
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2014 

Requirements elicitation and specification using the agent paradigm: the Requirements elicitation and specification using the agent paradigm: the 

case study of an aircraft turnaround simulator case study of an aircraft turnaround simulator 

Tim Miller 
University of Melbourne, tmiller@unimelb.edu.au 

Bin Lu 
University of Melbourne, lbin@unimelb.edu.au 

Leon Sterling 
University of Technology, Melbourne, lsterling@swin.edu.au 

Ghassan Beydoun 
University of Wollongong, beydoun@uow.edu.au 

Kuldar Taveter 
Tallinn University of Technology, kuldar.taveter@ttu.ee 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Miller, Tim; Lu, Bin; Sterling, Leon; Beydoun, Ghassan; and Taveter, Kuldar, "Requirements elicitation and 
specification using the agent paradigm: the case study of an aircraft turnaround simulator" (2014). 
Faculty of Engineering and Information Sciences - Papers: Part A. 3115. 
https://ro.uow.edu.au/eispapers/3115 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3115?utm_source=ro.uow.edu.au%2Feispapers%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages


Requirements elicitation and specification using the agent paradigm: the case Requirements elicitation and specification using the agent paradigm: the case 
study of an aircraft turnaround simulator study of an aircraft turnaround simulator 

Abstract Abstract 
In this paper, we describe research results arising from a technology transfer exercise on agent-oriented 
requirements engineering with an industry partner. We introduce two improvements to the state-of-the-art 
in agent-oriented requirements engineering, designed to mitigate two problems experienced by ourselves 
and our industry partner: (1) the lack of systematic methods for agent-oriented requirements elicitation 
and modelling; and (2) the lack of prescribed deliverables in agent-oriented requirements engineering. We 
discuss the application of our new approach to an aircraft turnaround simulator built in conjunction with 
our industry partner, and show how agent-oriented models can be derived and used to construct a 
complete requirements package. We evaluate this by having three independent people design and 
implement prototypes of the aircraft turnaround simulator, and comparing the three prototypes. Our 
evaluation indicates that our approach is effective at delivering correct, complete, and consistent 
requirements that satisfy the stakeholders, and can be used in a repeatable manner to produce designs 
and implementations. We discuss lessons learnt from applying this approach. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Miller, T., Lu, B., Sterling, L., Beydoun, G. & Taveter, K. (2014). Requirements elicitation and specification 
using the agent paradigm: the case study of an aircraft turnaround simulator. IEEE Transactions on 
Software Engineering, 40 (10), 1007-1024. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/3115 

https://ro.uow.edu.au/eispapers/3115


1

Requirements engineering using the agent
paradigm: a case study of an aircraft turnaround

simulator
Tim Miller, University of Melbourne

Bin Lu, University of Melbourne
Leon Sterling, Swinburne University of Technology

Ghassan Beydoun, University of Wollongong
Kuldar Taveter, Tallinn University of Technology

Abstract—In this paper, we describe improvements to our previous
work on agent-oriented requirements engineering. The aims of these
improvements are to mitigate two problems experienced by ourselves
and our industry partner: (1) the lack of systematic methods for agent-
oriented requirements elicitation and modelling; and (2) the lack of
prescribed deliverables in agent-oriented requirements engineering. We
discuss the application of our new approach to an aircraft turnaround
simulator built in conjunction with an industry partner, and show how
agent-oriented models can be derived and used to construct a complete
requirements package. Our experience indicates that our approach is
effective at delivering correct, complete, and consistent requirements
that satisfy the stakeholders. We discuss what we have learnt from
applying this approach.

1 INTRODUCTION

Evidence suggests that incorrect and poorly-specified require-
ments are a major cause of software project failure, with two
major contributing factors being requirements complexity and
a lack of stakeholder input [9], [14]. Stakeholders are often not
capable of articulating their requirements fully at the beginning
of a project. Early-stage requirements tend to be imprecise,
subjective, idealistic and context-specific [18]. In our earlier
work [23], [28], we used an incremental approach to re-
quirements modelling to engage stakeholders, acknowledging
that requirements elicitation is better supported with a spiral
process that narrows down the design and implementation
choices as it progresses. Instead of eliminating uncertainty
early, we embrace it and withhold design commitment, at least
until there is clarity and understanding between stakeholders
of what it may mean to disambiguate [11]. Committing
early to requirements can forgo an opportunity to properly
disambiguate them [13].

Over the past several years, we have worked with several in-
dustry and academic partners, including Adacel Technologies1,
Lockhard2, and Jeppesen3, to improve requirements engineer-
ing using agents as the central paradigm. Our industry partners
face the problem of eliciting and recording requirements of
complex systems that contain many interacting parts, and
many interactions between different actors. One such product
is a large-scale system for the air traffic domain that allows

1. http://www.adacel.com/
2. http://www.lochard.com/
3. http://www.jeppesen.com/

simulation of complex trade-offs between interacting actors in
a socio-technical system. These partners have identified that
the agent-oriented paradigm is a natural metaphor for mod-
elling the social considerations in their systems, emphasising
the “why” questions that can help in requirements elicitation,
and producing models that are more accessible to their non-
technical stakeholders [3], [25], [23], [35].

While existing agent-oriented requirements engineering ap-
proaches have matured over the past decade, our current
industry partner identifies three major drawbacks with existing
work, including our own:

1) Eliciting and recording relevant information in agent-
oriented models is a non-trivial problem. Existing
methodologies do not describe, in a systematic and pre-
scriptive manner, what information to elicit and how to
record. Thus, the modelling remains far more art than
engineering. In our previous projects, we have observed
experienced software engineers modelling the system in
a way with which they are familiar, but using agent-
related terms; for example, modelling the system using
the object-oriented paradigm, but using “agent” in place
of “object”; therefore negating any advantage of using
the agent paradigm.

2) Many existing modelling notations contain considerable
detail, such as cardinality constraints and relationship
types, much of which is relevant to developers, but which
does not adequately engage stakeholders. This can limit
the ability for requirements engineers to decipher what
is important, especially early in the requirements phase,
when a vast amount of information is presented.

3) Existing methodologies do not prescribe how to produce
requirements specifications using agent-oriented models.
In our collaborative work, our industry partner could
not see how to interpret agent-oriented models as re-
quirements specifications that could be implemented and
used for verification. Agent-oriented methodologies usu-
ally focus on the agent-oriented aspects, but overlook
other aspects of software engineering, such as useful
deliverables. Typically, a set of models is considered as a
deliverable, providing little support for defining artifacts
such as software requirements specifications, business
vision documents, and system design descriptions, even



2

though these are vital to industrial practice. This lack
of support is unsurprising because publishing papers
on deliverable formats may not be considered a valid
scientific contribution.

As part of a larger grant funded by the Australian Research
Council and Jeppesen, a company that develops software for
the aviation and aerospace industries, we are exploring how
agent-oriented models can be used in conjunction with a
mature piece of software that needs to be maintained and
enhanced. In a previous article [23], we identified several
techniques for engaging stakeholders in the requirements en-
gineering process. We use lightweight agent-oriented models
to represent the roles, goals, and motivations of the greater
socio-technical system, and to develop a shared understanding
of these goals between the project stakeholders. Further, we
advocate several strategies for delaying design decisions with
the aim of encouraging stakeholder involvement.

This paper offers the following two contributions that build
on both our and other researchers’ existing work in agent-
oriented requirements engineering.

1) Requirements elicitation, analysis, and modelling: In
Section 4, we present a systematic and repeatable ap-
proach for eliciting, analysing, and modelling the re-
quirements of a system in an agent-oriented manner.
This approach prescribes a list of questions that must
be answered by the project stakeholders, and further
prescribes how to link the answers directly to agent-
oriented models. In particular, this approach aims to place
requirements engineers into the “agent mindset”, to gain
the full benefit of agent-oriented modelling.
Our approach improves on existing agent-oriented re-
quirements elicitation approaches by providing a more
prescriptive and systematic way for software engineers
to elicit information and construct models from these.

2) Requirements specification: In Section 5, we prescribe
how to create a software requirements specification (SRS)
built on agent-oriented models, which emphasises those
aspects of the agent paradigm that are important for un-
derstanding the system. The end result is not (necessarily)
a specification of a multi-agent system, but a specification
of a system that uses the agent paradigm to describe
motivation, structure, behaviour, and interaction.
Our requirements specification template improves on pre-
vious work in agent-oriented software engineering by
advocating the inclusion of agent types in requirements
specifications.

To evaluate these contributions, we engineered a prototype
of an aircraft turnaround simulator in conjunction with our
industry partner. We used the ROADMAP/AOR agent-oriented
development methodology [28], [17], but we believe that the
contributions in this paper are general enough to be used with
other agent-oriented methodologies.

The project and simulator are described in Section 2. An
introduction to our previous work is discussed in Section 3.
Applying our approach to the case study, we produced a
requirements package that the client considered correct, com-
plete, and consistent, and was developed into a prototype

system. Section 6 discusses the verification and validation
approach that we used for the system, which is based on
some of our earlier work [19]. Section 7 discusses the most
important lessons that we learnt from the evaluation.

2 CASE STUDY: AIRCRAFT TURNAROUND
SIMULATOR (ATS) SYSTEM

In this section, we describe the running case study, built in
collaboration with our industry partner, used in this paper.

2.1 The research project
This case study is part of a larger joint project between
the University of Melbourne and Jeppesen, a company that
specialises in aeronautical services. One of Jeppesen’s flagship
products is the Total Airspace and Airport Modeller (TAAM),
which allows modelling and simulation of airports and the
surrounding airspace to help with decision making regarding
infrastructure and operations. This product is a large-scale
complex system that contains many interacting parts, and
many interactions between different actors. The current event-
based model and implementation is proving difficult to under-
stand, maintain and enhance due to its size and complexity.

Jeppesen identified that using agent-oriented methods may
help to manage the complexity and scale of their systems.
The agent metaphor provides a natural and suitable way to
represent a socio-technical system consisting of actors, their
interactions, and their trade-offs. A major goal of the project
is knowledge transfer between the University of Melbourne
research team, and the software engineers at Jeppesen, as to
how requirements should be elicited, modelled, and analysed.

As part of their own assessment of agent-oriented methods,
Jeppesen identified that existing work does not provide a
systematic and prescriptive method for eliciting requirements.
Their engineers found it difficult to know where to start the
process of developing agent-oriented models for requirements.
In addition, during this project, it became clear that software
engineers at Jeppesen could not see how agent-oriented models
could be interpreted as requirements.

The core of the Jeppesen team on the project consists
of three members with qualifications in physics, biophysics,
and computer science respectively. All are familiar software
engineering, but none have any significant prior experience in
applying agent-oriented software engineering principles.

2.2 Aircraft turnaround simulation
As part of the knowledge transfer in the project, we have
undertaken a smaller project, in which we aim to develop a
simulator for aircraft turnaround using agent-oriented methods.
This particular system was chosen because it is complex
enough to demonstrate many aspects of the agent-oriented
paradigm, but also manageable for our research group, who
are not experts in aviation.

The system developed as part of the project is called the
Aircraft Turnaround Simulator (ATS) system. The ATS system
simulates the process of multiple aircraft landing at a single
airport, and how resources (including staff) could be allocated



3

to efficiently turn around the aircraft, including re-stocking
supplies, cleaning, repairing, and maintaining the aircraft.

The purpose of the system is to allow a user to evaluate
different resource allocations mechanisms at airports. As such,
the user should be able to set up parameters that specify the
properties of the airport, the resources available, the schedules
of staff, and the schedules of the arriving and departing
aircraft. The system must produce reports describing the start
and end points of all activities undertaken by staff, which can
be used to assess the efficiency of allocation mechanisms.

3 AGENT-ORIENTED MODELLING

To model requirements, we use the notation of Sterling and
Taveter [28]. Their work has focused on how to make high-
level agent-oriented models palatable to non-technical stake-
holders, and to carry these through to design and implemen-
tation. This is achieved using models with a straightforward
and minimal syntax and semantics. In this section, we briefly
describe the models that are relevant for this paper.

Goal models are useful at early stages of requirements
analysis to arrive at a shared understanding [18], [15]; and
the agent metaphor is useful as it is able to represent human
behaviour. Agents can take on roles associated with goals.
These goals include quality attributes that are represented in a
high-level pictorial view used to inform and gather input from
stakeholders. For example, a role may contribute to achieving
the goal “Release pressure”, with the quality goal “Safely”.
We include such quality goals as part of the design discussion
and maintain them as high-level concepts while eliciting the
requirements for a system.

Role models describe the capacities or positions that fa-
cilitate the achievement of goals. Roles have responsibilities,
which outline what an agent playing the role must do to
achieve the related goals, and constraints, which determine
the conditions that must be considered when trying to achieve
goals. Figure 1 defines the notation employed by Sterling and
Taveter in their role and goal models. Goals are represented
as parallelograms, quality goals are clouds, and roles are stick
figures. These constructs can be connected using arcs, which
indicate relationships between them.

Goals are based on motives, and
describe an intended state of the
environment. Goals can consist of
sub-goals.

Quality goals are non-functional
(or quality) goals. These are some-
times referred to as soft goals.

Roles are the capacities or positions
that are required for achieving of
goals. Roles are played by agents,
which can be humans or artificial.

Fig. 1: Sterling and Taveter’s notation for goal modelling.

Organisation models represent the relationships between
roles in a system. Zambonelli et al. [36] define several re-
lationships between pairs of roles, and these definitions are
widely accepted in the literature. In our work, there are three
relationships that we have found useful: control, in which one
role delegates responsibilities to another; peer, in which either
role can delegate responsibilities to another; and benevolence,
in which a role offers to fulfil responsibilities for another if it
is in the offering role’s interests.

Domain or environment models describe the relevant entities
and relationships in an environment that the system operates.
These can be represented in any suitable modelling language.

Agent and acquaintance models define the agents that will
play the roles in the system, and the interaction pathways
between the agents (similar to organisation models). Agents
can be human or non-human, such as software or robotic.

Behavioural models and knowledge models specify the
behaviours of the agents, and the knowledge that is required
by the agents to perform their behaviours.

Interaction models represent communicative and physical
interactions between the agents involved; that is, the activities
in which two or more agents participate.

While the case study in this paper uses Sterling and
Taveter’s models, one can relate the approach to other agent-
oriented notations and methodologies by identifying which
models fit in the particular viewpoints. Sterling and Taveter
[28] present the viewpoints of four other methodologies: Gaia
[37], MaSE [7], Tropos [3], and Prometheus [25].

4 ELICITATION, MODELLING, AND ANALYSIS
In our experience working with industry and academic part-
ners, we have found that a major barrier to using the agent
paradigm to engineer requirements is the mindset of the
requirements engineer. For example, those people familiar with
object-oriented modelling will naturally design an “agent”
system in which agents are directly mapped to objects, and
messages are directly mapped to method calls, thus eliminating
any advantage of using the agent paradigm.

In this section, we propose an approach for agent-oriented
requirements elicitation, analysis, and modelling as a series
of questions aimed to identify what needs to be elicited, and
to analyse the elicited information, producing agent-oriented
requirements models of the system. The questions naturally
lead the people answering them to think of the system in terms
of roles, goals, and interactions — helping the requirements
engineers to get into the “agent mindset”.

It is important to note that these questions are not necessar-
ily to be used a interview questions, although interviews can
form part of the input. The questions form a checklist, but one
in which items are posed as questions, rather than items. These
questions can be answered using techniques such as domain
analysis, introspection, or group meetings. The questions and
corresponding rules offer a prescriptive approach to producing
models, and our experience is that many can be answered
without having to present the question to a stakeholder.

The process followed is a straightforward elicitation process
of identifying the problem and proposing a solution, involving
the following steps:



4

Step 1: identify the problem, root causes, and stakeholders;
Step 2: develop a shared understanding of the existing

system used to solve the problem, modelled using
roles, goals, and interactions;

Step 3: identify a solution that uses the metaphor of a new
staff position solving the problem; and

Step 4: specify the agent types that will play the roles in
the system, generally with the new staff position
being partially filled by the new software.

4.1 Engaging stakeholders in elicitation and mod-
elling

In the ATS project, we elicited requirements using a com-
bination of domain analysis, introspection, and round-table
discussions with the stakeholders These round-table discus-
sions allow the models, and as a result, our understanding,
to evolve over time. They are also one key to engaging the
stakeholders, and to not committing to a design too early.
We use the term “round-table” instead of “group meeting”
to differentiate the standard process of requirements engineers
asking questions and taking notes, to our process of the many
different stakeholders deriving models during the discussions.

While some modelling was performed outside of these
meetings, this was to produce models that could be used as
a starting point for subsequent discussions, which were then
modified in the round-table discussions.

4.2 Our approach to systematic elicitation, analysis,
and modelling

4.2.1 Identifying the problem, root causes, and stake-
holders: a business vision
The first step is to identify the problem, the root causes of the
problem, and the stakeholders. These properties of the project
are recorded in what our industry partner terms a business
vision document. The aim of this artifact is to reach a shared
agreement of the problem, and also a high-level agreement of
a solution space.

This step is standard in many projects, however, one dif-
ference to other approaches is that we use goal models to
represent the motivations of the project, as well as the socio-
technical system in which the software system will reside.

Figure 2 presents the project motivation model for the ATS
system. The goal of the two stakeholders is to develop an
aircraft turnaround simulator. Three quality goals were noted.
First, the product must be developed using the agent-oriented
paradigm. While this may seem as a unnecessary constraint
on the system design, it was an important project quality goal
because the purpose of the project was knowledge transfer
in the area of agent-oriented software engineering. Also, the
product must be testable and usable. These are two important
quality goals for all projects undertaken by our industry
partner. At this level, measurable definitions of testable and
usable are not important.

In addition to the project motivation, we also derive a high-
level model of the system motivation. This outlines the goals
of the entire system, not just of the software to be built.

Fig. 2: An excerpt of the project motivation model for the ATS
system.

Fig. 3: The high-level motivation model for the ATS system.

These artifacts, including the motivation models, are signed
off by the client (or major stakeholders). Our business vision
documents have the structure outlined in Figure 4.

4.2.2 Understanding the current system
The second step is to understand the current system being
employed to solve the problem; perhaps a manual system, or
other software.

Zave and Jackson [38] argue the importance of understand-
ing an entire system, including the environment in which a
piece of software will operate. We agree that it is important to
first understand the motivations of the existing socio-technical



5�

�

�



Title information

Revision History
1 Introduction
2 Project Brief

2.1 Problem: description of the problem.
2.2 Root causes: root causes of the problem.
2.3 Project stakeholders: project stakeholders.
2.4 Project motivation model: project motivations.

3 Product Brief
3.1 System overview: overview of proposed solution.
3.2 High-level product motivation model: product mo-

tivations.
3.3 High-level role models: high-level system roles.
3.4 Assumptions: product brief assumptions.
3.5 Constraints: constraints on the solution.

4 High-level plan
4.1 Project timeline: high-level project timeline.
4.2 Project deliverables: list of artifacts to be delivered

to the client.
5 Endorsement

5.1 Sign-off: between the client and the developers.

Fig. 4: A template for the business vision artifact.

system, as any potential solution is likely to have the same
motivations. This understanding includes all roles that are
part of the system, and the goals achieved, whether these are
achieved manually or otherwise.

Our approach uses high-level motivational scenarios of
the current system to identify the roles and goals of this
system by systematically stepping through the scenarios and
answering a series of questions. Motivational scenarios are
different to models such as use cases, in that they model
interactions between the user and the software system as well
as interactions that do not cross the boundary of the software
system. Scenarios can be derived by the stakeholders, or taken
from existing artifacts. Unlike scenario-based requirements
techniques [30], our scenarios can be highly unstructured. As
a minimum, we require a set of high-level interactions that
occur in the system, and dependencies between these.

Figure 5 shows a high-level motivational scenario for the
ATS system. Motivational scenarios were provided by the
client, and are of a passive nature; that is, there is no discussion
of agents/actors themselves.

The approach for eliciting information about the current
system is to systematically step through every interaction in the
scenarios, one by one, and answer a series of questions about
the interactions, recording relevant information in models.

We identify the following questions for eliciting a complete
set of models.

Q1 What is the purpose of this interaction?
This question aims to elicit the goals and sub-goals of
the scenario. Information elicited with this question is
recorded in the goal model.

Q2 Can this interaction be broken into a set/series of smaller
interactions?

Fig. 5: High-level scenario used to elicit understanding of the
aircraft turnaround domain.

This question aims to identify additional goals. If the
answer is “yes”, add this interaction to the “stack” of
interactions to be analysed.

Q3 Which roles take part in this interaction?
This question aims to elicit the roles in the system. These
roles are recorded on the goal model.

Example: The maintenance of the aircraft is performed to
ensure that the aircraft is safe to fly. There are two types of
maintenance: routine and non-routine. Routine maintenance
is performed by engineers after every flight. Non-routine
maintenance is performed by engineers only if requested; for
example, by the pilot, to investigate a potential problem. Only
the engineers take part in the maintenance of the aircraft,
so we add an Engineer role to the goal model. In a round-
table discussion, we learnt that aircrafts are not re-fueled by
engineers, but by refuelers. Figure 6 shows the excerpt from
the motivation model regarding the aircraft maintenance.

Fig. 6: The sub-goal of maintaining an aircraft during the
turnaround process.

Q4 For each role identified in Question 3:
Q4.1 If playing this role, which other roles would I rely



6

on, and what are my relationships with these roles?
This question aims to elicit the organisational and
interaction relationships of the system. Information
elicited with this question is recorded in the organ-
isation model. This question also helps to identify
other roles in the system. For additional roles, add
them to the queue of roles to be analysed.

Q4.2 What responsibilities would I have with respect to
achieving the goal of this interaction?
This question aims to elicit the responsibilities of
the role. Information elicited with this question is
recorded in the responsibilities attribute of the role
model.

Q4.3 What knowledge would I require to successfully
complete this interaction?
This question aims to elicit the knowledge required
for an agent playing the role to successfully com-
plete the interaction. Information elicited with this
question is recorded in the domain model.

Q4.4 What resources would I require to successfully com-
plete this interaction?
This question aims to elicit the relevant aspects of
the domain/environment. Information elicited with
this question is recorded in the domain model.

Q4.5 To which social policies (rules, regulations, or codes
of behaviour) am I required to adhere to successfully
complete this interaction?
This question aims to elicit the constraints under
which the role must operate. Information elicited
with this question is recorded under the constraints
attribute of the role model.

Q5 Are there additional social policies to which participants
in the scenario must adhere?
This question further aims to elicit the constraints under
which roles must operate. Information elicited with this
question is recorded under the constraints attribute of the
role model.

Example: The Engineer role relies on the Pilot role to
inform it that non-routine maintenance should be performed,
and on the Manager role to be instructed to allocate the staff
schedule. The Engineer is a peer of the Pilot role, and is
controlled by the Manager role.

The Engineer role is responsible for undertaking aircraft
maintenance, and for this, is required to know the aircraft
ID, the gate number at which the aircraft is parked, and that
the air-bridge has been positioned. The resources required are
the flight plan, staff schedule, and aircraft information. The
physical resources are the aircraft itself and the maintenance
equipment. Figure 7 shows the role model for this role.

4.2.3 Eliciting a solution: hiring new staff

To elicit a solution for the problem, we build on the HOMER
elicitation technique proposed by Wilmann and Sterling [34],
which uses the metaphor of hiring staff in an organisation.
The stakeholders are prompted to consider how their problem
could be solved by hiring new staff members, perhaps by
dropping some of the quality goals, such as “efficiency”.

Role ID R9
Role Name Engineer

Description The Engineer performs maintenance
on the aircraft.

Responsibilities 1. Perform routine maintenance on a
specified aircraft when informed of its
arrival.
2. Perform non-routine maintenance
on a specified aircraft when requested.

Constraints 1. Perform the routine and non-routine
maintenance before the scheduled de-
parture of the aircraft.

Fig. 7: The role model for the Engineer role.

For non-technical stakeholders, this metaphor is an intuitive
way to conceptualise a solution, and for technically-minded
stakeholders, this metaphor forces them to think more about
the “how?” and “who?” aspects of the system.

The questions used to elicit the motivations of the new
system are:
Q1 If one was to hire more staff to handle the problem, what

positions would you need to fill?
This question aims to elicit the new roles that will be
added to the system. Information elicited with the question
is recorded as roles on the goal model.

Q2 For each new role identified in Question 1:
Q2.1 If playing this role, what is the purpose of my

position, and what aspects of the problem would
I solve?
This question aims to define any new goals or sub-
goals in the system. Information elicited with this
question is recorded in the goal model.

Q2.2 Ask Questions 4.1-4.5 from Section 4.2.2.
Q3 Are there any new social policies to which I must adhere?

This question aims to elicit any new constraints under
which roles must operate. Information elicited with this
question is recorded under the constraints attribute.

Example: In the turnaround project, new staff could be
hired to perform human-based simulations of the turnaround
process, allowing evaluation of different resource allocations.
Clearly, we were aware that the simulation would be software-
based, so we elicited the roles of the system with the knowl-
edge they would be implemented as software agents.

For the purpose of illustration of how this step would work
in a non-simulation, we consider an alternate — but closely-
related — system, in which we are modelling the ATS in order
to add a new re-fueling system to an airport. In this alternative
system, an agent fulfilling the Engineer role is responsible for
re-fueling the aircraft, and there is no Fueler role.

The problem that the organisation encounters is that the
turnaround is being delayed by the Engineer being unable
to perform the routine maintenance and refuel the aircraft
quickly enough, delaying take off. To solve this problem,
the stakeholders identify that they could hire a person to



7

specifically refuel the aircraft in parallell with the engineer
performing routine maintenance.

4.2.4 Defining the solution: deciding the agent types

To define the solution, we must define two things: 1) the
software system boundary, which is the boundary between the
software and its users and environment; and 2) the behaviour
of the software that will solve the problem. We define both of
these by specifying the agent types that will play the roles in
the system.

Cheng and Atlee [4] advocate defining a system boundary
by assigning responsibilities to different parts of the system,
such as the software system being constructed, human opera-
tors/users, and external systems. We do the same by specifying
which roles will be played by human agents, by external
systems (either hardware or software), and by software agents.

For example, one possible boundary discussed with the
stakeholders in the ATS project was to have the Manager
role played by a human, instead of a software agent. By
changing this assignment of roles, the system changes from a
constructive simulator into a human-in-the-loop simulator.

To elicit the behaviour of the system, ask the following
questions for each responsibility identified in each role model:
Q1 If playing this role, what activities would be required for

me to fulfil my responsibility?
This question aims to elicit the behaviour of the system
that will fulfil the given responsibility, and contribute to
achieving to the system goals.

Q2 For each activity identified in Question 1:
Q2.1 Is this activity performed by a human agent, an

external system, or a software agent?
This question aims to assign responsibility to the
parts of the system.

Q2.2 If performing this activity, what would I have to do?
This question aims to break an activity down into
sub-activities and atomic actions. Actions are ac-
tivities that are not considered in further detail.
Information elicited with this question is recorded as
information about the structure of the corresponding
activity in the activity register.

Q2.3 What help would I require from other agents to
successfully complete this activity?
This question aims to elicit possible messages that
may be sent and received to complete this activity.
Information elicited with this question is recorded
in the interaction model.

Q2.4 What prompts me to undertake this activity?
This question aims to elicit the trigger for the
activity; that is, the event to which the agent reacts.
Information elicited in this section is recorded as the
trigger of the corresponding activity in the activity
register. If this trigger is a message received from
another agent playing some role, it is also recorded
in the interaction model.

Q2.5 Under what conditions can I undertake this activity?
This question aims to elicit the precondition for
the activity; that is, the states of the environment

that enable this activity. Information elicited with
this question is recorded as the precondition of the
corresponding activity in the activity register.

Q2.6 What happens after I complete this activity?
This question aims to elicit how the activity changes
the environment. Information elicited in this section
is recorded as the postcondition of the activity.

Q2.7 What other agents to I need to inform that this
activity has been completed?
This question aims to elicit information regarding
interactions, and the actions for this activity. This
information is recorded in two places: 1) as a part of
high-level description of the actions for this activity
(as in Question 2.2); and 2) in the interaction
models.

Example: In the ATS system, the routine maintenance will
be performed by a software agent, and is modelled as an
atomic action for simulation purposes. To perform routine
maintenance, the aircraft must have its wheel chocks
positioned, and the activity is triggered when the Engineer
is informed by Airport Ground Staff that the aircraft
is ready for maintenance. After the routine maintenance
activity is complete, the aircraft is in a state in which the
Engineer deems that it is safe to fly, and it informs the
Pilot of this. The final activity description for the routine
maintenance is shown in Figure 8.

Activity name: Routine maintenance.

Trigger: Informed by Airport Ground Staff of
the aircraft ID of the aircraft that is
ready for maintenance.

Precondition: Wheel chocks of the aircraft ID are in
position.

Sub-activities: 1. Perform the routine maintenance on
the specified aircraft.
2. Inform Pilot that the routine main-
tenance is complete on the aircraft.

Postcondition: Aircraft with the specified ID is safe
to fly.

Fig. 8: Activity description for Routine maintenance activity.

The final step is to decide how the agent types will be
defined to play the roles, and to perform the activities. We
do not define a solution for this in this paper, as there are
a number of useful methodologies that define this [17], [25],
[37], [28]. In our experience, agent types can be defined as a
one-to-one mapping for simulation systems; that is, each role
is mapped to one agent type, with the activities relating to a
responsibility also mapped to the agent. In the ATS system,
we used a one-to-one mapping, which was intuitive and clear
from the role definitions, and is likely to be similar for any
simulation system. However, there will be cases in which a
one-to-one mapping is not possible. One clear case is when the
responsibilities defined by a single role are mapped to multiple
activities, but the activities are split over different categories;
e.g. some are identified as being played by a human agent,



8

and some by a software agent.
An an example of an agent type, consider the Engineer

agent, which fulfils the role of Engineer. The analysis of the
activities results in the definition found in Figure 9.

Name: Engineer

Description: Play the role of Engineer by perform-
ing routine and non-routine aircraft
maintenance.

Activities:

Activity name: Routine mainte-
nance

. . .

Activity name: Non-routine
maintenance

. . .

Environment 1. Aircraft
considerations: 2. Aircraft information

3. Flight schedule
4. Aircraft gate number
5. Staff schedule

Fig. 9: Agent type specification for the Engineer agent.

The end result of the process is a set of agent types, which
fulfil the system roles, and a description of the behaviour of
these agents, specifying what the agent does, and how this
affects the environment.

5 SPECIFICATION AND PACKAGING

The authors are unaware of any agent-oriented methodologies
that provide support for creating deliverables such as software
requirements specifications, even though these deliverables are
a vital part of many software engineering projects. In this
section, we present the definition of a software requirements
specification (SRS) — a deliverable describing the software
system to be built. An SRS defines a shared understanding
between the project stakeholders as to what is to be built;
thus, it is an agreement between these stakeholders.

5.1 Describing socio-technical systems using agent
models

Using the organisational metaphor to elicit the requirements
of a socio-technical system is beneficial, and we extend this
to the specification of the system as well.

To specify the system, we adopt the systems theory view,
acknowledging that organisations and socio-technical systems
are systems in their own right. The view of a system is broken
in structure, behaviour, interaction, and purpose. The purpose
of a system influences its structure and behaviour, which also
influence each other, and the interactions. To understand a
system, one cannot view any of these aspects in isolation;
they must be considered as a whole. Figure 10 shows where

Fig. 10: The structure of socio-technical systems, as viewed
from the agent paradigm.

Sterling and Taveter’s models reside with regarding to the
systems view.

Many agent methodologies consider the definition of agents
as a design step (e.g. see [37, Fig. 6]), and hold the view
that including this in the specification unnecessarily constrains
design (see [28, Ch.6]). Using the models described in Sec-
tion 3, this would imply that a specification consists of role
models, organisational models, domain models, goal models,
and motivational scenarios. It is our view that these models do
not provide the “what” required to produce an unambiguous
software requirements specification.

We advocate the inclusion of (at least some of) the models
in the platform-independent computational design [28]. Those
models that we deem necessary to include are the agent
models, which determine which agents play each role, and the
agent behaviour models, which determine the behaviours of
the agent types in terms of the activities that they perform.
Additionally, we believe that it would prove valuable to
include the interaction models, which determine the protocols
between agents, and the knowledge models that are used
for representing the agents’ knowledge. Other agent-oriented
methodologies could be interpreted in a similar manner.

5.2 Packaging the SRS

Producing a complete SRS requires us to package these
models together in a meaningful way. Figure 11 presents a
possible template for an agent-oriented SRS, based on existing
templates such as Wiegers’ SRS template [33] and the IEEE
Standard for requirements specifications [16]. Using a template
leads to requirements being presented in a consistent manner
across different projects, however, we acknowledge the need
to be flexible with specifications depending on the system.

One can see from Figure 11 that the SRS is not structured
the same as Figure 10. Instead, the specification is presented
based on abstraction, with higher abstraction being presented
earlier. The scenarios in Section 7 of the template refer to
those scenarios at the platform-independent design layer, so
are presented later rather than earlier.

Sections 1 and 2 of the template are similar to that of
Wiegers’ [33], except that Section 2 includes the high-level
motivational model (e.g. Figure 3), and Section 2.4 of Wiegers’
template (Operating Environment) has been considered as



9�

�

�



Title information

Revision history

Table of contents
1 Introduction

1.1 Purpose
1.2 Intended audience
1.3 Project scope
1.4 Definitions, acronyms, and abbreviations
1.5 References

2 Product Description
2.1 High-level level motivation model
2.2 User classes
2.3 Product features
2.4 Design constraints
2.5 Assumptions

3 Goal models and motivational scenarios
3.1 Motivational scenarios
3.2 Goal models

4 Role and organisational models
4.1 Organisational model(s)
4.2 Role 1
4.3 Role 2

etc . . .

5 Domain/Environment model
5.1 Physical environment
5.2 Virtual Environment
5.3 Environmental perspective
5.4 Overall interaction

6 Agents types and interaction models
6.1 Interaction models
6.2 Agent type 1
6.3 Agent type 2

etc . . .
7 Scenarios

7.1 Scenario 1
7.2 Scenario 2

etc . . .
8 External interfaces

8.1 User interfaces
8.2 Hardware interfaces
8.3 Software interfaces

9 Endorsement
9.1 Sign-off

Fig. 11: A software requirements specification template based on the elicited models.

its own section (Section 5), emphasising the importance of
the environment in socio-technical systems. Wiegers’ System
Features section has been replaced by the agent types and
interaction models (Section 6), as this defines the behaviour of
the system. Sections 3 and 4 in our template have no equivalent
in Wiegers’ template, as Wieger does not consider the purpose
of the system and its roles. Wiegers’ Other Nonfunctional
Requirements section is not included, as nonfunctional require-
ments are considered as quality goals in the goal models.

5.2.1 A note on external interfaces

Section 8 of the template in Figure 11 advocates specifications
of the external interfaces of the system. To identify the
interactions that are involved in each of these interfaces, we
consider the organisational model and the agent types.

Recall that in our approach, agents are classified as hu-
man agents, software agents, or external hardware/software
systems. We identified that any new software agents would
be part of the software system that is to be implemented.
Therefore, by analysing the interactions between these new
agents and the other agents in the system, we can determine
where the external interfaces will be, and use this to feed into
the interface specification.

The categorisation of the agent types provides a clear divide
for each interface type:

• interactions between a software agent and a human agent
will take place at the user interface;

• interactions between a software agent and an external
hardware or software system will take place at the hard-
ware or software interface respectively; and

• interactions between a human agent and an external
hardware/software agents fall outside of the software
boundary, so are not considered.

6 VERIFICATION AND VALIDATION

In this section, we discuss the verification and validation
(V&V) of the requirements specification, specifically the
models in the specification. V&V was performed iteratively
throughout the process. In the ATS project, three main methods
for V&V were applied were technical reviews, prototyping,
and cross-validation of models.

6.1 Reviewing and prototyping
Reviewing and prototyping are common methods for V&V of
software systems. In previous work, two of the authors have
explored the use of prototyping using the models [29], [31].
This paper does not introduce any new techniques in reviewing
and prototyping. Nonetheless, we emphasise the importance of
these in our requirements engineering process, and also include
this as completeness in the case study.

Technical reviews were undertaken both by individual mem-
bers of our team, as well as during round-table meetings
with our industry partners. In the round-table meetings, the
models were discussed and scrutinised, and any omissions
or corrections were made in the meeting, thus implying an
implicit informal review.

The means of prototyping the system was useful for locating
problems. A prototype of the system was produced by an un-
dergraduate software engineering student at the University of
Melbourne, directly from the SRS. The student implemented



10

the prototype as a multi-agent system using the AgentSpeak
language and the Jason interpreter [2].

The student’s feedback into the models was important for
us as he had not been a part of the project beforehand, so
therefore he gave an external viewpoint. It is interesting to
note that the student commented on the ease of using the
SRS. Although he was provided with several references on
understanding agent systems and a textbook on Sterling and
Taveter’s models [28], the student commented that these were
largely unnecessary because the agent-oriented models were
straightforward to interpret. The prototype itself was used as
a validation tool. Over two meetings, the scenarios from the
SRS were walked through with our industry partners, who
highlighted several incorrect assumptions that we had made,
and also highlighted some key requirements that were missing
from the SRS. As a result of the prototyping, we were able to
confirm that the final SRS is correct and complete with respect
to our partner’s needs.

6.2 Cross-validation of models

Our contribution to V&V is in the form of a systematic cross-
validation method. The validation consists of checking the
consistency between the models and an ontology that models
the problem as conceptualised by the client. The ontology
models the important concepts and relationships between the
concepts in the system. Any inconsistency between the two
indicates a problem with either the ontology or the models.
The process used is described by Lopez et al. [19]. In this
section, we overview this and discuss some of the results.

The ontology was developed based on documentation that
the client provided as well as several interviews with them. The
team deriving the ontology worked separately from the other
members in the requirements engineering phase to introduce
diversity between the models and the ontology. Throughout the
development, the ontology is revisited to ensure that it is up-
dated with any additional insights the client develops through
interacting with the development team. The ontology consists
of 350 concepts and relations, most of which were identified
from documentation provided by the client. In addition, the
ontology is augmented with annotations describing concepts
and relations specifically relevant to agent-oriented models.
Table 1 illustrates these properties for the models at the
conceptual domain modelling level. These properties provide
software engineers with a straightforward way to evaluate the
consistency between the ontology and the other models.

The validation activity is iterative: models are validated as
soon as they are available, correcting errors as they arise and
avoiding compounding and propagating errors to later phases
of the development.

The validation process consists of applying, for every model
developed, a list of model-dependent operators. Applying
an operator can trigger one or two proposals to amend the
model, depending on the outcome. For example, validating the
agent-oriented model consists of ten operators that can trigger
amendment proposals, exemplified by the following: “add to
the model set an agent type X”, where X is defined in the
ontology but it does not have a corresponding model. To ensure

TABLE 1: Ontology Properties

Domain Property Range

Goal is a Goal
Goal part of Goal
Role responsible for Goal
Role participates in Activity
Role is peer Role
Role controls Role
Role is benevolent Role
Role uses Environment
Agent plays Role
Agent performs Activity
Activity fulfils Goal
Activity requires Environment
Activity precedes Activity
Activity follows Activity

effectiveness of the cross-validation activity, the creators of the
models were not directly involved in the validation. Instead, as
the requirements engineering was undertaken, the modellers
received recommendations from the team members under-
taking the cross validation. Iterations were undertaken until
models converged and no further amendments were proposed
by the validation activity.

The initial set of models that underwent validation included
environment, goal, role, organisation, interaction and scenario
models. During subsequent iterations, further models were
added (e.g. an agent model). Some models that were developed
in close consultation with the client converged quickly, as they
were close to what was expected and the client had detected
discrepancies beforehand. In particular, the goal model and
the role model underwent minor improvements and were
stable after the second iteration. Other models were changed
throughout four iterations of the activity, including the domain
model, the organisation model, the interaction model, the agent
model and the scenario model. Additional details can be found
in earlier work [19]. The cross validation against the ontology
highlighted the following opportunities to improve the models:

• some missing relations were detected (e.g. in the envi-
ronment model);

• discrepancies in models were detected (e.g. in the roles
relationships within the organisation model and in the
messages proposed in the interaction model); and

• scope for further refinement was highlighted (e.g. parallel
processing opportunities were identified in the interaction
model, more details were proposed in the scenarios).

Following the third iteration, the number of proposals pro-
duced by the validation process had largely converged.

7 LESSONS LEARNT

In this section, we discuss the most important lessons that
we learnt as part of the project, about our method and about
agent-oriented requirements engineering in general.

7.1 Requirements elicitation

Business vision documents. Business vision documents are
typically not required for academic projects, and therefore



11

have not been addressed in the agent literature as far as the
authors are aware. The use of high-level models in such docu-
ments is a novel application of agent-oriented models that was
significant for our industry partner. The business vision models
were helpful in identifying the high-level motivations and the
stakeholders. For example, within seconds of being presented
the first draft of the model in Figure 3, one of the industry
partners noted that the air traffic controllers were stakeholders
in the turnaround process, and this induced discussion about
how new traffic enters the airport. In subsequent iterations,
the air traffic controller role was deemed unnecessary for
the simulation and was dropped, but changes related to this
remained. It is not unreasonable to claim that if the scope of
the system was larger, we would have been required to engage
with air traffic controllers as part of the elicitation process, and
we believe our model would have identified this earlier than
otherwise. Events such as this further strengthen our view that
using stakeholders as modellers is highly valuable.

Elicitation questions. The elicitation for the ATS system
did not follow the questions in the order listed in Section 4.2,
and we expect that this would be the case for other projects.
The elicitation questions form a checklist, but the order in
which they are asked did not seem important. Conversations
were triggered by stakeholders, and we found it important to
allow these conversations to occur and to record the details
for further analysis, rather than fixating on the questions.

However, the questions did form the basis of some conver-
sations, and our industry partners found this approach effective
for bringing themselves into the agent mindset; something with
which they had struggled previously.

Stakeholders as modellers. A key characteristic of our
elicitation approach is the use of stakeholders as modellers.
In our elicitation meetings, each stakeholder was provided
with a copies of the most recent models, and comments were
invited. During the meetings, these models were modified by
the group, thus taking advantage of the experts’ knowledge
of the domain. We found it necessary for the requirements
team to perform further analysis in between meetings to ensure
consistency between different models, etc., and to refine lower-
level models.

We found that the lightweight nature of the models was
useful in the meetings, as many incorrect assumptions that
we had made were quickly identified by the domain experts,
and corrected. This is consistent with our previous work with
less-technical stakeholders.

Abstraction in understanding. The lower-level and less
graphical models, such as the agent type specifications, were
less useful in meetings, due to the inability to consider many
of these models at one time. The motivational models (role
models, goal models, and domain models), were more useful,
even at a high level. We found that lower-level models were
largely produced outside of the round-table meetings. This
is especially the case for the agent types. We believe that
defining agent types outside of these meetings would be more
straightforward than defining motivation models, due to having
a better understanding of the system by this time.

The usefulness of high-level models is evident from an
example. Early in the process, one of the requirements en-

gineers devised a high-level domain model, which contained
the concepts he thought were relevant, and links between
these concepts. The links represented relationships, but did
not define what these relationships were, as the engineer
had not yet identified these. Initially, these were met with
confusion from the other members in the meeting. The value
of this model became clear only minutes later when one of
the domain experts identified several incorrect assumptions
about the relationships between concepts in the model, despite
not knowing what the relationships meant. This indicates that,
at least early in the requirements process, it is beneficial to
share any understanding of the system, rather than waiting
until models are complete.

Software system boundaries. We advocate delaying the
definition of the system boundary until as late as is reason-
able/possible, and at least until stakeholders have a shared
understanding of the problem. Project or organisational con-
straints may require a system boundary early in the project,
perhaps before the problem is fully understood. In these cases,
we believe that the boundary decision should be delayed as
long as possible without affecting the remainder of the project;
e.g. contract agreements.

The software system boundary was left undefined for most
of the requirements elicitation process. Our industry partners
did not feel that it impacted the project negatively, however,
in this particular case study, they did not see any benefit in
delaying the boundary definition either, because they felt that
the only obvious boundary was one in which all roles were
played by software agents, although they did see that this could
be useful for other systems.

To our group, the benefits of not defining a system boundary
at the start of elicitation are illustrated by the project. We
described earlier in this section the discussion that was held
regarding whether the role of the Manager was to be played by
a human or a software agent. Had the boundary been defined at
the start of the requirements elicitation, this discussion may not
have taken place. It is examples such as these that strengthen
our claim that delaying definition of software system boundary
can be beneficial.

The interaction designers we have collaborated with in
other work [24], [27] have embraced the idea of delaying the
software system boundary. A colleague (interaction designer)
reported to us his experience with designing technology to
support school children with autism. In working with a group
of school teachers who were specialists in teaching autistic
children, he found that by not constraining the system bound-
ary, the teachers produced more useful solutions. By simply
asking the teacher groups to design a technologically-based
solution to support the children, the groups attempted to fit
everything into software. The teacher groups who did not have
this mandate all included technology as part of their designs,
but the support was extended well outside of the software
system boundary.

This is consistent with Gause’s view [12], which states
that taking the time in early requirements engineering to
discuss possible solution boundaries with stakeholders raises
awareness about possible solutions, and can discover deep
context regions — those areas factors that are often oversights



12

until a product is released.
Model evolution. As expected, our experience indicates

that having models evolve over series of round-table discus-
sions leads to a clearer solution, as early concerns regarding
concepts such as resources were delayed without jumping to
a pre-conceived solution. Later in the development process,
successive versions of the models enabled traceability of the
design decisions that were made, and of the requirements in
general. This gave the research team something to fall back
on when discussions started to get too complex for some
stakeholders or drifted from original high-level goals, and also
made the source of requirements more straightforward to trace.
The example of the air traffic controller role illustrates this, in
which the models were updated to reflect this role, but even
after its removal, parts of the model related to it remained.
This is consistent with the findings described by MacLean
and Bellotti [20].

7.2 Requirements specification and packaging
Agent types. The major lesson that we learnt as part of this
project was with regards to the inclusion of agent types in
the SRS. In previous work, we had, like other researchers,
considered agent types as a design artifact. However, during
this project, we came to the conclusion that the use of agent
types to define behaviour is important.

Early in the ATS requirements process, our collaborators
struggled to identify the behaviour of the system, or how they
could implement and verify a system against a set of high-level
models. However, once we decided to include agent types, the
system behaviour became much clearer to them.

We believe that defining the behaviour is important with
regards to obtaining a sign-off from the client. The signing
off of requirements, and what constitutes this sign off, is
overlooked in academic research on agent-oriented software
engineering, but is important for contract definition in projects
with third-party vendors.

Our collaborators at Jeppesen particularly like the flexibility
enabled by the agent paradigm and the use of agent types. In
their experience, clients on different projects are often happy
to sign-off at different levels of abstraction. For example, some
clients would be happy to sign-off the role and goal models,
while others would want to see the more detailed agent types.
In an event-based system, this distinction is less clear.

SRS Template. For the ATS project, the SRS of the system
closely follows the structure recommended in this section, with
some changes to suit the specific system. As part of the ATS
specification, interaction models were derived, however, they
were omitted from the latter versions of the SRS because we
felt they did little to help define or understand the system
behaviour. The other stakeholders agreed that the interaction
models gave them little value in understanding the proposed
solution. This is largely because the interaction protocols used
in the ATS system were either largely sequential or were
straightforward enough to extrapolate the interactions from
the agent types and scenarios. The interaction diagrams were
included in the software design.

In our view, the final SRS for the project is a well-packaged
artifact. We believe the SRS to be correct, complete, and

consistent, a view that is strengthened by our industry partners,
who have endorsed (signed-off) the SRS package. This sign off
is an agreement between ourselves and our industry partners
that the requirements are correct, complete, and consistent,
showing that our approach can be used to arrive at a solution
with which all stakeholders are satisfied. We see this as an
important result in itself.

8 RELATED WORK

Agent-oriented requirements engineering has been investigated
by other authors, and as a result, several methodologies have
been proposed, such as Tropos [3], Prometheus [25], Gaia
[37], INGENIAS [26], and ROADMAP [17]. Blanes et al.
[1] performed a systematic of agent-oriented requirements
engineering, finding that most research in the area focused
on notations for modelling and analysis, with little support for
requirements elicitation, specification (other than modelling),
or validation.

8.1 Requirements elicitation and analysis
Both agent-oriented and goal-oriented requirements elicitation
and specification have been investigated in the past. A key
feature of much of the existing work is on motivations; that
is, the “whys” of a system, in addition to the “whats”. Our
approach continues in this direction, and we have found this
to be valuable in understanding systems.

Two major differences between our work and other agent-
oriented and goal-oriented requirements elicitation methods
are in the level of detail. First, similar to NFR [22], [5] and
other works e.g [13], we acknowledge that committing to a
design decision too early may result in some stakeholders’
solutions being discarded, making their views irrelevant. How-
ever, a key contribution of this work compared with other
work is that it further encourages stakeholder involvement
by facilitating the inclusion of all key stakeholders in the
modelling and analysis of the system, not just the elicitation.
Zowghi and Coulin [39] note that, especially in group meet-
ings, stakeholders must feel confident that their views will
be heard, and that they are part of the process. We encourage
stakeholders to discuss and modify models during group meet-
ings help to engage them in the requirements process. In other
work, we have successfully employed agent-oriented models in
this context with psychologists, ethnographers, and interaction
designers [24], [27]. We believe that our approach could be
applied to other agent- or goal-based modelling notations by
using just a simple subset of the notations with which non-
technical stakeholders would be comfortable.

Second, we prescribe a more detailed approach for elic-
iting information and recording it into models. The KAOS
methodology includes a requirements acquisition technique [6]
similar to ours. KAOS identifies what is required for the final
models (system goals, agents, action, and domain attributes),
but is less prescriptive in how to arrive at these. The Tropos
methodology [3] uses a question-answer technique for eliciting
requirements. The Tropos requirements elicitation technique
involves four questions: who are the main actors?; what are
their goals?; how can they achieve them?; and does an actor

beydoun
Sticky Note
I suggest adding something along the lines : ".. this is also facilitated by the fact that our approach relies on informal models. We do not demand the use of any strict formalisms. "



13

depend on another to achieve its goals?. These questions are
broader versions of our questions for understanding the current
system, and do not define how to arrive at solutions.

The social organisation metaphor has been used to anal-
yse and specify requirements. Donzelli and Bresciani [8]
use goal modelling to develop, during the analysis phase,
an organisational view of agent-oriented systems. Yu [35]
stresses the importance of identifying motivations within an
organisational context in early-phase requirements engineer-
ing. Yu proposed the i∗ modelling language to capture these
motivations, commenting that social considerations are not
commonplace among most modelling techniques. Yu’s notion
that software processes can be modelled as social processes is
the essence of using agents to implement roles in our work.

Many of these concepts are inherited by the Tropos agent-
oriented development methodology [3], which is built on
i∗. Blanes et al. identify Tropos [3] as providing the most
mature support for requirements elicitation. Like Tropos, our
approach asks “why” as well as “what” when eliciting the
requirements, because we agree that the motivation of the
system is important for understanding how the system will
fit within its organisation and environment. However, this
research has not been translated into a standardised method
to explicitly elicit requirements for agents using organisations
as the guiding metaphor. Our approach provides a systematic
and repeatable approach for eliciting requirements, which we
believe could be used within the Tropos methodology.

8.2 Requirements specification

A major difference between our work and other agent-
oriented requirements engineering methods is the inclusion of
agent types in the requirements specification. Typically, this
is considered as design restriction, and therefore not good
requirements engineering practice. However, the purpose of
requirements engineering is to define the external behaviour
of the system in its environment. Role specifications assign
responsibilities for achieved goals, but purposely omit defini-
tions of behaviour. Thus, multiple systems, each with different
behaviour from the others, could achieve the specified goals.

We are not the first authors to identify that high-level
conceptual models in agent methodologies are not sufficient
to define behaviour. Ferber et al. [10] identify two approaches
for specifying behaviour of a multi-agent system: assigning
individual requirements to individual agents; and assigning
behaviour to role instances, which are further refined into
agents. The first specified behaviour from the perspective of an
external observer, while the second specifies behaviour from
the viewpoint of the individual instance, which is closer to our
approach; however, we feel that the intermediate representation
between roles and agents is unnecessary, and that our approach
of assigning responsibilities to agents is a cleaner solution.

KAOS [6] defines the behaviour of systems using
agent/action definitions. These are similar to our agent types,
in that they define the agent and the actions that the agent can
perform. KAOS does not distinguish between roles and agents,
instead treating agents as the primary actors that achieve goals.
The constraints related to goals are assigned to agents using

responsibility links, making their notion of an agent a merging
of our notation of roles and agents. When applying KAOS, van
Lamsweerde et al. [32] comment that the last stages of the
goal elaboration process “were performed in parallel with the
agent/action identification and goal operationalisation”. This
provides further evidence that committing to some agent or
activity design is necessary to define behaviour.

The Prometheus methodology [25], like KAOS, does not
consider roles as part of requirements engineering. Like us,
they identify that functionality must be considered to define
behaviour. A Prometheus specification contains the system
goals, but with no indication of the roles that achieve them.
Functionalities are natural language descriptions of behaviour.
Prometheus has been applied to industry applications, such
as the meteorological alerting system developed with the
Australian Bureau of Meteorology [21].

We have not seen other work that outlines how a re-
quirements package should be constructed for a multi-agent
system. Several other generic SRS package templates exist,
such as that from Wiegers [33] and the IEEE Standard for
requirements specifications [16]. These two templates are both
similar to our template, however, we see the value in using a
template that emphasises the concepts that are central to the
agent-oriented paradigm.

9 CONCLUSIONS

In this paper, we described two improvements to previous
work on agent-oriented requirements engineering. These im-
provements relate to problems experienced by our industry
partner: (1) a lack of systematic methods for agent-oriented
requirements elicitation and modelling; and (2) a lack of
prescribed deliverables for agent-oriented requirements.

Our elicitation approach prescribes a list of questions to be
answered by stakeholders in round-table meetings, and how to
directly map the answers to lightweight agent-oriented models.
Further, we prescribe a requirements specification template
that uses agent-oriented models as a central focus. Importantly,
the template advocates the inclusion of agent types at the
requirements level, rather than defining these at design time,
based on our observation that roles, goals, and interactions
alone are not sufficient for describing system behaviour.

We have been fortunate enough to attract an industry
partner to work closely with to improve our requirements
engineering processes — something that is difficult to do for
researchers in this area. Applying our approach in conjunction
with our industry partner demonstrated that the approach is
useful, and we believe led to a much better requirements
engineering method. A strong result of this work is that our
industry partner has adopted many parts of our requirements
engineering method into their own requirements engineering
process models. This validates our claims that using the agent
paradigm is not merely an academic exercise.

Current and future work will explore our requirements
engineering approach in more detail. Currently, three individ-
uals of varying experience are designing and implementing
different versions of the ATS system from our requirements
specification. We will assess the differences and similarities of



14

these systems to evaluate which parts of our approach need to
be improved. Ideally, we will see three systems that display the
same behaviour. In addition, we are designing, implementing,
and testing our own version of the ATS system to evaluate
Sterling and Taveter’s design models [28].

In future work, we will apply our approach to larger-scale
systems where the domain requires more detailed analysis,
with the aim of evaluating how our approach scales. Already
our industry partner is applying their modified requirements
engineering process model to the maintenance of large-scale
air-traffic simulators. This domain is highly complex, so we
expect to receive useful feedback.

Acknowledgements

This research is funded by the Australian Research Council
Linkage Grant LP0882140.

REFERENCES

[1] D. Blanes, E. Insfran, and S. Abrahão. Requirements engineering in the
development of multi-agent systems: a systematic review. In Intelligent
Data Engineering and Automated Learning, pages 510–517. Springer,
2009.

[2] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge. Programming multi-
agent systems in AgentSpeak using Jason. Wiley-Interscience, 2007.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los. Tropos: An agent-oriented software development methodology.
Autonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[4] B. Cheng and J. M. Atlee. Research directions in requirements
engineering. In L. Briand and A. Wolf, editors, Proceedings of the
International Conference on Software Engineering, Workshop on the
Future of Software Engineering, pages 285–303, 2007.

[5] L. Chung and J.C.P. Leite. On non-functional requirements in software
engineering. In Conceptual Modeling: Foundations and Applications,
volume 5600 of LNCS, pages 363–379, 2009.

[6] A. Dardenne, A. Lamsweerde, and S. Fickas. Goal-directed requirements
acquisition. Science of computer programming, 20(1-2):3–50, 1993.

[7] S.A. DeLoach, M.F. Wood, and C.H. Sparkman. Multiagent systems
engineering. International Journal of Software Engineering and Knowl-
edge Engineering, 11(3):231–258, 2001.

[8] P. Donzelli and P. Bresciani. Improving requirements engineering by
quality modelling — a quality-based requirements engineering frame-
work. Journal of research and Practice in Information Technology,
36(4):277–294, 2004.

[9] K. El Emam and A.G. Koru. A replicated survey of IT software project
failures. IEEE software, 25(5):84–90, 2008.

[10] J. Ferber, O. Gutknecht, C.M. Jonker, J.P. Müller, and J. Treur. Organiza-
tion models and behavioural requirements specification for multi-agent
systems. In Y. Demazeau and F. Garijo, editors, Proceedings of the 10th
European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, pages 1–19, 2001.

[11] D. Gause. User driven design – the luxury that has become a necessity,
a workshop in full life-cycle requirements management. In ICRE 2000,
Tutorial T7, 2000.

[12] D.C. Gause. Why context matters-and what can we do about it?
Software, IEEE, 22(5):13–15, 2005.

[13] V. Gervasi and D. Zowghi. On the role of ambiguity in RE. In
Requirements Engineering: Foundation for Software Quality, volume
6182 of LNCS, pages 248–254, 2010.

[14] Standish Group. Chaos report, 1994.
[15] R. Guizzardi and A. Perini. Analyzing requirements of knowledge

management systems with the support of agent organizations. Journal
of the Brazilian Computer Society, 11(1):51–62, 2005.

[16] IEEE. IEEE Std 830-1993, Recommended practice for software require-
ments specifications, 1998.

[17] T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gaia
methodology for complex open systems. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 3–10. ACM Press, 2002.

[18] I. Jureta and S. Faulkner. Clarifying goal models. In J. Grundy,
S. Hartmann, A. Laender, L. Maciaszek, and J. Roddick, editors, ER
(Tutorials, Posters, Panels & Industrial Contributions), volume 83 of
CRPIT, pages 139–144, 2007.

[19] D. A. Lopez, G. Beydoun, L. Sterling, and T. Miller. An ontology-
mediated validation process of software models. In 19th Int. Conf. on
Information Systems Development, pages 455–467. Springer, 2011.

[20] A. MacLean, V. Bellotti, and R. M. Young. What rationale is there
in design? In D. Diaper, D. J. Gilmore, G. Cockton, and B. Shackel,
editors, Proceedings of the IFIP TC13 Third International Conference
on Human-Computer Interaction, pages 207–212, 1990.

[21] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff.
An open meteorological alerting system: Issues and solutions. In
Proceedings of the 27th Australasian Conference on Computer Science,
volume 26, pages 351–358. ACS, 2004.

[22] R. Mehta, H. Wang, and L. Chung. Dealing with NFRs for smart-phone
applications: A goal-oriented approach. Software Engineering Research,
Management and Applications, pages 113–125, 2012.

[23] T. Miller, S. Pedell, L. Sterling, and B. Lu. Engaging stakeholders
with agent-oriented requirements modelling. In Agent-oriented Software
Engineering XI, volume 6788 of LNCS, pages 62–78, 2011.

[24] J. Paay, L. Sterling, F. Vetere, S. Howard, and A. Boettcher. Engineering
the social: The role of shared artifacts. International Journal of Human-
Computer Studies, 67(5):437–454, 2009.

[25] L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A
practical guide. John Wiley and Sons, August 2004.

[26] J. Pavón and J. Gómez-Sanz. Agent oriented software engineering with
INGENIAS. In Multi-Agent Systems and Applications III, volume 2691
of LNCS, pages 394–403. Springer, 2003.

[27] S. Pedell, T. Miller, F. Vetere, L. Sterling, S. Howard, and J. Paay.
Having fun at home: interleaving fieldwork and goal models. In
Proceedings of OZCHI, pages 309–312, 2009.

[28] L. Sterling and K. Taveter. The Art of Agent-Oriented Modeling. MIT
Press, 2009.

[29] L. Sterling and K. Taveter. Event-based optimization of air-to-air
business processes. In N. Stojanovic, A. Abecker, O. Etzion, and
A. Paschke, editors, Proceedings of the Intelligent Event Processing –
AAAI Spring Symposium, pages 80–85. AAAI Press, 2009.

[30] A. Sutcliffe. Scenario-based requirements engineering. In Proceedings
of the 11th IEEE International Requirements Engineering Conference,
pages 320–329. IEEE, 2003.

[31] K. Taveter and L. Sterling. An expressway from agent-oriented models
to prototype systems. In Agent-Oriented Software Engineering VIII,
volume 4951 of LNCS, pages 192–206, 2007.

[32] A. Van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed
elaboration of requirements for a meeting scheduler: problems and
lessons learnt. In 2nd IEEE International Symposium on Requirements
Engineering, pages 194–203. IEEE Computer Society, 1995.

[33] K. Wiegers. Software requirements. Microsoft Press, 2nd edition, 2003.
[34] D. Wilmann and L. Sterling. Guiding agent-oriented requirements

elicitation: HOMER. In Fifth International Conference on Quality
Software (QSIC), pages 419–424, 2005.

[35] E. Yu. Social modeling and i∗. Conceptual Modeling: Foundations and
Applications, pages 99–121, 2009.

[36] F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational ab-
stractions for the analysis and design of multi-agent systems. In
P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software
Engineering, volume 1957 of LNCS, pages 231–251. Springer, 2001.

[37] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multi-
agent systems: The Gaia methodology. ACM Transactions on Software
Engineering Methodology, 12(3):317–370, 2003.

[38] P. Zave and M. Jackson. Four dark corners of requirements engineering.
ACM Transactions on Software Engineering Methodology, 6(1):30,
1997.

[39] D. Zowghi and C. Coulin. Requirements elicitation: A survey of
techniques, approaches, and tools. In A. Aurum and C. Wohlin, editors,
Engineering and managing software requirements, chapter 2, pages 19–
46. 2005.


	Requirements elicitation and specification using the agent paradigm: the case study of an aircraft turnaround simulator
	Recommended Citation

	Requirements elicitation and specification using the agent paradigm: the case study of an aircraft turnaround simulator
	Abstract
	Disciplines
	Publication Details

	tmp.1418776675.pdf.0OO7I

