outline

- Introduction
- Fine Granularity Bandwidth Management
- Bandwidth Granularity and Network Capacity
- Coarse Granularity Bandwidth Management
- Conclusions

Choice of Bandwidth Granularity

- Bandwidth granularity matches subscriber needs
 - allows assigned resources to closely match actual load
 - yields high traffic efficiency (lower blocking; higher resource utilization)
- Too fine a granularity results in:
 - Frequent bandwidth provisioning activity as loads change
 - Most users ask for batches of bandwidth units (caps traffic efficiency)
- Too large a granularity results in inefficiencies:
 - More assigned capacity than needed (stranded capacity)
 - Low traffic efficiency (higher blocking; lower resource utilization)

The Key questions are:

- What is the right level of granularity?
- What determines the network's load carrying capacity?

Network Model to Study Granularity

Blocking Probability vs. Offered Load Parameter L/N

Efficiency vs Granularity

Impact of Network Topology Minimal Balanced Cutset

Effect of Network Topology on Network Capacity

# Nodes / # Links	Average Nodal Degree	# Links in Minimal Balanced Cutset	L _f @ 0.1% Blocking (Erlangs/ch)	# of chs @ 90% Efficiency Ratio	Efficiency Ratio @ 32 Channels
2/1	1	1	1.001	559	0.57
19/31	3.3	5	8.7	109	0.79
71 / 138	3.9	6	7.5	121	0.79
200 / 361	3.6	13	14.6	164	0.71

Outline

- Introduction
- Fine Granularity Bandwidth Management
- Bandwidth Granularity and Network Capacity
- Coarse Granularity Bandwidth Management
- Conclusions

Coarse Granularity Bandwidth Management

- Coarse granularity (Gb/s) is required for applications requiring large data transfers in a relatively short time interval
 - -e.g., collaborative activities needing near real-time exchanges
- If these activities are infrequent, then a BoD model based on random arrivals and blocking is very inefficient
 - Either very low facility utilization or very high blocking.
- Alternative models are to use scheduling or random arrivals with queueing
 - Coordinated scheduling between, processing, storage and network resources would be required
 - Work along these lines is being done in the Global Grid Forum
- This is an area that needs significantly more work

Outline

- Introduction
- Fine Granularity Bandwidth Management
- Bandwidth Granularity and Network Capacity
- Coarse Granularity Bandwidth Management
- Conclusions

Conclusions

Fine Granularity Bandwidth Management

- The grid site pt-pt load and cost ratio are the main parameters that determine how much BoD is used.
- In most situations the optimal strategy is to use both dedicated capacity and BoD.
- The bandwidth granularity used for BoD has a significant impact on the cost efficiency:

- Up to a point, finer granularity provides greater cost efficiency and more BoD use.

- The network providing BoD must be designed so the facilities efficiently handle **bursty overflow traffic**,
 - e.g., the design needs to aggregate loads (many traffic streams) to get efficient resource utilization.
- The network topology (e.g., size of cut sets) has a significant impact on the network's maximum throughput capacity (L_f)

Coarse Granularity Bandwidth Management

 Coarse granularity bandwidth management appears best to be handled by scheduling rather than random arrival/blocking disciplines

Thank You!

Questions?

